92/031 Genetic Study of the Spatial Structure of Southern Bluefin Tuna Population

PRINCIPAL INVESTIGATORS: Dr. Peter M. Grewe Dr. Tom Polacheck

ADDRESS:

Division of Marine Research GPO Box 1538 Hobart, Tasmania 7001 Telephone: 0362-325-374 FAX: 0362-325-000

OBJECTIVES

The proposed project is intended as a pilot study to a subsequent larger research project dealing with the links between southern bluefin spawning grounds and recruitment to the fishery. The objectives of this project are as follows:

- 1. To assess the genetic variability in juvenile bluefin tuna collected from the south-west coast of Australia, adults collected in waters off south Africa, and adults collected from the east coast of Tasmania.
- 2. The genetic variation present among the sample locations will be used to test the hypothesis that the two length modes present in a single year-class of juvenile SBT (either one or two year old fish collected from the south-west coast of Australia) relate to at least two genetically different components of the population.
- 3. Genetic variation between the African and Tasmanian adult samples will help determine whether genetic differences observed in juvenile fish is related to their spatial distribution as adults.

NON TECHNICAL SUMMARY

Southern bluefin tuna (*Thunnus maccoyii* (Castelnau)) are large (up to 200 cm and 200 kg), long-lived (more than 40 years; see Gunn et al. 1995) and commercially valuable fish. They are fished in the southern oceans, from the south-east Atlantic across the southern Indian Ocean to east Tasmania and New Zealand. The majority of fishing is conducted by Japanese longline vessels who focus their effort off South Africa and Tasmania. They primarily target the medium to large-sized fish, which are destined for the lucrative Japanese sashimi market. In the past, Australian fishermen have concentrated on surface schools of juveniles along the coasts, but are increasingly targeting larger fish for the sashimi market.

Annual global catches have fallen from a peak of around 80 000 t in 1960 and 1961 (Caton, 1994) to 12 631 t in 1991 and 13 846 t in 1992 (FAO, 1994). The spawning stock is estimated to be around 6 to 11% of its 1960 size - a historically and critically low level (Polacheck, pers. com.). In response to declining stock levels, international management, through informal arrangements, had imposed increasingly restrictive global catch quotas. These arrangements were formalised in 1994 with the ratification of the Convention for the Conservation of Southern Bluefin Tuna by Japan, New Zealand, and Australia. The first meeting of the Convention agreed to a global catch quota for 1994-95 of 11,750 t, of which 5265 t was allocated to Australia, 6065 t to Japan, and 420 t to New Zealand.

1SBTFNTS.DOC : Non-Technical Summary

December, 1996

Determining objective management strategies requires information on various population parameters including elucidation of stock structure. In many species, including SBT, stock structure has typically been examined by several non-genetic methods, chief among which is tagging. For SBT, these studies are on-going, but earlier data show extensive movements, with fish tagged off southern Western Australia, South Australia, and New South Wales being recaptured as far east as the east coast of New Zealand and as far west as southern Africa (Murphy and Majkowski, 1981). However, recent tagging results (Murphy 1977; Ishizuka 1987; Hearn and Polacheck 1991) suggest that there may be a differential east/west movement of two/three year old SBT from the coastal waters of Australia that persists in the spatial distribution as adults. These results indicate a complex spatial structuring of SBT stocks that may involve site fidelity of adults at different feeding areas that in turn correspond to major fishing grounds. This feeding ground fidelity could result in genetically distinct sub-stocks. Furthermore, juvenile SBT collected in western Australia demonstrate the presence of at least two length modes (Hynd 1965; Leigh 1991) suggesting two breeding pulses, further indicating the possibility of separate sub-stocks. Catch rates of sub-adults and adults from different locations within the major fishing areas show different temporal patterns of reductions which are also consistent with low exchange rates among areas. Considerable concern exists about the possibility of sequential depletion of local substocks of SBT (e.g. some historically important SBT longline fishing areas now appear to be commercially extinct). Consequently, identification of the stock structure of SBT is critical for rational management.

This report examined data on genetic variability among and within four sampling areas (South Africa, Western and Southern Australia, and eastern Tasmania) to assess whether bluefin tuna recruited to domestic and foreign fisheries within the AFZ constitute more than a single genetically homogeneous population. Population structure was investigated by testing the null hypothesis that no genetic differentiation occurs among areas sampled. To test the null hypothesis, the frequencies of genetic markers (both allozyme and mitochondrial DNA) were studied in samples from different regions. In addition, samples of juveniles of different size modes were compared to each another and to larger fish.

Mitochondrial DNA (17 variants) and six polymorphic allozyme loci were screened in southern bluefin tuna samples taken from South Africa, Western Australia, South Australia, and eastern Tasmania. Frequencies of genetic markers were not statistically significant among the four sample locations. Comparison of the two samples representing extreme ends of the area sampled (Tasmania and South Africa, about 11 000 km apart) also failed to reveal any differences. Clearly, it is not possible from this data to reject the null hypothesis that southern bluefin tuna comprise a single genetic stock.

The null hypothesis was examined further by comparing genetic marker frequencies between various size classes. The daily growth rings on the otoliths of some of the small juveniles taken off Western Australia at the end of January/beginning of February 1993 suggest that the mode of 30-35 cm fish consists of fish 3 to 4 months old, while the 46 to 54 cm length mode consists of fish about 1 year old (Gunn et al., 1995).

These findings are consistent with catch per unit effort (CPUE) studies of mature fish taken from the spawning area, which suggest that there are two peaks in CPUE: January to February, and October (Davis and Farley, 1995). These are likely to correspond to spawning peaks, as female fish in these catches have mature oocytes. The relative sizes of these two peaks, as judged from CPUE figures, varies from year to year, although in recent years the January to February peak appears to have been the larger (Davis and Farley, 1995). The larger (older) fish we sampled were probably spawned in the February to March 1992 period (although a few may have been spawned in September to October 1991) and the smaller (younger) fish were spawned September to October 1992. The lack of intermediate-sized fish

ISBTFNTS.DOC : Non-Technical Summary

December, 1996

page - 3 of 3

reflects the likely paucity of spawning between May and July, or possibly poor survival of larvae spawned in this period. The null hypothesis that these two groups of fish were drawn from a single gene pool could not be rejected for either the allozyme or the mtDNA data. However, sample sizes were small, and the strength of this inference is correspondingly weak: the extent of gene flow between fish spawning at these two peaks may range from very limited to complete. Because of subsequent differences in growth rates, these two groups of fish cannot be distinguished in larger-size categories and therefore cannot then be compared with one another.

Another technique for defining stock structure examines the microchemistry of otoliths. Using this non-genetic approach, examination of both the primordial region deposited in the first few days of larval life and the margin deposited shortly before the individual is caught, were consistent with a single southern bluefin tuna stock (Proctor et al., 1995). However, no clear differences in the compositions of the otolith margins were apparent in individuals collected from widely separated localities, suggesting the approach will not be useful for studying southern bluefin tuna movements.

The conclusion from these various lines of evidence must be that the null hypothesis of a single stock of southern bluefin tuna cannot be rejected. However, failure to reject this hypothesis does not necessarily mean that it is correct. In particular, the biological basis of the two spawning peaks needs further investigation. If offspring from one peak preferentially return to spawn at that time, then there will be some restriction on gene flow between these two components of the population, and the nature and extent of these stocks would have to be determined. Our attempt to resolve this question did not provide a robust test, as only small numbers of individuals (n=56) were examined from the two spawning peaks. Further investigations should attempt to analyse larger numbers of fish, if possible by sampling spawners or larvae rather than their putative juvenile offspring. Future research should also incorporate analysis of hypervariable microsatellite DNA markers, which may detect levels of population structuring not apparent from allozyme or mtDNA surveys.

KEYWORDS: southern bluefin tuna, stock discrimination, analysis of population structure, allozymes, mitochondrial DNA (mtDNA)

December 1996

Genetic Study of the Spatial Structure of the Southern Bluefin Tuna Population

Dr. Peter M. Grewe and Dr. Tom Polacheck

Project FRDC 92/031

Genetic Study of the Spatial Structure of the Southern Bluefin Tuna Population

Dr. Peter M. Grewe and Dr. Tom Polacheck

Project FRDC 92/031

Grewe, Peter, 1961-Genetic study of the spatial structure of the southern bluefin tuna population

ISBN 0 646 05958 X

- 1. Bluefin tuna Genetics
 - I. Grewe, Peter. 1961-
 - II. CSIRO. Division of Fisheries
 - III. Fisheries Research and Development Corporation (Australia)
 - IV. Title

597.78313

TABLE OF CONTENTS

D	20	
Г	ay	e,

1.	BACKGROUND	1
2.	NEED	1
3.	OBJECTIVES	2
4.	METHODS	2
5.	DETAILED RESULTS	4
6.	BENEFITS	13
7.	INTELLECTUAL PROPERTY AND VALUABLE INFORMATION	13
8.	FURTHER DEVELOPMENT	13
9.	STAFF	13
10.	FINAL COST	14

1. BACKGROUND

This project was a pilot study intended to provide the information needed to assess the feasibility of a larger research project to a) determine the source of bluefin recruits to domestic and foreign commercial fisheries in Australian waters and b) determine whether bluefin tuna sub-populations are present within the AFZ. This information will be reported to Australian Fisheries Management Authority, SBTMAC and relevant Granting Agencies. Results will be presented to the Demersal and Pelagic Fisheries Research Group, the Australian Marine Science Association and the Australian Society for Fish Biology. This pilot study will determine whether a larger research project is practical and if so, it will provide the basic information needed to carry out such a project. Data provided from this pilot study will also result in publications in international journals

Data on genetic variability among and within three sampling areas (south western Australia, South Africa, and eastern Tasmania) will provide a means of assessing whether bluefin tuna recruited to domestic and foreign fisheries within the AFZ constitute more than a single genetically homogeneous population. One-year-old, juvenile southern bluefin tuna SBT collected in western Australia demonstrate the presence of at least two length modes (Hynd 1965; Leigh 1991) suggesting 2 breeding pulses and the possibility of separate sub-stocks. Early reports by Hynd (1965) suggested the existence of three separate size modes, but the third mode appears to have disappeared. In addition, recent tagging results (Murphy 1977; Ishizuka 1987; Hearn and Polacheck 1991) suggest that there may be a differential east/west movement of two/three-year-old SBT from the coastal waters of Australia that persists in the spatial distribution as adults. Preliminary data indicate that approximately equal proportions of SBT tagged as juveniles off western Australia are recovered as adults in fishing grounds located both east and west of 70°E. However, fish tagged at more easterly locations are less likely to be recruited to the fisheries west of 70°E (*i.e.* only one-third of juveniles tagged off South Australia are recovered west of 70°E and juveniles tagged off NSW were only recovered in fishing grounds east of 70°E). Tagging results indicate a complex spatial structuring of SBT stocks which may involve site fidelity of adults that exist as genetically distinct sub-stocks.

2. NEED

Catch rates of sub-adults and adult southern bluefin tuna from different locations within the major fishing areas show different temporal patterns of reductions which are also consistent with low exchange rates among areas. Considerable concern exists about the possibility of sequential depletion of local sub-stocks of SBT (*e.g.* some historically important SBT longline fishing areas now appear to be commercially extinct). Consequently, identification of the stock structure of SBT is critical for rational management.

This project will test the hypothesis that the two length modes relate to at least two genetically different components of the population, and that this genetic difference is related to the spatial distribution of these fish as adults. Observer programs on longline vessels are expanding as a result of the real time monitoring program so that for the first time it will now be possible to collect biological samples from all fishing areas (particularly the high seas).

3. OBJECTIVES

The proposed project is intended as a pilot study to a subsequent larger research project dealing with the links between southern bluefin spawning grounds and recruitment to the fishery. The objectives of this project are as follows:

- 1. To assess the genetic variability in juvenile bluefin tuna collected from the south-west coast of Australia, adults collected in waters off south Africa, and adults collected from the east coast of Tasmania.
- 2. The genetic variation present among the sample locations will be used to test the hypothesis that the two length modes present in a single year-class of juvenile SBT (either 1- or 2-year-old fish collected from the south-west coast of Australia) relate to at least two genetically different components of the population.
- 3. Genetic variation between the African and Tasmanian adult samples will help determine whether genetic differences observed in juvenile fish is related to their spatial distribution as adults.

4. METHODS

Genetic Analysis

Four areas were extensively sampled: Tasmania, Western Australia, South Australia, and South Africa (Fig. 1 and Table 1). The samples from Tasmania and South Africa were taken by observers on Japanese longline vessels, and the samples from Western Australia and South Australia were taken by scientists on research cruises.

Location	Date	n	Lat., Long.	
South Africa	April 1992	32	42°S, 3°W	
	April-June 1992	86	38-42°S, 20-26°W	
	April-June 1992	16	42°S, 6-7°W	
	June-July 1993	96	39-41°S, 27°W	
Western Australia	January 1992	14	35°S, 112-118°W	
	January 1993	68	34°S, 121-124°W	
	January-March 1994	35	34-35°S, 117-122°W	
(Shoyo Maru)	January-February 1993	101	27-33°S, 113-115°W	
South Australia	December 1992	9	35°S, 136°W	
	January 1993	19	32-43°S, 133°W	
	January-February 1994	62	32-35°S, 132-135°W	
Tasmania	May-June 1992	152	39-44°S, 148-150°W	
	November-December 1993	23	42-44°S, 142-145°W	
	October 1994	45	44°S, 144-148°W	

Table 1. Southern bluefin tuna. Approximate sites and sampling dates. n = number of fish.

Figure 1. Southern bluefin tuna sampling sites and spawning ground.

Muscle and liver tissues were dissected shortly after capture and immediately frozen. Lengths (fork lengths) and sexes were noted. The tissue samples were transported frozen to the laboratory, where they were stored at -80°C. For electrophoresis, tissue samples were placed in 1.5 mL microcentrifuge tubes, homogenised manually with a few drops of distilled water, and spun at 11 000 g in a microcentrifuge for 2 min. The supernatant was used.

In an initial survey of 35 allozyme loci (Elliott and Ward, 1995), six showed sufficient polymorphism to be useful for stock-structure analysis: *ADA** (adenosine deaminase, EC 3.5.4.4), *GDA** (guanine deaminase, EC 3.5.4.3), *GPI-A** (glucose phosphate isomerase, fast allozyme, EC 5.3.1.9), *MPI** (mannose phosphate isomerase, EC 5.3.1.8), *PGDH** (phosphogluconate dehydrogenase, EC 1.1.1.44) and *PGM-1** (phosphoglucomutase, fast allozyme, EC 5.4.2.2). *ADA**, *GPI-A**, *MPI**, and *PGDH** were examined in white muscle tissue, *GDA** and *PGM-1** in liver tissue. All loci, except *PGDH**, were scored from Helena Titan III cellulose acetate plates run with a tris-glycine buffer system (0.02 M tris, 0.192 M glycine, see Hebert and Beaton, 1989, for details). *PGDH** was scored from 8% Connaught starch gels with a histidine/citrate buffer system (gel buffer: 0.005 M histidine HCl, adjusted to pH 7.0 with 0.1 M sodium hydroxide; electrode buffer: 0.41 M trisodium citrate, adjusted to pH 7.0 with 0.5 M citric acid). Alleles were numbered according to the mobility of their product relative to that of the most common allele observed in yellowfin tuna (*Thunnus albacares*), which was designated '100' (Elliott and Ward, 1995)

An initial survey of mitochondrial DNA using 15 restriction enzymes (Ward *et al.*, 1995) showed that the bulk of the variation could be detected by three enzymes: *Bam* HI, *Bcl* I and *Eco* RI. Total DNA was extracted from white muscle tissue by a modified CTAB (hexadecyltrimethylammoniumbromide) protocol, digested and electrophoresed as described by Grewe *et al.* (1993). Total DNA was transferred onto a nylon membrane filter (Hybond N+, Amersham Ltd.) by southern transfer (Sambrook *et al.*, 1989). The filters were probed either with trevalla (*Hyperoglyphe antarctica*, Teleostei: Stromateoidei) mitochondrial DNA (50 ng used per ten 20 cm x 20 cm blots) purified by caesium chloride (CsCl) ultracentrifugation or with a mtDNA probe produced by the PCR amplification of southern bluefin tuna mtDNA with conserved primers. The probe was labelled with 32P dCTP (Bresatec Pty Ltd) using a GIGAprime DNA labelling kit (Bresatec Pty Ltd). The membrane filters were then exposed to Kodak XAR-5 X-ray film for 12 to 48 h.

Statistical analysis

Allele and haplotype frequency homogeneity across samples was tested by the randomised Monte Carlo chisquare procedure of Roff and Bentzen (1989). This procedure obviates the need to pool rare alleles. For each test, 2000 randomisations of the data were carried out, each giving a randomised chi-square value (χ^2 null). The probability that the null hypothesis of genetic homogeneity was correct was given by P = n/2000, where *n* was the number of randomisations that generate χ^2 null $\geq \chi^2$, where χ^2 is the chi-square value given by the observations.

The extent of genetic differentiation among samples was quantified by the gene diversity statistic G_{ST} (Nei, 1987), which reflects the proportion of total genetic variation attributable to differentiation between populations. For each locus it was estimated as $(H_T - H_S)/H_T$, where H_T represents total heterozygosity and H_S is average (Hardy-Weinberg expected) population heterozygosity (or, in the case of mtDNA, haplotype diversity). The proportion or magnitude of G_{ST} generated by sampling error, which we have termed $G_{ST.null}$, was estimated with a bootstrapping program (Ward and Grewe, unpublished), given the observed allele or haplotype frequencies and sample sizes. Simulations were run 1000 times to provide a mean value of $G_{ST.null}$ and a standard deviation. The probability of obtaining a value of $G_{ST.null}$ as large or larger than that obtained from the actual observations, GST, was given by P = n/1000, where n is the number of randomisations that generate $G_{ST.null} \ge G_{ST}$. Values of P < 0.05 indicated significant differentiation between areas that could not be explained by sampling error alone.

Probability corrections for multiple tests were carried out by the sequential Bonferroni procedure of Hochberg (1988; see also Lessios, 1992), using $\alpha = 0.05$ as the predetermined significance level.

5. DETAILED RESULTS

Unlike the Tasmanian and South African samples, the Western Australia and South Australia samples comprised juvenile fish less than 100 cm fork length (Fig. 2). There were no significant differences in allozyme allele or mitochondrial DNA haplotype frequencies among the Western Australia and South Australia samples and they were combined in the analyses of spatial differentiation.

The six polymorphic allozyme loci screened (Table 2) had average heterozygosities per locus ranging from 0.049 (*MPI**), through 0.290 (*ADA**), 0.435 (*PGDH**), 0.507 (*GPI-A**) and 0.511 (*PGM-1**) to 0.612 (*GDA**), and numbers of alleles per locus ranged from four (*MPI**, *ADA**) through five (*GPI-A**, *PGM-1**) to six (*PGD**, *GDA**).

The average size of the mtDNA genome was 16779 bp (from data in Ward *et al.*, 1995). Seventeen different haplotypes were found (Table 2), nine in Tasmania, 10 in Western and South Australia, and 12 in South Africa.

Spatial differentiation

Gene and haplotype frequencies were estimated from observed genotype and haplotype numbers (Table 2). The sample sizes for the two liver-specific enzymes (GDA^* and $PGM-I^*$) were smaller than the four muscle-specific enzymes, especially in the Western Australia and South Australia samples, because livers were not collected from all fish.

The six polymorphic allozyme loci screened (Table 2) had average heterozygosities per sample ranging from 0.394 (Tasmania) through 0.399 (South Africa) to 0.406 (Western and South Australia), and mean numbers of alleles per locus ranging from 4.0 (Tasmania) through 4.17 (South Africa) to 5.17 (Western and South Australia). The increased number of alleles in the latter sample reflects its increased sample size.

Chi-square tests for goodness-of-fit of genotype numbers to Hardy-Weinberg expectations were carried out for all loci and sampling areas, except for *MPI**, whose gene frequencies were too skewed to permit valid tests. Rare alleles were pooled as necessary. No significant deviations were observed in any of the 15 tests (three areas x five loci). Samples were then pooled across areas, and the tests repeated. None of these five tests showed any significant deviations from expectations.

Chi-square analyses of allele frequency differentiation across samples (Table 3) showed evidence of differentiation at only one of the six allozyme loci, MPI^* (P = 0.026). This proved not to be significant after Bonferroni probability correction for multiple tests. The observed degree of population division estimated from G_{ST} analysis was, for five of the allozyme loci, around 0.001-0.002 (Table 3). For these cases, sampling error alone would have generated similar values ($G_{ST.null}$). For the sixth locus, $PGM-I^*$, the observed value of G_{ST} was marginally significant (P = 0.042). With Bonferroni correction, this result became non-significant.

With respect to the mtDNA haplotype data, neither chi-square nor G_{ST} analyses revealed any significant spatial differentiation (Table 3). Nucleon diversities (Nei and Tajima 1981) assessed from the three restriction enzymes ranged from 0.399 for the Western Australia and South Australia sample, through 0.467 for the sample from Tasmania, to 0.532 for the South African sample. Pooling all fish produced a nucleon diversity of 0.468. This is about 64% of the nucleon diversity judged from 15 restriction enzymes, estimated at 0.729 (from the data in Ward *et al.* 1995).

A comparison of fish (all of which were 2-year-old plus) from the two extremities of the sampled distribution – Tasmania and South Africa – did not reveal any significant differentiation (probability values: ADA^* , P = 0.376; GDA^* , P = 0.765; GPI- A^* , P = 0.704; MPI^* , P = 0.065; $PGDH^*$, P = 0.100; PGM- I^* , P = 0.592; mtDNA, P = 0.383).

Sex differentiation

A comparison of male and female fish did not reveal any significant sex-related differentiation in either allele or mtDNA haplotype frequencies (probability values: ADA^* , P = 0.093; GDA^* , P = 0.983; $GPI-A^*$, P = 0.288; MPI^* , P = 1.000; $PGDH^*$, P = 0.890; $PGM-I^*$, P = 0.678; mtDNA, P = 0.766).

Size differentiation

The overall size distribution shows several distinct modes, with the smallest fish taken from Western Australia and South Australia (Fig. 2). Many of the smallest fish were taken in the space of one week (30 January 1993 to 5 February 1993) by the research vessel *Shoyo Maru*, operating off Western Australia (Fig. 1). The lengths of these fish (n = 102) were strikingly bimodal (Fig. 3): all fish except two fell into either the mode 30 to 35 cm or the mode 46 to 54 cm. The two exceptional fish had lengths of 62.5 and 64.5 cm. The gene and haplotype frequencies of fish of these two modes were compared by chi-square analyses (Table 4). Only one of the six polymorphic loci, *PGM-1**, showed evidence of differentiation (P = 0.023), and this proved not to be significant after Bonferroni probability correction for multiple tests. The mtDNA haplotype frequencies showed no significant differences.

The second set of size tests compared all juvenile fish (taken to be those < 70 cm) with all non-juvenile fish (\geq 70 cm). These tests, too, showed no significant differentiation in allele or haplotype frequencies (uncorrected probability values: *ADA**, *P* = 0.411; *GDA**, *P* = 0.051; *GPI-A**, *P* = 0.123; *MPI**, *P* = 0.683; *PGDH**, *P* = 0.355; *PGM-1**, *P* = 0.083; mtDNA, *P* = 0.895).

Figure 2. Size distributions of southern bluefin tuna examined in this study (numbers of fish measured per 5 cm size category).

Table 2. Southern bluefin tuna. Allozyme allele and mtDNA haplotype frequencies. MtDNA letters reflect, in
order, Bam HI, Bcl I and Eco RI fragment patterns. n = number of fish analysed. Dashes indicate alleles that were
not observed in a sample.

ADA* 115 0.112 0.113 0.101 ADA^* 115 0.029 0.824 0.849 70 0.007 0.005 - n 219 256 2.18 GDA^* 120 0.002 - - 110 0.400 0.465 0.432 100 0.049 0.030 0.048 90 0.421 0.395 0.444 80 0.061 0.091 0.061 70 0.007 0.019 0.015 n 214 186 198 $GP1.A^*$ 130 - 0.002 - 75 0.489 0.515 - 477 40 0.005 0.003 0.009 - 75 0.489 0.514 - 90 0.555 - 477 - 40 0.005 0.003 0.009 - 75 0.	Locus	Allele / Haplotype	Tasmania	W & S Australia	South Africa
100 0.829 0.824 0.849 70 0.007 0.005	ADA*	115	0.112	0.113	0.101
85 n 0.037 219 0.057 296 0.051 218 GDA* 120 100 0.002 0.440 - - 100 0.440 0.055 0.442 100 0.441 0.305 0.442 100 0.441 0.305 0.444 80 0.061 0.091 0.015 7 0.007 0.019 0.015 0.444 80 0.061 0.091 0.015 7 0.007 0.017 0.007 0.002 7 0.0005 0.003 0.009 - 100 - 0.002 - 0.009 7 0.489 0.515 0.477 - 90 - 0.005 0.009 - - 120 0.0161 0.707 0.707 0.707 - 85 - 0.005 0.0097 - - 121 0.0161 0.707 0.707 - - 85		100	0.829	0.824	0.849
70 0.007 0.005 - a 219 296 218 GDA* 100 0.460 0.455 0.421 110 0.0460 0.303 0.043 90 0.421 0.395 0.441 90 0.421 0.395 0.441 80 0.061 0.091 0.015 70 0.007 0.478 0.514 90 - 0.002 - 100 0.507 0.478 0.514 90 0.005 0.002 - 75 0.489 0.515 0.477 90 0.005 0.003 0.009 90 0.022 - 7 90 0.035 0.002 0.007 90 0.0141 0.024 0.014 90 0.716 - 0.002 90 0.716 0.707 0.677 90 0.262 0.707 0.776		85	0.053	0.057	0.051
n 219 296 218 GDA* 120 0.002 - - 100 0.440 0.300 0.432 100 0.441 0.305 0.441 80 0.661 0.091 0.661 0.007 0.007 0.019 0.615 70 214 186 198 GP1-A* 130 - 0.007 0.477 100 0.005 0.003 0.009 - 75 0.489 0.515 0.477 100 0.005 0.003 0.009 n 218 295 216 MIP* 120 0.0141 0.024 0.014 100 0.025 0.002 0.007 85 - 0.002 0.007 85 - 0.002 0.007 100 0.014 0.019 0.018 0.622 0.405 0.027 0.455 0.61		70	0.007	0.005	_
GDA* 120 0.002 - - 110 0.460 0.465 0.432 90 0.421 0.395 0.444 90 0.061 0.091 0.061 70 0.077 0.091 0.015 70 0.077 0.478 0.514 70 0.077 0.478 0.514 70 0.078 0.079 0.77 75 0.489 0.515 0.477 0.002 - 75 0.489 0.515 0.005 0.005 0.005 0.007 0.77 100 0.0589 0.970 0.77 100 0.716 0.707 0.677 75 0.262 0.263 0.297 100 0.716 0.701 0.677 75 0.262 0.263 0.297 100 0.416 0.405 0.376 100 0.416 0.405 0.376 100		n	219	296	218
Construction 110 0.440 0.445 0.432 100 0.049 0.305 0.043 90 0.021 0.305 0.044 80 0.061 0.091 0.015 70 0.007 0.019 0.015 n 214 186 0.514 90 - 0.002 - n 214 186 0.514 90 - 0.002 - 75 0.489 0.515 0.477 40 0.005 0.003 0.0069 n 218 295 216 MPI* 120 0.0141 0.024 0.014 100 0.8859 0.970 0.977 $k5$ - 0.002 - $k5$ - 0.002 - $k5$ - 0.002 - $k65$ - 0.002 - $k65$ - 0.002	GDA*	120	0.002	_	_
100 0.049 0.030 0.048 90 0.421 0.395 0.441 90 0.061 0.091 0.061 70 0.007 0.019 0.015 77 0.007 0.478 0.514 90 - 0.002 - 100 0.507 0.478 0.514 90 - 0.002 - 75 0.489 0.515 0.477 0.002 - 0.002 - 75 0.489 0.970 0.970 97 0.005 0.003 0.009 85 - 0.002 0.077 98 - 0.002 0.077 97 213 296 218 PGDH* 125 0.005 0.019 0.018 90 0.463 0.376 0.005 0.019 90 0.461 0.465 0.376 90 0.563 0.019 <t< td=""><td>0211</td><td>110</td><td>0.460</td><td>0.465</td><td>0.432</td></t<>	0211	110	0.460	0.465	0.432
PGP + PA +		100	0.049	0.030	0.048
S0 0.061 0.001 0.061 70 0.007 0.019 0.015 GPLA* 130 - 0.002 - 100 0.507 0.478 0.514 90 - 0.002 - 75 0.489 0.515 0.477 000 0.005 0.003 0.009 n 218 295 216 MPP 120 0.0141 0.024 0.014 100 0.9859 0.970 0.970 85 - 0.005 0.009 65 - 0.005 0.007 100 0.9859 0.970 0.970 85 - 0.005 0.007 100 0.016 0.77 0.75 100 0.016 0.77 0.75 100 0.016 0.019 0.018 30 0.019 0.011 0.016 10 0.0102 0.008		90	0.421	0 395	0.444
70 0.007 0.019 0.015 R 214 186 198 $GPI-A^*$ 130 $ 0.002$ $ 100$ 0.507 0.418 0.514 90 $ 0.002$ $ 75$ 0.489 0.515 0.477 40 0.005 0.033 0.009 n 218 295 216 MPP 120 0.0141 0.022 0.007 100 0.9859 0.970 0.970 85 $ 0.002$ 0.007 r 213 296 218 $PGDH^*$ 125 0.005 $ 0.002$ 75 0.262 0.263 0.297 50 0.005 0.011 0.018 75 0.262 0.088 0.076 75 0.263 0.516 0.661 n 214 188 193 $PGM-I^*$ 1100 <t< td=""><td></td><td>80</td><td>0.061</td><td>0.091</td><td>0.061</td></t<>		80	0.061	0.091	0.061
n 214 186 198 $GPL-A^*$ 130-0.002- 100 0.5070.4780.514 90 -0.002- 75 0.4890.5150.477 40 0.0050.0090.009 n 218295216 MPI^* 1200.01410.0240.014 100 0.98590.9700.009 65 -0.0050.009 65 -0.002218PGDH*1250.005-0.002 100 0.7160.7070.677 85 -0.002- 75 0.2620.2630.297 100 0.0140.0110.005 n 218295217 $PGM-1^*$ 1000.0120.0080.007 n 218295217 $PGM-1^*$ 1000.0120.0080.018 30 0.0140.0110.005 n 218295217 $PGM-1^*$ 1000.4160.4650.376 90 0.5630.5160.601 n 214188193mIDNABFA0.7110.7250.661 NA 0.0590.0220.037 n 214188193mIDNABFA0.0110.005 n 0.0590.0220.037 n 0.0590.0220.048 NA 0		70	0.007	0.019	0.015
GPI-A* 130 - 0.002 - 100 0.507 0.478 0.514 75 0.489 0.515 0.477 0.005 0.003 0.009 226 MP1* 120 0.0141 0.024 0.014 100 0.9859 0.500 0.009 85 - 0.002 0.007 85 - 0.002 0.007 100 0.716 .707 0.677 75 0.263 0.297 0.005 100 0.014 0.011 0.002 75 0.263 0.297 75 0.263 0.297 75 0.263 0.005 100 0.014 0.011 0.005 30 0.014 0.011 0.005 30 0.014 0.011 0.005 30 0.019 0.011 0.016 75 0.263 0.376 0.416 9		n	214	186	198
$ \begin{tabular}{ c c c c c } 0.77A* & 0.002 & - & 0.002 & - & 0.002 & - & 0.002 & - & 0.002 & - & 0.002 & - & 0.002 & - & 0.002 & - & 0.002 & - & 0.002 & - & 0.002 & 0.009 & 0.009 & 0.0005 & 0.003 & 0.009 & 0.009 & 0.009 & 0.0005 & 0.003 & 0.009 & 0.000 & 0.002 & 0.009 & 0.000 & 0.002 & 0.007 & 0.005 & 0.0005 & 0.000 & 0.$	CDI A*	130		0.002	
100 0.301 0.773 0.014 300 $ 0.002$ $ 75$ 0.489 0.515 0.477 400 0.005 0.003 0.009 n 218 295 216 MPI^* 120 0.0141 0.024 0.014 100 0.9859 0.970 0.970 85 $ 0.002$ 0.009 65 $ 0.002$ 0.007 n 213 296 218 $PGDH^*$ 125 0.005 $ 0.002$ 100 0.716 0.707 0.677 85 $ 0.002$ $ 75$ 0.262 0.263 0.297 50 0.005 0.019 0.018 30 0.014 0.011 0.005 n 218 295 217 $PGM-1^*$ 110 0.002 0.008 0.005 n 218 295 217 $PGM-1^*$ 110 0.002 0.008 0.005 n 218 295 217 $PGM-1^*$ 110 0.002 0.008 0.005 n 0.002 0.008 0.005 n 0.002 0.008 0.005 n 0.019 0.011 0.016 0.005 0.019 0.011 0.005 n 0.043 0.022 0.048 N 0.043 0.022 0.048 N 0.005 $-$ <td>UT I-A</td> <td>100</td> <td>0 507</td> <td>0.002</td> <td>- 0.514</td>	UT I-A	100	0 507	0.002	- 0.514
$PGM-1^* = \begin{bmatrix} 25 & 0.489 & 0.515 & 0.477 \\ 40 & 0.005 & 0.003 & 0.009 \\ n & 218 & 255 & 216 \\ \hline MPI^* = \begin{bmatrix} 120 & 0.0141 & 0.024 & 0.014 \\ 100 & 0.9859 & 0.970 & 0.970 \\ 85 & - & 0.005 & 0.009 \\ 65 & - & 0.005 & 0.009 \\ 65 & - & 0.002 & 0.007 \\ n & 213 & 296 & 218 \\ \hline PGDH^* = \begin{bmatrix} 125 & 0.005 & - & & 0.002 \\ 100 & 0.716 & 0.707 & 0.6777 \\ 85 & - & 0.002 & - \\ 75 & 0.262 & 0.263 & 0.297 \\ 50 & 0.005 & 0.019 & 0.018 \\ 30 & 0.014 & 0.011 & 0.005 \\ n & 218 & 295 & 217 \\ \hline PGM-1^* = \begin{bmatrix} 110 & 0.002 & 0.008 & 0.005 \\ n & 218 & 295 & 217 \\ \hline PGM-1^* & 110 & 0.002 & 0.008 & 0.005 \\ n & 218 & 295 & 217 \\ \hline PGM-1^* & 110 & 0.002 & 0.008 & 0.005 \\ n & 218 & 295 & 217 \\ \hline PGM-1^* & 110 & 0.002 & 0.008 & 0.005 \\ n & 218 & 295 & 217 \\ \hline PGM-1^* & 110 & 0.002 & 0.008 & 0.005 \\ n & 218 & 295 & 217 \\ \hline PGM-1^* & 100 & 0.416 & 0.465 & 0.661 \\ n & 218 & 295 & 217 \\ \hline PGM-1^* & 100 & 0.012 & 0.008 & 0.005 \\ n & 218 & 295 & 217 \\ \hline PGM-1^* & 100 & 0.014 & 0.011 & 0.016 \\ 0.005 & 0.019 & 0.011 & 0.016 \\ 0.005 & 0.019 & 0.011 & 0.016 \\ 0.005 & n & - & 0.003 \\ n & 214 & 188 & 193 \\ \hline m & 214 & 188 & 193 \\ \hline m & 155 & 0.123 & 0.169 \\ - & - & 0.003 \\ n & 0.059 & 0.028 & 0.037 \\ - & & 0.005 \\ - & & 0.005 \\ - & & 0.005 \\ PA & - & - & 0.005 \\ - & & 0.005 \\ PA & - & - & 0.005 \\ - & & 0.005 \\ - & & 0.005 \\ - & & 0.005 \\ - & & 0.005 \\ - & & 0.005 \\ - & & 0.005 \\ - & & 0.005 \\ - & & 0.005 \\ - & & 0.005 \\ - & & 0.005 \\ - & & 0.005 \\ - & & 0.005 \\ - & & 0.005 \\ - & & & 0.005 \\ - & & & 0.005 \\ - & & & 0.005 \\ - & & & & 0.005 \\ - & & & & & 0.005 \\ - & & & & & & 0.005 \\ - & & & & & & & & & & & & & & & & & &$		90	0.507	0.002	0.514
30 0 n 0.005 $1/2$ 0.013 0.009 205 0.009 0.009 205 MPI^* 120 100 0.9859 0.004 0.9859 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 0.970 		90 75	0.489	0.515	- 0.477
n 218 205 216 MPI^* 120 0.0141 0.024 0.014 100 0.9859 0.970 0.970 85 - 0.002 0.007 85 - 0.002 0.007 n 213 296 218 $PGDH^*$ 125 0.005 - 0.002 n 213 296 218 $PGDH^*$ 125 0.005 - 0.002 n 213 296 0.677 85 - 0.002 - 75 0.262 0.263 0.297 50 0.005 0.019 0.018 30 0.014 0.011 0.005 n 218 295 217 $PGM-1^*$ 110 0.002 0.065 n 0.016 0.465 0.376 90 0.563 0.516 0.601 70 0.003 n 214 188 193 mDNABFA 0.711 0.765 0.661 AFA 0.559 0.028 0.037 AFB 0.059 0.028 0.037 BFB 0.043 0.022 0.048 AFA 0.011 0.026 0.026 BA 0.011 0.026 0.026 BCA $ 0.005$ AFA 0.051 $ 0.005$ AFA 0.005 $ 0.005$ AFA 0.005 $-$		40	0.005	0.003	0.009
MP1*1000.0140.0240.0141000.98590.9700.97085-0.0050.00965-0.0020.007n213266218PGDH*1250.005-0.0021000.7160.7070.67785-0.002-750.2620.2630.297500.0050.0190.0183000.0140.0110.005n218295217PGM-1*1100.0020.0080.005n214188193mtDNABFA0.7110.7650.6618AA0.1550.1230.169AFB0.0590.0280.037BFA0.0590.0280.037BFB0.0430.0220.048BAA0.0110.0660.16BFA-0.0060.016NA-0.0060.016BFB0.0590.0280.037BFB0.0590.0280.037BFA0.005-0.005DFA-0.0060.016BTA0.005BFA-0.006-BFA-0.006-BFA-0.006-BFA-0.005-BFA0.005BFA0.005BFA0.05		40 n	218	295	216
MP1*1200.01410.0240.0141000.98590.9700.97085-0.0050.00965-0.0020.007n213218218PGDH*1250.005-0.0021000.7160.7070.67785-0.0020.297500.2620.2630.297500.0050.0190.018300.0140.0110.005n218255217PGM-1*1100.0020.0080.0051000.4160.4650.376900.5630.5160.611800.0190.0110.016700.003n214188193mtDNABFA0.7110.7650.661AFA0.1550.1230.169AFB0.0430.0220.048BFB0.0590.0280.037BFB0.0590.0280.036BFA-0.0060.016BTA0.005-0.005DFA-0.0060.005BVA-0.0060.005BFA0.005-0.005BVA-0.006-BFB0.005-0.005BVA-0.006-BVA-0.006-BVA-0.006-BFH <td></td> <td></td> <td>210</td> <td>275</td> <td>210</td>			210	275	210
1000.98590.9700.97085-0.0050.00965-0.0020.007n2/32962/8PGDH*1250.005-0.0021000.7160.7070.67785-0.002-750.2620.2630.297500.0050.0190.018300.0140.0110.005n2/82952/7PGM-/*1100.0020.0080.005n2/82952/7PGM-/*1100.0020.0080.005n2/82952/7PGM-/*1100.0020.0080.005n2/80.5160.661800.0190.0110.016700.003n2/4188193mDNABFA0.7110.7650.661BFB0.0430.0220.048BAA0.0110.0230.026BQA-0.0060.016BVA-0.0110.005DFA0.005BUA0.005BTA0.005BVA-0.006-BTA0.005BTA0.005BTA0.005BTA0.005BTA0.005- </td <td>MPI*</td> <td>120</td> <td>0.0141</td> <td>0.024</td> <td>0.014</td>	MPI*	120	0.0141	0.024	0.014
85 65 67 n-0.005 0.002 0.007 2130.002 		100	0.9859	0.970	0.970
65 n -0.002 2960.007 218PGDH*1250.005-0.0021000.7160.7070.67785-0.002-750.2620.2630.297500.0050.0190.018300.0140.0110.005 n 218295217PGM-1*1100.0020.0080.0051000.4160.4650.376900.5530.5160.601800.0190.0110.016700.003 n 214188193mtDNABFA0.7110.7650.661AFA0.1550.1230.169AFB0.0590.0280.037BFB0.0430.0220.048BAA0.0110.005-BFA0.0110.0050.016BVA-0.0060.016BVA-0.0060.016BVA-0.006-BTA0.005-0.005BUA0.005-0.005BUA0.005AVA-0.006-BFH0.005BFH0.005BFH0.005BFH0.005BFH0.005BFHAVA-0		85	-	0.005	0.009
n 213 296 218 PGDH* 125 0.005 - 0.002 100 0.716 0.707 0.677 85 - 0.002 - 75 0.262 0.263 0.297 50 0.005 0.019 0.018 30 0.014 0.001 0.005 n 218 295 217 PGM-1* 110 0.002 0.008 0.005 100 0.416 0.465 0.376 90 0.563 0.516 0.601 80 0.011 0.016 0.003 70 - - 0.003 n 214 188 193 mtDNA BFA 0.115 0.123 0.169 AFB 0.059 0.028 0.037 BFB 0.043 0.022 0.48 BAA 0.011 0.005 0.016 BVA - 0.0		65	-	0.002	0.007
PGDH* 125 0.005 - 0.002 100 0.716 0.707 0.677 85 - 0.002 - 75 0.262 0.263 0.297 50 0.005 0.019 0.018 30 0.014 0.011 0.005 n 218 295 217 PGM-1* 110 0.002 0.08 0.005 100 0.416 0.465 0.376 90 0.563 0.516 0.601 80 0.019 0.011 0.016 70 - - 0.003 n 214 188 193 MtDNA BFA 0.155 0.123 0.169 AFS 0.059 0.028 0.037 BCA 0.011 0.028 0.026 BQA - 0.016 14 BAA 0.011 0.028 0.026 BQA - 0.		n	213	296	218
100 0.716 0.707 0.677 85 - 0.002 - 75 0.262 0.263 0.297 50 0.005 0.019 0.018 30 0.014 0.011 0.005 n 218 295 217 PGM-1* 110 0.002 0.08 0.376 90 0.563 0.516 0.376 90 0.563 0.516 0.003 70 - - 0.003 n 214 188 193 mtDNA BFA 0.711 0.765 0.661 AFA 0.155 0.123 0.169 AFB 0.059 0.028 0.037 BFA 0.011 0.026 0.026 BQA - 0.011 0.005 BFA 0.011 0.005 0.026 BQA - 0.006 0.016 BTA 0.005 - <td< td=""><td>PGDH*</td><td>125</td><td>0.005</td><td>-</td><td>0.002</td></td<>	PGDH*	125	0.005	-	0.002
85 - 0.002 - 75 0.262 0.263 0.297 50 0.005 0.019 0.018 30 0.014 0.011 0.005 n 218 295 217 $PGM-1^*$ 110 0.002 0.008 0.005 100 0.416 0.465 0.376 90 0.563 0.516 0.601 80 0.019 0.011 0.016 70 0.003 n 214 188 93 mtDNABFA 0.711 0.765 0.661 AFA 0.559 0.028 0.037 BFB 0.043 0.022 0.048 BAA 0.011 0.026 0.066 BVA- 0.006 0.016 BVA- 0.006 0.016 BVA- 0.006 $-$ AFA 0.055 - 0.005 BFB 0.005 - $-$ BFB 0.005 - $-$ BVA- 0.006 $-$ BVA- 0.006 $-$ AFA 0.005 - $-$ BVA- 0.006 $-$ BFH 0.005 BFH 0.005 BFH 0.005 BFA -10066 -BFH 0.005 BFH 0.005 BFH 0.005		100	0.716	0.707	0.677
750.2620.2630.297500.0050.0190.018300.0140.0110.005 n 218295217PGM-1*1100.0020.0080.0051000.4160.4650.376900.5630.5160.601800.0190.0110.016700.003n214188193mtDNABFA0.7110.7650.661AFB0.0590.0280.037BFB0.0430.0220.048BAA0.0110.0280.026BQA-0.0060.016BVA-0.0110.005DFA-0.0060.016BVA-0.0060.016BVA-0.006-BTA0.005BVA-0.006-BTA0.005BVA-0.006-BVA-0.006-BVA-0.006-BFH0.005BFH0.005BFH0.005BFH0.005BFH0.005BFH0.005BFH0.005BFH0.005BFH0.005BFH <t< td=""><td></td><td>85</td><td>-</td><td>0.002</td><td>-</td></t<>		85	-	0.002	-
50 30 00140.019 0.011 0.005 217PGM-1*110 1000.002 0.008 0.4160.008 0.465 0.376 0.376 0.011 0.016 0.0110.005 0.376 0.003 0.011PGM-1*110 100 0.4160.465 0.4650.376 0.601 0.003 0.011NDNABFA AFA AFA0.711 0.155 0.1230.661 0.169 0.169MIDNABFA AFA AFA0.711 0.059 0.028 0.028 0.026 0.026 0.0260.661 0.026 0.026BFB BQA BVA DA DFA AFN AFN AFN0.005 - - - 0.0050.006 - - 0.005BFA BTA BFA BFA D.0590.028 0.028 0.0270.037 0.005BFB BQA BVA DA DA DA DA DFA BFA BTA DA <br< td=""><td></td><td>75</td><td>0.262</td><td>0.263</td><td>0.297</td></br<>		75	0.262	0.263	0.297
30 n 0.014 218 0.011 295 0.005 217 PGM-1*110 100 0.002 0.416 0.008 0.465 0.376 0.376 90 90 0.563 0.516 0.601 0.011 $PGM-1*$ 0.019 100 0.011 0.016 0.016 0.003 n 0.011 0.016 0.003 n mtDNABFA AFA AFA0.711 0.155 0.755 0.123 0.028 0.661 0.037 0.037 0.028 mtDNABFA AFA AFA AFB BAA 0.011 0.028 0.037 0.028 0.028 0.037 0.037 0.043 0.022 mtDNABFA AFA AFB 0.043 0.043 0.022 0.028 0.026 0.005 0.048 0.026 0.016 BVA BVA BFA AFA AFA AFA 0.005 0.011 0.005 0.006 0.016 0.005 BTA BVA AFA AFA AFA AFA BFA BFA-0.006 $-$ 0.005 BFA BFA AFA AFA AFA BFA-0.006 $-$ $-$ $-$ 0.005 BFA BFA AFA		50	0.005	0.019	0.018
n 218 295 217 PGM-1* 110 0.002 0.008 0.005 100 0.416 0.465 0.376 90 0.563 0.516 0.601 80 0.019 0.011 0.016 70 - - 0.003 n 214 188 193 mtDNA BFA 0.711 0.765 0.661 AFA 0.155 0.123 0.169 AFB 0.059 0.028 0.037 BFB 0.043 0.022 0.048 BQA - 0.006 0.016 BVA - 0.006 0.016 BVA - 0.005 0.005 DFA - - 0.005 BVA - 0.006 - AVA - 0.006 - BVA - 0.006 - BVA - 0.006 - <		30	0.014	0.011	0.005
PGM-1* 110 0.002 0.008 0.005 100 0.416 0.465 0.376 90 0.563 0.516 0.601 80 0.019 0.011 0.016 70 - - 0.003 n 214 188 193 mtDNA BFA 0.711 0.765 0.661 AFA 0.155 0.123 0.169 AFB 0.059 0.028 0.037 BFB 0.043 0.022 0.048 BAA 0.011 0.005 0.016 BVA - 0.006 0.016 BVA - 0.011 0.005 DFA - - 0.005 DFA - - 0.005 BVA 0.005 - - AFN 0.005 - - BVA - 0.006 - BVA - 0.006 - BVA - 0.006 - BVA - <td< td=""><td></td><td>n</td><td>218</td><td>295</td><td>217</td></td<>		n	218	295	217
100 0.416 0.465 0.376 90 0.563 0.516 0.601 80 0.019 0.011 0.016 70 0.003 n214188193mtDNABFA 0.711 0.765 0.661 AFA 0.155 0.123 0.169 AFB 0.059 0.028 0.037 BFB 0.043 0.022 0.048 BAA 0.011 0.028 0.026 BQA- 0.006 0.016 BVA- 0.006 0.016 DFA 0.005 DFA- 0.006 $-$ AFN- 0.006 $-$ AVA- 0.006 $-$ BFH 0.005 BFH 0.006 BFH 0.006 BFA- 0.006 -BFA- $0.$	PGM-1*	110	0.002	0.008	0.005
90 0.563 0.516 0.601 80 0.019 0.011 0.016 70 0.003 n 214 188 193 mtDNABFA 0.711 0.765 0.661 AFA 0.155 0.123 0.169 AFB 0.059 0.028 0.037 BFB 0.043 0.022 0.048 BAA 0.011 0.028 0.026 BQA - 0.006 0.016 BVA - 0.006 0.016 BTA 0.005 - 0.005 DFA - 0.006 - AFN - 0.006 - AFN - 0.006 - AFN - 0.006 - BFH 0.005 BFH 0.006 BFH 0.006 BFH 0.006 BFH <		100	0.416	0.465	0.376
80 70 n 0.019 $-$ $-$ $-$ $-$ $ 0.003$ $-$ $-$ mtDNABFA AFA AFA 0.711 0.755 0.661 0.661 0.023 AFA AFB BAA 0.059 0.028 0.037 0.022 BFB BQA BVA $-$ $ 0.006$ 0.011 DFA BTA BVA $-$ 0.005 0.011 $0.023DFABTABVA-0.0050.005-0.006BTABVADFA0.005 0.005-0.005BTABVABVA0.005 0.005-BTABVABVA0.005 0.005-BTABVABVA0.005 -0.006BTABVABVA0.005 -0.006BTABVABVA-0.006---AFNPFIBFIBFI ---$		90	0.563	0.516	0.601
70 n $-$ 214 $-$ 188 0.003 193 mtDNABFA 0.711 0.765 0.661 AFA 0.155 0.123 0.169 AFB 0.059 0.028 0.037 BFB 0.043 0.022 0.048 BQA $ 0.006$ 0.016 BVA $ 0.006$ 0.016 BTA 0.005 $ 0.005$ BUA 0.005 $ 0.005$ BUA 0.005 $ 0.005$ BFN 0.005 $ 0.005$ BFH $ 0.006$ $-$ BFH $ 0.006$ $-$ BFH $ 0.006$ $-$ BFH $ 0.006$ $-$ BFH $ 0.005$ BFI $ 0.005$ BFI $ 0.005$ BFI $ -$ BFH $-$		80	0.019	0.011	0.016
n 214 188 193 mtDNA BFA 0.711 0.765 0.661 AFA 0.155 0.123 0.169 AFB 0.059 0.028 0.037 BFB 0.043 0.022 0.048 BAA 0.010 0.028 0.026 BQA - 0.006 0.016 BVA - 0.006 0.016 BTA 0.005 - 0.005 BUA 0.005 - 0.005 BUA 0.005 - 0.005 AFN - 0.006 - AFN - 0.006 - AFN - 0.006 - AFN - 0.006 - BFH - - 0.005 BFH - - 0.005 BFH - - 0.005 BFH - - 0.005 BSB		70	-	-	0.003
mtDNA BFA 0.711 0.765 0.661 AFA 0.155 0.123 0.169 AFB 0.059 0.028 0.037 BFB 0.043 0.022 0.048 BAA 0.011 0.028 0.026 BQA - 0.006 0.016 BVA - 0.011 0.005 DFA - 0.011 0.005 BVA -0.005 - 0.016 BVA 0.005 - 0.005 BTA 0.005 - 0.005 BVA 0.005 - - AFN - 0.006 - AFN - 0.006 - AVA - 0.006 - BFH - - 0.005 BFI - - 0.005 BFH - - 0.005 BSB 0.005 - - EFA		n	214	188	193
AFA 0.111 0.102 0.001 AFB 0.059 0.028 0.037 BFB 0.043 0.022 0.048 BAA 0.011 0.028 0.026 BQA - 0.006 0.016 BVA - 0.011 0.005 DFA - - 0.016 BTA 0.005 - 0.005 BUA 0.005 - 0.005 AFN - 0.006 - AFN - 0.006 - ARA 0.005 - 0.005 BUA 0.005 - - AFN - 0.006 - AFN - 0.006 - AFN - 0.005 - BFH - - 0.005 BFH - - 0.005 BFI - - 0.005 BSB 0.005 - - EFA - 0.006 - n	mtDNA	BFA	0 711	0.765	0.661
AFB0.0590.0280.037BFB0.0430.0220.048BAA0.0110.0280.026BQA-0.0060.016BVA-0.0110.005DFA0.016BTA0.005-0.005BUA0.005-0.005AFN-0.006-ARA0.005-0.005BFH-0.006-BFH-0.006-BFH0.005BFI0.005BSB0.005EFA-0.006-n187179189	meerin	AFA	0.155	0.123	0.169
BFB 0.043 0.022 0.048 BAA 0.011 0.028 0.026 BQA - 0.006 0.016 BVA - 0.011 0.005 DFA - - 0.016 BTA 0.005 - 0.005 BUA 0.005 - 0.005 AFN - 0.006 - ARA 0.005 - 0.005 AFN - 0.006 - AFN - 0.006 - AFN - 0.006 - BFH - - 0.005 BFH - - 0.005 BFH - - 0.005 BFI - - 0.005 BSB 0.005 - - EFA - 0.006 - n 187 179 189		AFB	0.059	0.028	0.037
BAA 0.011 0.028 0.026 BQA - 0.006 0.016 BVA - 0.011 0.005 DFA - - 0.016 BTA 0.005 - 0.005 BUA 0.005 - 0.005 AFN - 0.006 - AFN - 0.006 - AFN - 0.006 - AFN - 0.006 - BFH - - 0.005 BFH - - 0.005 BFI - - 0.005 BSB 0.005 - - EFA - 0.006 - n 187 179 189		BFB	0.043	0.022	0.048
BQA - 0.006 0.016 BVA - 0.011 0.005 DFA - - 0.016 BTA 0.005 - 0.005 BUA 0.005 - 0.005 AFN - 0.006 - AFN - 0.006 - AFN - 0.006 - BFH - 0.006 - BFH - 0.006 - BFH - - 0.005 BFI - - 0.005 BSB 0.005 - - EFA - 0.006 - n 187 179 189		BAA	0.011	0.028	0.026
NA-0.0110.005DFA0.016BTA0.005-0.005BUA0.005-0.005AFN-0.006-ARA0.005AVA-0.006-BFH0.005BFI0.005BSB0.005EFA-0.006-n187179189		BOA	-	0.006	0.016
DFA - - 0.016 BTA 0.005 - 0.005 BUA 0.005 - 0.005 AFN - 0.006 - ARA 0.005 - - AVA - 0.006 - BFH - 0.006 - BFH - 0.005 0.005 BFI - - 0.005 BSB 0.005 - - EFA - 0.006 - n 187 179 189		BVA	_	0.011	0.005
BTA 0.005 - 0.005 BUA 0.005 - 0.005 AFN - 0.006 - ARA 0.005 - - AVA - 0.006 - BFH - 0.006 - BFH - 0.006 - BFH - 0.005 - BFI - 0.005 - BSB 0.005 - - EFA - 0.006 - n 187 179 189		DFA	_	-	0.016
BUA 0.005 - 0.005 AFN - 0.006 - ARA 0.005 - - AVA - 0.006 - BFH - 0.005 0.005 BFI - 0.005 - EFA - 0.006 - n 187 179 189		BTA	0.005	_	0.005
AFN-0.006-ARA0.005AVA-0.006-BFH0.005BFI0.005BSB0.005EFA-0.006-n187179189		BUA	0.005	_	0.005
ARA0.005AVA-0.006-BFH0.005BFI0.005BSB0.005EFA-0.006-n187179189		AFN	-	0.006	-
AVA-0.006-BFH-0.005BFI-0.005BSB0.005-EFA-0.006n187179		ARA	0.005	-	_
BFH0.005BFI0.005BSB0.005EFA-0.006-n187179189		AVA	-	0.006	_
BFI0.005BSB0.005EFA-0.006-n187179189		BFH	-	-	0.005
BSB0.005EFA-0.006-n187179189		BFI	_	-	0.005
EFA-0.006-n187179189		BSB	0.005	-	-
n 187 179 189		EFA	-	0.006	_
		n	187	179	189

	Number of		Chi-square analysis		Genetic diversity analysis		
Loci	alleles	individuals	χ2	Р	G_{ST}	G _{ST.null} ±SD	Р
ADA*	4	733	3.563	0.741	0.001	0.001±0.001	0.782
GDA*	6	598	11.290	0.317	0.002	0.002 ± 0.001	0.421
GPI-A*	5	729	6.173	0.699	0.001	0.002 ± 0.002	0.516
MPI*	4	727	13.345	0.026	0.002	0.001±0.001	0.205
PGDH*	6	730	12.025	0.271	0.001	0.001±0.001	0.388
PGM-1*	5	595	10.361	0.209	0.005	0.002 ± 0.002	0.042
mtDNA	17	555	35.639	0.235	0.006	0.004±0.002	0.138

Figure 3. Size distribution of juvenile southern bluefin tuna collected onboard the Shoyo Maru.

Discussion

Six polymorphic allozyme loci and mtDNA variants (17 haplotypes) were screened in southern bluefin tuna samples taken from South Africa, Western Australia, South Australia, and eastern Tasmania, but no statistically significant genetic differentiation was observed. Samples from two extremities of this distribution (Tasmania and South Africa, about 11 000 km apart) also failed to reveal any differences. No significant deviations from Hardy-Weinberg expectations were found. Clearly, it is not possible from this data to reject the null hypothesis that southern bluefin tuna comprise a single genetic stock.

This hypothesis was examined further by comparing various size classes. The daily growth rings on the otoliths of some of the small juveniles taken off Western Australia at the end of January/beginning of February 1993 suggest that the mode of 30-35 cm fish consists of fish 3 to 4 months old, while the 46 to 54 cm length mode consists of fish about 1-year-old (Gunn *et al.*, 1995).

These findings are consistent with catch per unit effort (CPUE) studies of mature fish taken from the spawning area, which suggest that there are two peaks in CPUE: January to February, and October (Davis and Farley, 1995). These are likely to correspond to spawning peaks, as female fish in these catches have mature oocytes. The relative sizes of these two peaks, as judged from CPUE figures, varies from year to year, although in recent years the January to February peak appears to have been the larger (Davis and Farley, 1995). The larger (older) fish we sampled were probably spawned in the February to March 1992 period (although a few may have been spawned in September to October 1991) and the smaller (younger) fish were spawned September to October 1992. The lack of intermediate-sized fish reflects the likely paucity of spawning between May and July, or possibly poor survival of larvae spawned in this period. The null hypothesis that these two groups of fish were drawn from a single gene pool could not be rejected for either the allozyme or the mtDNA data. However, sample sizes were small, and the strength of this inference is correspondingly weak: the extent of gene flow between fish spawning at these two groups of fish cannot be distinguished in larger-size categories and therefore cannot then be compared with one another.

There were also no significant genetic differences between fish <70 cm (less than 2-years-old) and those >70 cm (mostly 3- to 6-year-old fish, although with a few 2-years-old and some 7-years and older; Gunn *et al.* 1995). There is therefore no evidence of selection operating to change gene or mtDNA haplotype frequencies as fish age.

The only other published population genetic study of southern bluefin is Fujino and Kang (1968), who found no significant differences in allele frequencies at the transferrin locus in 302 fish from different Australian sites. This is also consistent with the hypothesis of a single genetic stock of southern bluefin tuna.

Other tuna species have been the focus of population genetic analysis. Many thousands of skipjack tuna (*Katsuwonus pelamis*) from the Atlantic, Indian and (especially) Pacific Oceans have been examined for variation at the *EST** locus. Inter-ocean differences in gene frequencies were described, as was heterogeneity within the Pacific Ocean (*e.g.* Fujino *et al.* 1981; Richardson, 1983). Whether the heterogeneity reported in the Pacific Ocean reflects multiple stocks or clinal variation (isolation by distance) remains uncertain (IATTC, 1984). With respect to yellowfin tuna (*Thunnus albacares*), striking genetic differentiation was found for one of four polymorphic allozyme loci, *GPI-A**; mtDNA differentiation was also studied but was less pronounced (Scoles and Graves 1993, Ward *et al.*, 1996). Four genetic stocks of yellowfin tuna were proposed: Atlantic Ocean, Indian Ocean, west-central Pacific Ocean, and east Pacific Ocean (Ward *et al.*, 1996). MtDNA analyses of albacore tuna (*Thunnus alaunga*) found differences between Atlantic and Pacific Ocean samples, but no intra-ocean heterogeneity (Chow and Ushiama, 1995); there have as yet been no allozyme studies of this species.

These three species of tuna are much more widely distributed than southern bluefin, and all have multiple spawning areas. In all three cases there is evidence of genetic stock differentiation, although (and commensurate with their migratory abilities) this tends to be on a large scale (intra- or inter-oceanic) rather than more local scales (Ward, 1995).

The stock structure of southern bluefin tuna has been examined by several non-genetic methods, chief among which is tagging. These studies are on-going, but earlier data show extensive movements, with fish tagged off southern Western Australia, South Australia, and New South Wales being recaptured as far east as the east coast of New Zealand and as far west as southern Africa (Murphy and Majkowski, 1981).

Another non-genetic approach examines the microchemistry of otoliths. Such studies, of both the primordial region deposited in the first few days of larval life and the margin deposited shortly before the individual is caught, were consistent with a single southern bluefin tuna stock (Proctor *et al.*, 1995). However, no clear differences in the compositions of the otolith margins were apparent in individuals collected from widely separated localities, suggesting the approach will not be useful for studying southern bluefin tuna movements.

The conclusion from these various lines of evidence must be that the null hypothesis of a single stock of southern bluefin tuna cannot be rejected. However, failure to reject this hypothesis does not necessarily mean that it is correct. In particular, the biological basis of the two spawning peaks needs further investigation. If offspring from one peak preferentially return to spawn at that time, then there will be some restriction on gene flow between these two components of the population, and the nature and extent of these stocks would have to be determined. Our attempt to resolve this question did not provide a robust test, as only small numbers of individuals ($n \le 56$) were examined from the two spawning peaks. Further investigations should attempt to analyse larger numbers of fish, if possible by sampling spawners or larvae rather than their putative juvenile offspring. Future research should also incorporate analysis of hypervariable microsatellite DNA markers, which may detect levels of population structuring not apparent from allozyme or mtDNA surveys.

References

- Caton AE (1991) Review of aspects of southern bluefin tuna biology, population, and fisheries. In: Desiro RB, Bayliff WH (eds) World meeting on stock assessments of bluefin tunas: strengths and weaknesses. Special Report of the IATTC, no 7, pp 181-350
- Caton AE (1994) Review of aspects of southern bluefin tuna biology, population, and fisheries. In: Shomura RS, Majkowski J, Langi S (eds) Interactions of Pacific Tuna Fisheries, Vol 2 Papers on Biology and Fisheries. pp 296–343 FAO Fisheries Technical Paper 336/2 Rome: FAO
- Chow S, Ushiama H (1995) Global population structure of albacore (*Thunnus alalunga*) inferred by RFLP analysis of the mitochondrial ATPase gene. Mar Biol 123: 39-45
- Davis TLO, Farley, JH (1995) Catch monitoring of fresh tuna caught by the Bali-based Indonesian/Taiwanese longline fishery. In, 1995 Report on Research, Commission for the Conservation of Southern Bluefin Tuna Scientific Meeting. 10-19 July 1995, Schimuzu, Japan. CCSBT/95/2
- Elliott NG, Ward, RD (1995) Genetic relationships of eight species of Pacific tunas (Teleostei, Scombridae) inferred from allozyme analysis. Mar Freshw Res 46: 1021-1032
- FAO (1994) Food and Agricultural Organisation Yearbook: Fishery Statistics: Catches and Landings. Vol 74, 1992 Rome: FAO
- Fujino K, Kang T (1968) Transferrin groups of tunas. Genetics 59: 79-91
- Fujino K, Sasaki K, Okumura S (1981) Genetic diversity of skipjack tuna in the Atlantic, Indian, and Pacific Oceans. Bull. Japan. Soc. Sc. Fish. 47: 215-222.
- Gunn, JS, Clear NP, Carter TI, Rees AJ, Stanley CA, Kalish JM, Johnston JM (1995) Age and growth of southern bluefin tuna. In, 1995 Report on Research, Commission for the Conservation of Southern Bluefin Tuna Scientific Meeting. 10-19 July 1995, Schimuzu, Japan. CCSBT/95/8
- Grewe PM, Krueger CC, Aquadro CF, Bermingham E, Kincaid HL, May B (1993) Mitochondrial DNA variation among lake trout strains stocked into Lake Ontario. Can J Fish Aquat Sci 50: 2397-2403
- Hebert PDN, Beaton, MJ (1989) Methodologies for allozyme analysis using cellulose acetate electrophoresis. Helena Laboratories, Beaumont, Texas.
- Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75: 800-802
- IATTC (1984). Annual Report of the Inter-American Tropical Tuna Commission, 1983. La Jolla, California.
- Leigh GM, Hearn WS (1993) Study confirms highly variable growth in SBT. Aust. Fish 52 (10): 27-29
- Lessios HA (1992) Testing electrophoretic data for agreement with Hardy-Weinberg expectations. Mar Biol 112: 517-523
- Murphy GI, Majkowski J (1981) State of the southern bluefin tuna population: fully exploited. Aust Fish 40 (11): 20-29
- Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

Nei M, Tajima F (1981) DNA polymorphisms detectable by restriction endonucleases Genetics 97: 145-163

- Proctor CH, Thresher RE, Gunn JS, Mills DJ, Harrowfield IR, Sie SH (1995) Stock structure of the southern bluefin tuna *Thunnus maccoyii*: an investigation based on probe microanalysis of otolith composition. Mar Biol 122: 511-526
- Richardson BJ (1983) Distribution of protein variation in skipjack tuna (*Katsuwonus pelamis*) from the central and south-western Pacific. Aust. J. Mar. Freshw. Res. 34: 231–251.
- Roff DA, Bentzen P (1989) The statistical analysis of mitochondrial DNA polymorphisms: χ2 and the problem of small samples. Mol Biol Evol 6: 539-545
- Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (second edition). Cold Spring Harbor Laboratory, New York
- Scoles DR, Graves JE (1993) Genetic analysis of the population structure of yellowfin tuna, *Thunnus albacares*, from the Pacific Ocean. Fish Bull US 91: 690-698
- Ueyanagi S (1966) Biology of tunas and billfishes (in Japanese, English summary). Bull. Japan Soc Sci Fish 32: 739-751
- Ward RD (1995) Population genetics of tunas. J Fish Biol 47 (suppl.A): 259-280.
- Ward RD, Elliott NG, Grewe PM, Smolenski AJ (1994) Allozyme and mitochondrial DNA variation in yellowfin tuna (*Thunnus albacares*) from the Pacific Ocean. Mar Biol 118: 531–539
- Ward RD, Elliott NG, Grewe PM (1995) Allozyme and mitochondrial DNA separation of Pacific northern bluefin tuna (*Thunnus thynnus orientalis*) from southern bluefin tuna (*Thunnus maccoyii*). Mar Freshw Res 46: 921-930
- Ward RD, Elliott NG, Innes BH, Smolenski AJ, Grewe PM (1996) Global population structure of yellowfin tuna (*Thunnus albacares*) inferred from allozyme and mitochondrial DNA variation. Fish Bull US, submitted

6. BENEFITS

This project was designed as a pilot study intended to provide the information needed to assess the feasibility of a larger research project to a) determine the source of bluefin recruits to domestic and foreign commercial fisheries in Australian waters and b) to determine whether bluefin tuna sub-populations are present within the AFZ. The data gathered has promoted a better understanding of population dynamics of southern bluefin tuna. Southern bluefin tuna appear to be a single genetically homogeneous population or stock. This information provides an objective criterion from which to base sound management decisions on bluefin tuna quotas which are designed to provide long term sustainability of the resource. Thus, our results have benefited parties involved in the southern bluefin tuna fishery at both the commercial and recreational level.

7. INTELLECTUAL PROPERTY AND VALUABLE INFORMATION

No commercial intellectual property arose from this work.

8. FURTHER DEVELOPMENT

Failure to reject the null hypothesis (Ho: "there exists only a single genetic stock of SBT") does not prove that the null hypothesis is true. In other words, the null hypothesis is not the only alternative explanation or conclusion which can be drawn from the data. For example, separate genetic stocks of SBT may exist, however, our methods may have been unable to detect this structure at the level of resolution required. In particular, the biological basis of the two spawning peaks needs further investigation. If offspring from one peak preferentially return to spawn at that time, then there will be some restriction on gene flow between these two components of the population, and the nature and extent of these stocks would have to be determined. Our attempt to resolve this question did not provide a robust test, as only small numbers of individuals ($n \le 56$) were examined from the two spawning peaks. Further investigations should attempt to analyse larger numbers of fish, if possible by sampling spawners or larvae rather than their putative juvenile offspring. Future research should also incorporate analysis of hypervariable microsatellite DNA markers, which may detect levels of population structuring not apparent from allozyme or mtDNA surveys.

9. STAFF

Dr P. Grewe	Research Scientist (CSOF4)	40%
Dr. T. Polacheck	Research Scientist (CSOF6)	5%
A. Smolenski	Experimental Scientist (CSOF3)	50%
B. Innes	Experimental Scientist (CSOF3)	50%
Dr. R. Ward	Principal Research Scientist (CSOF7)	10%
W. Whitelaw	Research Scientist (CSOF5)	5%

Acknowledgements

We thank S. Meyer and P. Lowry for assisting with some of the allozyme analyses.

B. Evans assisted with mtDNA extraction and analysis. We thank all those who assisted with sample collections, especially N. Clear, T. Carter, C. Stanley, the crew of the *Shoyo Maru*, and Real Time Monitoring Program and Australian Fishing Zone observers.

10. FINAL COST

PROJECT BUDGET SUMMARY

	1993-94	TOTAL	
FRDC Contribution			
Salaries and On-costs	\$43,881	\$43,881	
Travel	\$3,640	\$3,640	
Operating	\$23,900	\$23,900	
Capital	\$0	\$0	
Total FRDC	\$71,421	\$71,421	

Research Organisation Contribution		
Salaries and On-costs	\$61,433	\$61,433
Travel	\$3,640	\$3,640
Operating	\$	\$
Capital	\$255,000	\$255,000
Total Research Organisation	\$320,073	\$320,073

Contribution by other sources		
Cash	\$ \$	
Other (include 'in-kind')	\$ \$	
Total Contribution by other sources	\$ \$	

TOTAL BUDGET	\$391,494	\$391,494
--------------	-----------	-----------