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1999/155 Modelling Western Australian fisheries with techniques of time series 
analysis: examining data from a different perspective 

 
PRINCIPAL INVESTIGATOR: Dr M. D. Craine 
 
ADDRESS: Western Australian Marine Research Laboratories 
 Department of Fisheries – Research Division 
 PO Box 20 
 North Beach WA 6920 

OBJECTIVES: 
1. To develop time series models to predict the future catches, efforts and CPUEs for 

selected Western Australian fisheries.  

2. To investigate the application of time series techniques to catch-effort relationships, catch-
environment relationships, stock-recruitment-environment relationships, and catch-
puerulus settlement relationships.  

3. To investigate the application of time series modelling techniques in the understanding of 
historical data on product values and to predict the future product values for the western 
rock lobster fishery. 

4. Develop statistical quality control techniques (moving average and autoregressive control 
charts) to assess the impact of annual catch and effort on the environmental sustainability 
of some fisheries, so as to aid industry and biologists in managing these stocks. 

 
NON-TECHNICAL SUMMARY: 

 

 

OUTCOMES ACHIEVED: 

Time series techniques provide new ways of stock assessment for a wide variety of
fisheries in Western Australia. The models are straightforward, generally requiring only
few parameters to be estimated. The methods are particularly beneficial for commercial or
recreational fisheries where there are few existing stock assessment techniques and/or
limited available data (for example, only catch and fishing effort). Time series models are
applicable as simpler alternatives for fisheries where some biological properties are
known. Seasonal and spatial patterns and recruitment and environmental effects on catch
and catch-per-unit-effort have been studied from the perspective of time series analysis for
the purposes of improving the management of WA fisheries. Fisheries for which time
series models improve stock assessment techniques include western and southern rock
lobsters, tiger and king prawns in Shark Bay, Australian herring, Australian salmon,
pilchards, Spanish mackerel, dhufish, red emperor, sea mullet and yellow-eye mullet.
Moreover, time series models are also being used as a new statistical quality control
technique to produce improved acceptable catch ranges used in the annual Western
Australian State of the Fisheries Report. 
FRDC Project No. 1999/155  6



 

The management of fisheries in Western Australia requires an understanding of the status of 
the fisheries stocks. For many species, the only available data are catch, effort and CPUE 
history. For these and other fisheries, time series methods may improve the stock assessment 
methods. Biological information is expensive to collect, and much of the information required 
for stock assessment methods such as age-structured models is simply unavailable, especially 
for low value fisheries. Time series analysis or control charting methods comprise a select few 
statistical techniques available for the purpose of stock assessment in these cases. Prediction 
may be improved using time series methods on catch and effort data with or without external 
data such as biological or environmental variables. Even when biological parameters can be 
estimated for a given model, time series methods may be superior as prediction tools. 
 
The aim of this research was to apply time series methods on the western rock lobster fishery, 
several commercial finfish fisheries and the major tiger and king prawn fisheries, and 
determine how useful these techniques are for fisheries assessment and management. The 
following table classifies appropriate models according to the temporal structure and 
properties of the data sets. The ARIMA(X), seasonal ARIMA(X) and GARCH classes of 
models are explained in chapter 2; SQCC = statistical quality control charting; NLR = 
nonlinear regression. 
 

Data set type Annual Seasonal Monthly Comments 

Independently 
distributed 

SQCC N/A N/A  

Autocorrelated or 
trending 

ARIMA, 
SQCC 

ARIMA or 
SARIMA 

SARIMA SQCC requires specific 
methods (see Ch 3). 

Exogenous 
explanatory 
variables 

NLR, 
ARIMAX, 

SQCC 

ARIMAX or 
SARIMAX 

SARIMAX SQCC methods may also 
be adapted for regression 
terms. Nonlinear 
relationships require 
specific techniques if 
data are autocorrelated. 

Interventions or 
large-scale shifts 

ARIMAX, 
SQCC 

ARIMAX or 
SARIMAX 

SARIMAX Use exogenous 
techniques with dummy 
variables. 

Volatile ARIMA-
GARCH 

ARIMA-
GARCH or 
SARIMA-
GARCH 

SARIMA-
GARCH 

Conditional hetero-
skedasticity models 
required. 

 
The following is a summary by fishery of the methods included in this report. 
 
Western rock lobster fishery: Annual forecasts of western rock lobster catches were 
calculated in each zone by using puerulus data collected three to four years prior. Two types 
of seasonal catch data were analyzed. Firstly, monthly catches over zones A, B and C were 
fitted using univariate seasonal ARIMA transfer function models. Methods were developed to 
incorporate the annual puerulus information into the seasonal models for each zone. These 
models provided reliable predictions for monthly catches in zones A and B, but catches taken 
from zone C were less predictable. 
 
Another seasonal ARIMA transfer function model was used to analyze the “whites” and 
“reds” catches in zones B and C, where the “whites” season extended from mid November to 
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the end of January, and the “reds” season followed from February to June. The objective was 
to predict the proportions of whites to reds catches for each fishing season. These seasonal 
catches were known to be correlated, so there was interest in obtaining better catch estimates 
for management purposes. The 1993/94 management changes affected the catches and fishing 
effort during the whites and reds seasons in different ways. These effects were quantified 
using a time series intervention analysis. While the fishing effort decreased by an average of 
18-24% in all zones during the whites season, the average decrease of only 8-10% during the 
reds season showed that there was still latent fishing effort during the reds season prior to the 
pot reduction.  
 
Southern rock lobster fishery: A model describing the dynamics of the southern rock lobster 
fishery in the Esperance area was tested. It was discovered that Esperance CPUE correlated 
highly with an interaction of May catch rates in the central northern zone of the South 
Australian lobster fishery lagged 5 to 6 years prior together with the Fremantle Sea Level 
indicator of the Leeuwin Current. This knowledge has generated an approach to forecasting 
catches in a similar way to the western rock lobster fishery. A significant increase in variance 
of monthly catches was noted as a result of the increased live tank storage facilities from 1990 
onwards. 
 
Finfish fisheries: Time series methods are particularly useful for many finfish fisheries, 
especially those that are smaller or less valuable. The time series methods are used as 
refinements to the knowledge of many finfish fisheries. Many finfish fisheries have only catch 
and effort data (over approximately 25 years) available for analysis. In the past, managers of 
these fisheries would use catch range or annual CPUE prognoses to measure performance. 
The results of this project indicate that some simple quality control methods and simple time 
series models provide more insight to the dynamics of the fisheries. Consideration of fishing 
effort as a regulating tool for a variety of finfish fisheries has been included in this project. 
 
There are some finfish fisheries for which time series methods could not improve the 
knowledge of the fisheries. The age structure of these fish were typically highly variable from 
year to year. In these cases, other modelling tools such as age-structured techniques are more 
appropriate. 
 
A summary of the results for finfish fisheries is presented. 

• Univariate statistical control charts of catches were computed for over 12 finfish species. 
Catches outside a range of the mean ± 2 standard deviations may be interpreted as 
warning signals to respective managers. 

• Effects of environmental variables such as the Leeuwin Current are of interest to 
managers of relevant fisheries. There is substantial literature on the importance of the 
Leeuwin Current on fish stocks in Western Australia. However, this project demonstrates 
the importance of the Southern Oscillation Index (SOI) indicator on Western Australian 
stocks also. The Leeuwin Current or SOI have a positive effect on catches taken from 
Western Australian waters, and a negative effect on others. For five key commercial 
fisheries, selected monthly catch rate/environmental interactions were shown to be more 
influential than environmental variables alone. Fishing effort was a significant factor in 
explaining catches for four out of five fisheries. The five selected WA fisheries were 
Australian herring, western Australian salmon, pilchards, Spanish mackerel and westralian 
dhufish. 
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• Volatility models for four fisheries were tested (King George whiting, red emperor, sea 
mullet and yellow-eye mullet). Generalized autoregressive conditional heteroscedasticity 
(GARCH) effects were detected for the latter three fisheries. GARCH models are a family 
of nonlinear time series models which estimate variances (e.g. from the residuals of an 
ARIMA model) over time. Monthly catch predictions (both point estimates and variance 
estimates) were significantly improved for these fisheries using GARCH models, 
especially for the sea mullet and yellow-eye mullet fisheries.  

• A comparison of twelve fisheries was made over two main spatial fishing areas, namely 
the west coast and the south coast of WA. The seasonal behaviour was similar for all 
fisheries. However, there were large differences in management implications between the 
west and south coast fisheries. It was verified that most of the west coast fisheries could 
be effort controlled, but many of the south coast fisheries could not. The south coast 
fisheries were generally more unpredictable than the west coast fisheries. 

• A unique estuarine recruitment relationship was discovered for Swan River tailor. Catches 
of  and  year old fish from Point Walter during the months of February through April 
were used to form a recruitment index. Commercial catches of tailor in the Swan River 
were shown to correlate highly with the recruitment index for 8 years, with the exception 
of one outlier. Both the Point Walter index and the commercial Swan River catches of 
tailor are trending downwards, indicating possible decreases in stocks. This trend may be 
persisting in nearby oceanic waters, as a nonlinear relationship exists between annual 
catches taken from the Swan River and annual catches taken from the ocean adjacent to 
the Perth Metro area (block 32150) early in the same year. 

+0 +1

 
Prawn fisheries: A spatial time series study of Shark Bay king and tiger prawn catches over 
30 years was undertaken. A time series model was advantageous for several reasons. Firstly, 
the predictions are competitive with state space models that use biological parameters. 
Secondly, unbiased spatial correlations among the different fishing regions were computed 
using time series analysis. This has enabled a quantitative conclusion that the lower 
southwestern areas (G1+G2+G3) form a separate sub-fishery to the remainder of the fishery 
(A through F). Thirdly, the time series models account for the missing data in 1981 for Shark 
Bay prawn fisheries. Efficiency estimates were computed for each area, alerting managers to 
the less efficient areas that may warrant a revision of allowable fishing days in Shark Bay. 
 
KEYWORDS: 
Fisheries management, time series, stock assessment, recruitment relationships, control charts, 
western rock lobster, southern rock lobster, finfish, prawns. 
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1.0 General Introduction 

1.1  Background 
For the large number of small low value fisheries in Western Australia and across Australia 
generally there is a need for alternative low cost stock assessment and catch forecasting tools 
to enable fisheries management performance indicators to be developed. Most traditional 
stock assessment models require significant knowledge of stock biology and need ongoing 
data collection. The data are generally expensive to collect and often beyond the financial 
capacity of the fisheries concerned. 
 
Time series based modelling methods are likely to provide a more cost effective approach, but 
are reliant on a sufficient number of years of data. In Western Australia where the major 
fisheries such as the rock lobster fishery have comprehensive databases extending over 30 
years or more and most minor fisheries now have data in excess of 20 years, time series 
modelling can now be explored and developed. This model development will be timely for 
use in other parts of Australia, where comprehensive databases were instigated more recently, 
that is, sufficient long time series will become available for time series modelling in the next 5 
years, for most small-scale fisheries in Australia. 
 
Time series data can provide the essential and direct information to understand natural 
resource systems. Better understanding of these data can lead to the development of better 
management strategies. In many Western Australian fisheries, there are long run detailed data 
records on commercial catches and fishing effort but limited data on individual stock biology. 
In many cases, records of related environmental variables are also available. For some 
fisheries, other relevant data may have been recorded, for example, puerulus settlement data 
are available for western rock lobster in Western Australia since 1968. Up to now, these data 
have been utilized in mechanistic models to understand the behaviour and the dynamics of 
fisheries such as western rock lobster fishery.    
 
Methods of time series analysis have been identified as providing a new approach to fisheries 
modelling and stock assessment (e.g., Saila et al. 1980; Mendelssohn 1981; Noakes et al. 
1987; Freeman and Kirkwood 1995; Stergiou et al. 1997). The aim of time series methods is 
to extract the hidden rules of the underlying systems directly from time series data. Time 
series methods are well developed in mathematical statistics. Several new methods of time 
series analysis (e.g., state-space reconstruction and time delay embedding) from nonlinear 
dynamical system theory have also been developed in the last decade, and their applications 
have been seen in many scientific fields.  
 
The time series methods demand fewer biological assumptions than the traditional fisheries 
models, however, the results of the time series methods may allow identification of the nature 
of some biological processes. The methods also allow existence of correlations among the 
historical data over the time. Therefore, the time series methods are more general and flexible 
than the traditional methods that rely on biological assumptions and assume independent 
errors.  
 
In addition, time series models are comparatively simple. With simple mathematical forms 
and few assumptions, time series methods may significantly reduce the modelling costs 
including research costs and computing costs; and may contain less uncertainty than the 
conventional methods. For some fisheries (e.g., some finfish fisheries), conventional 
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mathematical modelling is rather difficult or may require resources that are not justified by 
the values of the fisheries. In these instances, time series modeling offers a feasible way to 
examine the time series data and to provide predictions of future catches. Research (e.g., 
Noakes et al. 1990; Stocker and Noakes 1988; Roff 1983) has demonstrated that simple time 
series models may provide more accurate forecasts than the relevant biological models. Little 
research work has been undertaken in the application of time series techniques to Western 
Australian fisheries and across Australia generally.  

1.2 Need 
1. Responsible management of fisheries requires an assessment of the success of the 

management plan in achieving its objectives, together with an assessment of the state of 
the fish stock and likely consequences of the current and alternative management 
strategies.  In many cases, the management plan is intended to maintain the status quo.  
Trends in time series of data, or values that fall outside the range of predicted outcomes, 
may indicate that the status quo is not being maintained, or that significant change has 
occurred within the system.  Cost effective methods are required to provide rapid feedback 
to fisheries managers that a major perturbation has occurred, or that the system is 
changing, in order that appropriate management action may be implemented.    

2. Need to produce low-cost effective models for stock assessment and catch prediction of 
Western Australian fisheries, especially those low-value fisheries (eg. some finfish 
fisheries). With few biological assumptions and simple mathematical forms, time series 
modelling may significantly reduce modelling costs including research costs and 
computing costs. Time series approaches may also significantly reduce model uncertainty, 
and therefore may provide more reliable prediction results. 

3. Need to reduce the risk of model failure through inadequate assumptions regarding 
biological processes. Models currently used by Fisheries WA involve often untenable 
biological assumptions, with the result that predictions are conditional on the accuracy of 
the assumptions. To reduce the risk of model failure through inadequate assumptions, it is 
highly desirable to supplement the current models by applying techniques such as time 
series methods that make few assumptions regarding the biological processes and to 
compare predictions from the two modelling approaches. 

 
Given the above, time series modelling is seen as a highly valuable and strategic element of 
the research programme for Western Australian fisheries; the benefits of this project could be 
transferred Australia-wide to fisheries researchers allowing improved management advice.  
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2.0 General Methods 

Documentation of time series models and statistical quality control charts applied to WA 
fisheries completed. There are 11 major sections on modelling of WA fisheries that are to be 
included in this report. The 11 sections and their content are as follows. 

1. General introduction to definitions and methods of time series analysis and statistical 
quality control charts. Background material, literature research and application to 
fisheries. Description of the various methods and why they were chosen, also discussion 
on technicalities and problems encountered when modelling. 

2. Use and analysis of statistical quality control charts for a variety of WA fisheries. How to 
empirically choose the upper and lower warning and control limits. Which data to analyze. 
How management policies affect the analysis. 

3. Time series analysis of seasonal western rock lobster catches taken from three main 
fishing zones off WA. Use of puerulus collector information as a forecasting tool for 
seasonal catches, involving nonlinear estimation procedures. Analysis of the forecasts 
using existing data. 

4. Analysis of the proportions of “whites” and “reds” catches for western rock lobsters over a 
30-year period. Effects of management intervention package on the inter-annual 
proportions of “whites” and “reds” catches. 

5. Time series analysis of the Esperance southern rock lobster fishery. Use of catch rates 
from South Australia and environmental information as a forecasting tool for the fishery. 
Forecasts made for the three most recent seasons, and compared with the actual data. 
Effects on data of increased live storage facilities introduced in the early 1990s. 

6. Multivariate time series analysis of 30 years of tiger and king prawn catches in Shark Bay. 
Contemporaneous spatial analysis carried out across the whole fishery. Model prediction 
compared with other existing models. Uncorrelated sub-fishery found in the southwest. 
Fishing efficiency estimates calculated for each zone. 

7. Regional comparison between the western and southern waters of twelve finfish fisheries. 
Fishing effort significant for the west but not significant for the south. Seasonal time series 
models fitted to each region of each fishery. Model consistency appeared for the western 
sub-fisheries. Consequences for management of these fisheries discussed. 

8. Seasonal ARIMA-GARCH models fitted to a selection of volatile seasonal finfish 
fisheries. Improvements found for forecasts using seasonal ARIMA-GARCH models 
rather than seasonal ARIMA models. 

9. Seasonal catch rate-environment time series models used to aid the prediction and 
forecasting ability of several key commercial finfish species for which relatively little 
biological information is known. Use of Fremantle Sea Level and Southern Oscillation 
Index. 

10. Documentation of an annual Point Walter juvenile tailor catch rate index as a tool to 
forecast commercial catches of tailor in the Swan River. The Swan River has historically 
proven to be conducive to the study of finfish populations. There is evidence of a rare 
estuarine recruitment relationship for tailor in the Swan River. Juvenile indices from other 
sites investigated. Environmental effects on tailor in the Swan estuary analyzed. Annual 
commercial catches in the Swan River and nearby sea catches compared. Time series 
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models fitted to commercial Swan tailor catches. Relevance of the impact of the 
recreational sector on commercial tailor catches in the Swan discussed. 

The report follows the above format, listing each result as a chapter in the report. Chapters 3-
11 have been arranged in research publication format, namely in sections including Abstract, 
Introduction, Methods, Results, Discussion. 

2.1 Introduction to time series methods and preliminary  
definitions 

Time series analysis is a well-developed scientific method of analysis that has been 
extensively and successfully used in fisheries studies around the world as well as other fields 
such as economics and meteorology. A time series is a set of data that has been collected at 
equally spaced time intervals. A time series model describes how the historical records and 
modelling errors determine the future values of the time series. The research in this project 
will involve identification of necessary lags which represent at what time historical records 
are needed to predict the future, identification of the mathematical functions which represent 
the relationship between the past values and the future values, and dealing with noise or 
uncertainty. 
 
The methods of univariate time series analysis identify trends, seasonal cycles and 
autocorrelation patterns for each time series, while multivariate time series analysis identifies 
input-output relationships and cross-correlations among many processes that are available to 
us such as catch, effort, spatial zones, price markets and environmental factors. The aims of 
time series analysis in fisheries are to fit appropriate models to data, to provide reliable 
forecasts over the short term, and to explore the consequences of changes in regulations. Time 
series analysis in fisheries gives management cost effective, relevant and up-to-date 
information at any point in time to regulate as appropriate if trends or observations deviate too 
far from predictions. 
 
Forecasting ability depends on various errors made from: 

• the choice of model used; 
• parameter estimation; and 
• residual noise in the data that is unaccounted for by the selected model. 

 
In general, the more control we have over the errors listed above, the better our forecasts are. 
Thus, a wide range of models and several measures of model appropriateness need to be 
developed to compare predictive capacities. We have reviewed seven texts and over twenty 
scientific papers describing applicable time series models in fish industries around the world. 
The literature review that follows in the next section is an introduction to a broad range of the 
terminology and modelling techniques and methodologies associated with time series 
modelling techniques that are relevant to this project.  
 
The analysis will be divided into four main sections, namely,  

• statistical quality control charts; 
• univariate time series analysis; 
• multivariate time series analysis including transfer function models and dynamic 

regression; and 
• nonlinear time series models. 
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We shall introduce some elementary definitions, simple control charting techniques and 
univariate models such as Box-Jenkins (1976) ARIMA and seasonal ARIMA models, which 
are the basic building blocks of time series analysis. We perform elementary and advanced 
time series analyses using SPLUS software and develop some SPLUS scripts where the 
existing functions do not exist. A preliminary analysis will show that seasonal ARIMA 
models can identify some of the biological dynamics that occur in the western and southern 
rock lobster fisheries, several finfish fisheries and prawn fisheries but are not appropriate or 
flexible when actually making predictions. For many fisheries, however, the addition of 
exogenous variables, such as fishing effort, recruitment and environmental variables, 
management intervention and technological factors allow the models to produce better 
predictions. For example, puerulus settlement indices can be used in time series models to 
predict recruitment into the western rock lobster fishery. Advanced models such as the 
ARCH/GARCH family, intervention methods and multivariate analysis can handle the more 
challenging dynamics involving volatility in time series, changes in management controls and 
spatial dynamics, respectively. 
 
A series of definitions is given below. These terms and concepts are used throughout the 
remainder of this section and the following sections of this report. 
  
Definition 2.1 A time series is a sequence of observations , each one being recorded at 
time t.  

tx
◊

 
Definition 2.2 A sequence of observations { }tX  is said to be IID noise if  are 
independently and identically distributed random variables with zero mean.  

K,, 21 XX
◊

 
This is rarely the case with practical data. Even when an analysis has been performed, the 
errors may be uncorrelated but not independent. 
 
Definition 2.3 A sequence of observations { }tε  is said to be white noise if K,, 21 εε  are 
random variables which have mean zero and variance , and the 2σ tε ’s are uncorrelated 
across time, viz. 
 

( )

( )
⎩
⎨
⎧

≠
=

=

=

.for 0 
for 

,

0
2

ts
ts

Cov

E

ts

t

σ
εε

ε

     
]2.2[

]1.2[

 
We denote a white noise process by { } ( )2,0~ σε WNt . If, in addition, the tε ’s are 
independent, viz. 
 

,for t independen ,  tsts ≠εε     [2.3] 
 
then we refer to the sequence as independent white noise. Finally, if  [2.1] through [2.3] hold 
and 
 

( )2,0~ σε Nt ,      [2.4] 
 
then we have Gaussian white noise.  ◊
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The aim of time series analysis is to filter one or more data streams to reduce the residuals to 
white noise. If the white noise is not Gaussian, then the residuals may be further analyzed 
using nonlinear models such as GARCH models or bootstrapping methods. 
 
The autocovariance and autocorrelation functions 
Definition 2.4 Denote the autocovariance function (ACVF) between  and its kth time 
lag  as follows: 

tX

jtX −

 
( ) ( )( )[ ]jtjtttjttk XXEXXCov −−− −−== µµγ , . [2.5] 

 
Then the theoretical autocorrelation function (ACF) is defined as 
 

0γ
γ

ρ j
j = .      [2.6] 

 
The partial autocorrelation function (PACF) is defined by 1, ≥hhhφ  from 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Γ=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

h

h

hh

h

γ

γ
γ

φ

φ
φ

MM
2

1

12

11

,     [2.7] 

 
where  is the variance-covariance matrix of the process [ ]h

jijih 1, =−=Γ γ { }tX .  ◊

 
The autocorrelation and partial autocorrelation functions provide a “signature” of the time 
series. These functions are viewed graphically at consecutive time lags. For example, white 
noise occurs when the ACF at all lags K,2,1=j  are insignificant. The partial autocorrelation 
function hhφ  is the conditional correlation of  and  given that mutual linear 
dependencies on  have been removed. 

tX htX −

121 ,,, +−−− httt XXX K

 
Stationarity 
Definition 2.5 A process {  is said to be weakly stationary if there exist }tX jγµ ,  for any j 
such that 
 

( )
( ) ◊=

=

− .any  and  allfor ,
 allfor  

jtXXCov
tXE

jjtt

t

γ
µ

  [2.8] 

  
Definition 2.6 A process {  is said to be strictly stationary if, for any , the 
joint distribution of 

}tX njjj ,,, 21 K

( )
njtjtjtt XXXX +++ ,,,,

21
K  depends only on the time intervals separating 

the dates ( ).  njjj ,,, 21 K ◊
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Unless specifically stated otherwise, a stationary time series will refer to a weakly stationary 
time series. There are theoretical reasons why a time series should be de-trended to a weakly 
stationary process. Any trend should be accounted for before reliable forecasts can be made. 
 
Linear processes 
Definition 2.7 A time series {  is a linear process if it has the representation }tX
 

jt
j

jtX −

∞

−∞=
∑= εψ       [2.9] 

 
for all t, where { } ( )2,0~ σε WNt  and { }jψ  is a sequence of constants satisfying  

∞<∑
∞

−∞=j
jψ .  ◊

 
The bulk of the modelling procedures consist of linear models. More advanced nonlinear 
models are used when there is conditional heteroscedasticity. 
 
Short and long memory processes 
 
Definition 2.8 A stationary process is said to be summable or possesses a short memory if 
it satisfies 
 

∞<= ∑
∞

=0j
jM ρ .     [2.10] 

 
If the process is not summable, we say it possesses a long memory. ◊  
 
For the purposes of this project, we only analyze short memory processes. 
 

2.2 Statistical control charting methods in fisheries 
Statistical control charting was invented by Walter A. Shewart of Bell Telephone Labs in the 
1920s. They were used for continuous monitoring of manufacturing process variation for the 
purposes of improving economic effectiveness. A control chart is a quality characteristic of a 
sample measured over time. The chart contains a center line measuring the average of the 
process when under control, an upper control limit and a lower control limit. The control 
limits are chosen such that nearly all the sample points lie between them. Provided the points 
are within the control limits, the process is assumed to be in control. Points exceeding the 
control limits may indicate evidence of a process that is out of control. In terms of a fishery, 
this may mean that fishing pressure is too high, or that stock levels are dangerously low. 
 
The univariate methods of control charting used for Western Australian fisheries can involve 
attribute-type charts or variable-type charts. A control chart for an attribute maps data of 
interest generally over annual periods, together with control limits and warning limits if 
required. A control chart for a variable is a time progression of a variable, such as mean, 
range or variance, calculated from sub-samples of the data, together with a centre line and 
associated control limits. A control chart for a Western Australian fisheries variable would 
typically use monthly data, calculating the variable over each fishing season, since an annual 
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data set of 25-30 years is too short for sub-sampling. Control charts for variables increase the 
power of quality control charting methods, but rely on sufficiently long time series. 
 
The aim of the statistical control chart analysis in this project is to determine for which 
fisheries the methods work well, and the reasons why they don’t for other fisheries. Setting 
the control limits for fisheries data will also be a discussion point in the analysis. 
 

2.3 History of time series modelling and review of literature  
in fisheries 

Box and Jenkins (1976) are considered the founders of modern time series modelling by 
introducing the autoregressive integrated moving average (ARIMA) family of statistical 
models. ARIMA models were introduced to primarily handle non-independent data streams.  
For example, significantly autocorrelated residuals from a regression analysis may give biased 
parameter estimates and therefore need to be filtered by a time series model such as ARIMA. 
Useful forecasts can then be made for the non-independent data stream. An autoregressive 
model of a time series {  is a regression model of that time series on its previous history. 
For example, a linear autoregression model with a finite number p of lag terms, denoted by 
AR , is expressed as 

}tX

( )p

tjt

p

j
jt XX εφ += −

=
∑

1
,     [2.11] 

where { } ( )2
1,0~ σε WNt  is a white noise process. A moving average model of a time series 

aims to average out previous error steps of a time series { }tX  to attempt to smooth the 
process. For example, a linear moving average model with a finite number q of lag terms, 
denoted by MA ( , is expressed as )q

tjt

q

j
jtX εεθ += −

=
∑

1
,     [2.12] 

where { } ( )2
2,0~ σε WNt . Combining the linear autoregressive and moving average properties 

gives the autoregressive moving average (ARMA) family of models, denoted by 
ARMA , and expressed as  ( )qp,

)
)

tjt

q

j
jit

p

i
it XX εεθφ ++= −

=
−

=
∑∑

11

.   [2.13] 

 
The analyses of autoregressive and moving average processes are based on a stationarity 
assumption of the time series. If the time series possesses what is known as homogeneous 
nonstationarity (see section 2.5), an integrated component of an ARIMA model is used. By 
differencing the process a finite number of times d, a stationary process may result. A 
combination of autoregressive, moving average and integrated components make up the 
specifications for the ARIMA models. ARIMA models are a historical generalization of the 
exponential, double exponential, etc. smoothing methods of the 1950s and 1960s (see Brown 
1960, Gilchrist 1976). Technological advances have enabled ease of estimation of ARIMA 
models, following the precursory “pen-and-paper” style smoothers. Exponential smoothing is 
equivalent to an  filter, while double exponential smoothing is a special case of 
an  filter (see Chapter 3). 

(0,1,1ARIMA
(0,2,2ARIMA
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Seasonal ARIMA (SARIMA) models can often be used in fisheries data since monthly data is 
available. Catches at a given time depend on catches for the previous months and the previous 
seasons. Exogenous variables may be included in the ARIMA or SARIMA models, from 
which the equivalent terms ARIMAX (SARIMAX) or (seasonal) transfer function noise 
(TFN) models arise. Exogenous variables in fisheries include biological and population 
information, environmental data and intervention variables. 
 
Saila, Wigbout and Lermit (1980) demonstrated that ARIMA models are useful statistical 
tools for modelling and predicting monthly data of the average catch (kg) per day fished of 
rock lobster, Jasus edwardsii, from the Gisborne area, New Zealand between the years 1963 
and 1974. They compared the predictive performance for 1975 and 1976 of two optimal 
ARIMA models fitted from 1963 to 1974 with two simple forecasting techniques, namely, 
monthly averages and harmonic regression analysis. The forecast values for the two ARIMA 
models used were shown to be far superior to the forecasts given by the other two methods. 
However, there were no seasonality factors incorporated into their model. A seasonal ARIMA 
model would be expected to give better forecasts again. 
 
Stocker and Noakes (1988) and Noakes (1990) compared preseason forecasts of various 
methods for Pacific herring and sockeye salmon stocks in British Columbia. Their results 
indicated that simple time series models outperformed other competing fisheries models such 
as Ricker-type recruitment models. 
 
Mendelssohn (1981) investigated the uses of some elementary seasonal ARIMA models and 
TFN models to forecast the monthly catch, effort and catch-effort of skipjack tuna, 
Katsuwonus pelamis, near Hawaii from 1964 to 1978. A seasonal differencing of 12 months 
was carried out on both catch and effort data sets, and then appropriate seasonal moving 
average models were fitted. Overfitting was carried out ensuring reasonably optimal models 
were found. Transfer function models were also introduced, comparing both catch and effort 
time series, to improve on the forecasts. The SARIMA and TFN models performed 
reasonably well on forecasts for 1979. However, the authors suggest that variables involving 
the fishermen’s behaviour and thus the fishery and not just the behaviour of the fish would 
better the forecasts. Finally, a disaggregated intervention model is also suggested by the 
author as an improvement, as the effect of an intervention in 1973 changed the distribution of 
the model variables. We will frequently encounter changes of regime when studying our data, 
including the southern and western rock lobster data. 
 
Stergiou, Christou and Petrakis (1997) compared seven different well-established techniques 
of time series modelling on sixteen species in the Hellenic marine waters. Their results led 
them to believe that ARIMA models and dynamic regression models outperformed other 
techniques such as monthly averages, harmonic regression, linear multiple regression and 
vector autoregression. Mendelssohn and Curry (1987) successfully analyzed time series of 
catch per unit effort from 1966 to 1982 of a small pelagic species off the Ivory Coast using 
sea temperature data. Therefore, it is in our interest to carefully study ARIMAX models and 
multivariate time series models, attempting to build in other important factors such as changes 
in regime and environmental variables. 
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2.4 Building blocks for time series models: The ARIMA models 

2.4.1 ARMA processes, stationarity and invertibility 
Autoregressive moving average (ARMA) processes form the fundamental family of time 
series model since they were developed and used by Box and Jenkins (1976). Many stationary 
processes can be successfully modelled by the ARMA class of models. Throughout this 
literature review, we will make use of the backward shift operator B, which is defined as 

, and thus( ) 1.. −= ttB ( ) K,1,0,.. ±== − jB jtt
j . If 0=j , then IB =0 , the identity operator. 

 
Definition 2.9  is an ARMA  process if { tX } )( qp, { }tX  is stationary and if for every t, 
 

qtqttptptt XXX −−−− +++=−−− εθεθεφφ KK 1111 ,  [2.14] 
 
or, equivalently, 
 

( ) ( ) t
q

qt
p

p BBIXBBI εθθφφ +++=−−− KK 11 ,  [2.15] 
 
where { } ( )2,0~ σε WNt  and the polynomials ( )p

p zz φφ −−− K11  and ( )q
q zz θθ +++ K11  

have no common factors. The process { }tX  is an ARMA ( )qp,  process with mean µ  if 
{ }µ−tX  is an ARMA ( )qp,  process. ◊  
 
We assert that ( )p

p zz φφ −−− K11  and ( )q
q zz θθ +++ K11  have no common factors for 

redundancy reasons in the parameterization process. For example, it is possible to fit a white 
noise process ttX ε=  with an ARMA ( )1,1  model such as ( ) ( ) tt kBXkB ε−=− 11 , where 

1>k . But it would obviously be problematic to estimate k in the specified ARMA model. 
 
The following theorem serves as the main condition for stationarity of an ARMA process. 
 
Theorem 2.1 (Existence and Uniqueness) 
 
A stationary solution { }tX  of equations [5.1] and [5.2] exists and is also unique iff 
 

( ) 101 1 =∀≠−−−= zzzz p
pφφφ K . ◊   [2.16] 

 
Thus, a sufficient condition for stationarity of an ARMA process is that none of the zeros of 
the autoregressive polynomial lies on the unit circle. It is important that the data be stationary 
when fitting ARMA models by finding the complex roots of the autoregressive polynomial 
and demonstrating that they lie significantly inside or significantly outside the unit circle. We 
can use the polyroot function in SPLUS to find the complex roots of a polynomial (up to 
machine precision) to check the stationarity of the data. 
 
Definition 2.10 An ARMA  process ( qp, ) { }tX  is invertible if there are constants { }jπ  such 

that ∞<∑
∞

=0j
jπ  and 
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tXX jt
j

jt  allfor  
0

−

∞

=
∑= π .    [2.17] 

 
Invertibility is equivalent to the condition 
 

( ) 101 1 ≤∀≠+++= zzzz p
pθθθ K . ◊   [2.18] 

 
Real-world data that is not invertible typically has a conditioning problem at the beginning of 
the series. It is best to select representations that are invertible, since forecasts based on 
noninvertible representations depend on future values of the data! 
 

2.4.2  Order selection 
Observation of the ACF and PACF functions can often indicate how p and q are to be chosen 
to obtain a model that is a good representation of the data. The general characterization of an 
ARMA  process is an exponentially decaying ACF and a truncated PACF up to standard 
error fluctuations. Deviations from this characterization indicate the time series may be 
nonstationary, the errors may have nonconstant variance, a Gaussianity assumption has been 
broken, and/or the process is nonlinear. 

( qp, )

 
What is meant by standard error of the ACF and PACF? One needs a sample estimate of such 
parameters. The maximum likelihood estimator of the ACVF at lag h, denoted hγ̂ , can be 
shown to be approximately 
 

( )( )XXXX
n ht

hn

t
th −−= +

−

=
∑

1

1γ̂ .   [2.19] 

 
The estimator is approximate in the sense that maximization of the log-likelihood function 
leads to a linear system only in the limit where the number of data points . Likewise, 
the maximum likelihood estimator of the ACF at lag h is approximately 

∞→n

 

0ˆ
ˆˆ
γ
γ

ρ h
h =       [2.20] 

 
The graphs of the sample ACF and PACF of a time series indicate approximate 95% 
confidence interval bounds based on Gaussian white noise as horizontal dotted lines. Any 
autocorrelation coefficient that exceeds these bounds may be deemed significantly nonzero. 
For instance, the ACF and PACF of a realization of a Gaussian white noise process of length 
n reveal autocorrelations and partial autocorrelations that fall within the specified bounds with 
5% error, on average. 
 
For short memory processes such as the ARMA ( )qp,  models, the approximate distribution of 
the sample ACF is normal. If, in addition, we assume that 0=hρ  for , the variance is 
approximately 

qh >
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ρ      [2.21] 

 
for . Thus, for an ARMA (  process, the approximate 95% confidence limits of the 
sample ACF are given by 

qh > )qp,

 

2
1

1

22
1

2196.1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+± ∑

=

− q

j
jn ρ .    [2.22] 

 
 
Similarly, the approximate 95% confidence limits of the sample PACF are given by 
 

2
1

96.1
−

± n .      [2.23] 
 
Suppose that the ACF does decay exponentially and the PACF truncates subject to random 
error, so that an ARMA model is appropriate. We need to find an optimum pair ( . A 
rough guide is the following visual analysis. Presence of the first p significant partial 
autocorrelations generally indicates that an autoregressive process of order p is evident in the 
ARMA process. Larger than otherwise expected individual autocorrelations from an 
autoregressive process indicate the presence of significant moving average components. 

)

) )

qp,

 
The AIC and AICc criteria 
While observations of the sample ACF and PACF can be a helpful guide or checking device, 
minimization of the AICc log-likelihood criterion of Hurvich and Tsai (1989) based on the 
AIC criterion of Akaike (1973) is possibly the best statistical measure to determine an 
optimum pair (  for an ARMA  process. The AIC criterion is defined by choosing 

 that minimizes the following expression: 
qp, ( qp,

β,,qp
 

( )( ) ( )qpnSL ++−= 2/,ln2AIC ββ ,   [2.24] 
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and  for  are derived from the innovations algorithm. Estimation errors 
arising from overly high values chosen for p and q is reflected by a penalization of the AICc 
statistic, since the  term approaches zero as p and q grow. This agrees with the 
parsimony philosophy of parameter selection. The AIC criterion is considered valid for 

. For smaller samples, the AICc criterion is valid. It is defined by choosing 
 that minimizes 

1,ˆ
−jj rX nj ,,2,1 K=

( 12 ++ qp )

qpn ++≥ 30
β,,qp

 

( )( ) ( )
1

2/,ln2AICc
−−−

++−=
qpn

nqpnSL ββ .  [2.28] 

 
The ( )1−−− qpnn  term corrects for the small sample bias in the AIC.  
 
Remark 1. It is important that the AIC or AICc for one data set is not compared with the 
AICc for another data set. Even the same data set with different autoregressive parameters (p) 
cannot be compared unless the data subset used after conditioning is the same. For example, 
the AIC or AICc of an  model can be compared with an ( )3AR ( )1AR  model for a given data 
set only if the data used to fit the  model is truncated by two points at the beginning of 
the time series. 

AR(1)

 
Remark 2. Minimization of the AIC or AICc statistic that involves a large number of 
parameters as compared to the number of data points probably indicates that the data do not 
represent an ARMA (  process. )qp,
 
Remark 3. The penalization factors for the AIC and AICc depend on the magnitude of the 
data. Thus, non-negative data should be divided by its mean before computing these order 
selection statistics. 
 
The BIC criterion 
Sometimes, Schwarz’ (1978) Bayes information criterion (BIC) is used to select a model. It is 
defined as 
 

( )( ) ( ) nqpnSL ln/,ln2BIC ++−= ββ .  [2.29] 
 
 

2.4.3  Parameter estimation 
Mendelssohn (1981) used backforecasting methods to estimate his parameters. The techniques 
used in SPLUS for estimation of parameters will involve maximum likelihood functions. For 
ARMA models, there are basically two ways to approach the estimation problem. 
Minimization of the logarithm of the exact likelihood function leads to a nonlinear system of 
equations to be solved for optimal estimators. A simpler approximation of the exact likelihood 
function is the conditional likelihood function, which conditions the exact likelihood 
function on a subset of data points at the beginning of the time series. Minimization of the 
logarithm of the conditional likelihood function becomes a linear system of equations to be 
solved for asymptotically optimal estimators. Conditional likelihood estimators are consistent 
for invertible ARMA processes and can be found by numerical optimization, in general. 
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Freeman and Kirkwood (1995) claim that state-space time series methods are well suited to 
stock assessment. They estimate biomass population and recruitment indices using maximum 
likelihood methods and the Kalman filter. The Kalman filter is an algorithm that incorporates 
maximum likelihood estimation for a wide class of models known as state-space models. The 
Kalman filter has two very useful properties. Firstly, it can account for missing values in the 
data, treating them as predicted values. Secondly, the Kalman filter enables estimates to be 
continually updated as new incoming data becomes available over time. 
 

2.4.4 Nonstationary time series and ARIMA models 
Many observed time series are not stationary. There are two types of nonstationarity, namely 
explosive stationarity and homogeneous stationarity. Explosive nonstationarity occurs when 
there is a root greater than unity for the characteristic polynomial ( ) 0=zφ . When one or more 
roots of ( ) 0=zφ are on the unit circle and all others are inside the unit circle, a weaker type of 
nonstationarity occurs, called homogeneous nonstationarity. For the homogeneous cases of 
nonstationarity, autoregressive integrated moving average (ARIMA) models are appropriate. 
 
Denote the (backward) difference operator B−=∇ 1 , where B is the backward shift operator. 
In other words, is defined as ∇
 

M
21

2
1

2 −−

−

+−=∇
−=∇

tttt

ttt

XXXX
XXX

    [2.30] 

 
Definition 2.11  is an ARIMA{ }tX ( )qdp ,,  process if there is a nonnegative integer d such 
that the process { }t

d X∇  is a causal ARMA ( )qp,  process. 
 
It is clear from the definition of ∇  that { }t

d X∇  being a stationary ARMA process implies 
that {  is homogeneously nonstationary. Therefore, ARIMA processes are applicable in the 
case of homogeneous nonstationary time series. 

}tX

 
 
Order estimation for ARIMA models 
 
We can roughly deduce the number of differences d required by consideration of the ACFs 
and PACFs of the original process and its d-differenced processes. Also, the presence of one 
or more unit roots of the characteristic polynomial of an autoregressive process indicates 
further differencing is required, while the presence of one or more unit roots of the 
characteristic polynomial of a moving average process indicates the process has been 
overdifferenced. Our approach is to select d to be the minimum non-negative integer required 
to achieve stationarity (i.e. no unit roots). 
 

2.5 Seasonal ARIMA time series models 
Many environmental time series involve a seasonal component. Seasonal ARIMA models 
involve a further differencing to account for a seasonal component of period s. Define the 
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seasonal difference operator . The definition of a seasonal autoregressive 
integrated moving average (SARIMA) process is as follows: 

s
s B−=∇ 1

 
Definition 2.12  is a SARIMA{ }tX ( ) ( )sQDPqdp ,,,, ×  process with period s if there are 
nonnegative integers  such that the process Dd , { } { }t

D
s

d
t XY ∇∇=  is an ARMA process 

defined by 
 

( ) ( ) ( ) ( ) t
s

t
s BBYBB εθφ Θ=Φ ,    [2.31] 

 

where { } ( )2,0~ σε WNt , , ,  and 

 

( ) ∑
=

−=
p

j

p
p zz

1
1 φφ ( ) ∑

=

Φ−=Φ
P

j

j
j zz

1
1 ( ) ∑

=

+=
q

j

j
j zz

1
1 θθ

( ) ∑
=

Θ+=Θ
Q

j

j
j zz

1
1 .

In the definition, p, d and q are nonseasonal parameters while P, D and Q are seasonal 
parameters. The time series {  can be nonstationary either nonseasonally or seasonally. 
Monthly time series data is generally seasonally nonstationary only. 

}tX

 
Order selection for SARIMA processes 
Ozaki’s (1977) adjusted AIC criterion is set out in Hipel and McLeod (1994, p.434) as: 
 

( )( ) (( )QPqpnSL
n
n

++++′−
′

= 2/,ln2AIC ββ ) ,  [2.32] 

 
where . The adjusted AICc criterion is based on the adjusted AIC criterion as 
follows: 

sDdnn −−=′
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          [2.33] 
 

2.6 Transfer function models 
When analyzing a time series, there maybe interest in incorporating other independent time 
series into the model. For example, fishing effort, environmental variables and biological data 
might help to describe a catch time series for a fishery. Transfer function (TFN) models, 
equivalently known as SARIMAX models, are used for this purpose. They resemble 
regression models, for example, an ARMAX model would be written 
 

( ) ( ) t

k

i
itit BXYB εθδφ =⎟

⎠

⎞
⎜
⎝

⎛ − ∑
=1

,   [2.34] 

 
where  is the dependent time series and { }tY { }k

iitX 1=  are the independent time series. 
( kii ,,1K= )δ  are the transfer function coefficients. 
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2.6.1 Testing the significance of the transfer function coefficients 
Similar to regression, it is important to know which independent variables are significant in a 
time series model. They can be tested as follows, since the parameters of the ARIMA process 
and the transfer function coefficients are asymptotically uncorrelated. Let W be the filtered 
matrix of the covariate matrix X according to the ARIMA process. We define W 
mathematically. The model is 
 

ZXY += δ ,      [2.35] 
 
where Y is the observed data, δ  is the vector of regression coefficients and Z is an 
unobserved ARIMA process with ARIMA parameters. Define G to be the linear 
transformation (i.e. filter) such that 
 

εδ += GXGY ,     [2.36] 
 

where ( )2,0~ σε WN=GZ . Then we define GXW = . G can be expressed in Splus as 
 

( ) ( ) pred$,arima.filt -$filt ,arima.filt modeldatamodeldata . 
 
Then the variance-covariance matrix of the transfer function coefficients is given by  
 

( ) ( 1TWWH −
== 2cov σδ ) .    [2.37] 

 
The standard errors of the transfer function coefficients are thus the square roots of the 
diagonal elements of H. A t-test may then be applied to each transfer function coefficient. 
 

2.7 Multivariate ARIMA models 
In certain circumstances, a set of time series variables cannot be described as independent 
predictors of a given time series. They may instead be correlated. We are no longer interested 
in a single parameter  that describes the predictor capacity of the variables, rather a 
variance-covariance matrix describing the relationship among all the variables. For this 
situation, a multivariate analysis is required. We define what is meant by a multivariate 
ARIMA model. Let  

2σ

 
( )T

tkttt ZZZ ,,, 21 K=Z  
 
be a vector of k time series, where the vector of means for  is given by tZ
 

( )T
kµ µµµ ,,, 21 K= . 

 
Then a k-dimensional ARMA  process can be written as ( qp, )
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where  is the ith parameter matrix of order iΦ kk ×  for pi ,,2,1 K= ,  is the ith parameter 
matrix of order  for , and 

iΘ
kk × qi ,,2,1 K= ( )∆,0~ NIDtε . Stationarity and invertibility 

conditions require that the zeros of the determinant equations ( ) 0=BΦ  and ( ) 0=BΘ , 
respectively, must lie outside the unit complex circle. 
 
The multivariate ARIMA model given by [2.37] is very general. There is no set model 
building technique, nor is there a general estimation procedure for such a model. Moreover, 
the number of parameters that are required to be estimated increases exponentially with 
respect to the number of time series included in the model. Therefore, simpler multivariate 
models such as transfer function noise (TFN) models and contemporaneous ARMA 
(CARMA) models are used. TFN models require that the  and  matrices are lower 
diagonal for all i. That is, variable i can only be described in terms of present and previous 
values of itself and the other 

iΦ iΘ

( 1,1 )−iK  time series variables and associated errors. CARMA 
models are even more restrictive, by requiring that all  and  are diagonal. That is, 
variable i can only be described by previous values of itself and its errors. These models can 
be extended to include integrated and seasonal terms. The study of interest in this project will 
use contemporaneous seasonal ARIMA (CSARIMA) models to analyze Shark Bay tiger and 
king prawn catches and catch rates over the different areas. The main interest is in the 
contemporaneous variance-covariance matrix  of the innovations 

iΦ iΘ

∆ tε . 
 

2.8 Nonlinear time series models: the GARCH family 
For some series, linear time series models such as ARIMA seem inflexible. One reason is that 
the data is volatile. A reliable family of models that treats data with high kurtosis  is the 
generalized autoregressive conditional heteroscedasticity (GARCH) models. These are 
models of changing variance, which arose from economic circles (Engle 1982, Bollerslev 
1986). Suppose that  is a white noise process and is expressed as: 

( 3>> )

tu
 

ttt vhu = ,      [2.39] 
 
where  are independently and identically distributed with zero mean and unit variance. 
Then the GARCH specification is: 

tv
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The notation is ( )mrut ,GARCH~ , and a non-negativity condition 

mjri ji ,,10,,,10,0 KK =∀≥=∀≥≥ αδκ  is imposed. Stationarity of {  requires that  }tu
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If  is the residual series of a data series  fitted with an ARIMA model with fitted values 

, then the fitted ARIMA-GARCH
{ }tu ty

tŷ ( )mr,  model would be ttt huy +−ˆ . The GARCH 
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component has changed the fit of the data. In that sense, ARIMA-GARCH models can be 
considered nonlinear. However, ARIMA-GARCH models are reliable in the sense that the 
stationarity and invertibility conditions of the original data set may be verified. For the 
purposes of this project, we will consider only GARCH ( )1,1  components, which identify the 
major behaviour in volatility dynamics. We show that some finfish species exhibit volatile 
behaviour in the monthly catch time series. 
 

2.8.1 Testing for a GARCH process 
The main test that will be applied in this project is the McLeod-Li (1983) test for ARCH 
effects. If  is the autocorrelation at lag j for the square of the residuals jr̂ tε , then for L 
sufficiently large the statistic 
 

( )∑
= −

+=
L

j

j

jn
r

nnQ
1

2ˆ
2      [2.42] 

 
is asymptotically distributed  under the null hypothesis that the data is distributed linearly, 
where n is the number of data points and L is the number of lags (usually ). 

2
Lχ

20=L
 
Another test for ARCH disturbances is Engle’s (1982) LM test, which is based on the 2R  of 
an auxiliary regression, viz: 
 

t
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2
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2 ,    [2.43] 

 
where Mαα ,,0 K  are to be estimated, { }tu  is the observed white noise process, { }tυ  is a white 
noise process and uncorrelated with any of the other explanatory variables, and it is assumed 
that ( )8

tuE  exists. If  is a linear process, then  is asymptotically distributed . tu 2nR 2
Mχ

 

2.9 Summary of models used 
Given the wide variety of Western Australian fisheries tested, certain models are more 
appropriate than other models for prediction of catches. Statistical quality control charts were 
valid for the majority of the fisheries that were tested (see Chapter 3). Below is a brief 
description of the types of variables and models fitted for each fishery. 
 

2.9.1 Western rock lobster 
Univariate ARIMA models were fitted to the annually aggregated catch data (1965/66 to 
2001/02) for each of three zones A, B and C. Annual predictions from the puerulus 
collector/mortality nonlinear regression models are far superior to predictions from the 
ARIMA models, however ARIMA models may be of use if for some reason the puerulus data 
became unavailable in a particular zone.  
 
Of more interest were univariate ARIMAX models of seasonal whites/reds catches in zones B 
and C when puerulus collector information and management intervention variables were 
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included in the models. Proportions of whites to reds catches were studied, together with the 
effect the management intervention of 1993/94 had on the catch proportions.  
 
Univariate seasonal models were fitted and used as forecasts for the monthly data. Estimation 
of the nonlinear transfer function, including fishing effort, puerulus collector information and 
Beverton-Holt mortality functions, were of theoretical value. There was evidence that catches 
from zone C may follow a nonlinear process such as GARCH. 
 

2.9.2 Southern rock lobster 
A SARIMAX model with a transfer function involving an interaction of May catch rates from 
the central region of the northern South Australian fishing zone and the Southern Oscillation 
Index (SOI) was fitted to describe the monthly catches from 1975/76 to 2001/02. The 
residuals exhibited a change in variance from 1990 onwards, indicating a SARIMAX model 
with two levels of variance would be superior. The complication arising from the estimation 
process left such an analysis outside the scope of this project. 
 

2.9.3 Shark Bay prawns 
A multivariate SARIMA approach to the prediction of the monthly catches from the seven 
main fishing areas of Shark Bay proved most useful. The predictions of the univariate 
SARIMA models for each area were comparable to more complicated age-structured seasonal 
models (Hall, 2000). Catches from neighbouring fishing areas were shown to be 
contemporaneously correlated, however, so a contemporaneous multivariate SARIMA 
approach was used. The correlation matrix revealed the lower western fishing areas (G1+G2, 
G3) comprised a separate sub-fishery from the rest of the fishery in terms of catch dynamics. 
 

2.9.4 Finfish 
Univariate SARIMA models were fitted to monthly catches for at least 12 finfish fisheries to 
ascertain the seasonal and nonseasonal behaviour of the fisheries. For the highly seasonal 
Australian herring and West Australian salmon fisheries, where there are high catches for a 
couple months of the year and very little catch in between, the low monthly catches needed to 
be aggregated in order for the SARIMA models to adequately fit the data. For at least 5 
finfish fisheries, interactions involving monthly catch rates and environmental factors were 
successfully used in a nonlinear regression model to predict annual catches. These estimates 
were then used as annual transfer functions to improve the seasonal ARIMA models 
predicting monthly catches. Catches from three finfish fisheries were found to possess volatile 
behaviour from month to month. These fisheries were fitted using GARCH models. The 
forecasts were improved for two of these fisheries, and the conditional variance was improved 
for the three finfish fisheries. 
 
For twelve finfish fisheries, the catch and fishing effort data was analyzed on the south coast 
region and the west coast region. SARIMA models were fitted to the data. It was found that 
the SARIMA model orders for most of the 12 fisheries on the west coast were consistent, and 
that the fishing effort data was a significant factor for explaining the catches when fitting the 
appropriate SARIMAX model. On the other hand, the behaviour of the catch data was more 
erratic off the south coast, and fishing effort was rarely significant in determining the south 
coast catches. 
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A time-delay linear regression model was used between mean monthly commercial Swan 
River tailor catch rates and mean juvenile Point Walter catch rates lagged approximately two 
years. There were six years of data used in the model. With the exception of an outlier, this 
relationship proved to be highly significant. The Point Walter juvenile tailor index was used 
as a transfer function in a SARIMAX model predicting monthly commercial Swan River 
tailor catches. There were significant correlations in the catch data from one month to the 
next, and from one year to the next. The transfer function component was significant. Juvenile 
catch rate indices from other areas were compared with the Point Walter index using linear 
regression. Eight years of annual commercial Perth sea catches in the immediate vicinity of 
the Swan River were compared with the mean monthly commercial Swan River catch rates at 
the same time using nonlinear regression. 
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3.0 An exploratory study on statistical control charting for 
Western Australian fisheries management 

 
M. D. Craine 
WA Marine Research Laboratories, Western Australia 

3.1 Abstract 
A statistical quality control charting approach to stock assessment is investigated for many of 
the main Western Australian commercial species, including western rock lobster (Panulirus 
cygnus), Shark Bay and Exmouth Gulf tiger and king prawns, Australian herring, western 
Australian salmon, Spanish mackerel, pilchards, westralian dhufish and King George whiting. 
The control charting approach is also particularly useful for the more minor fisheries where 
there is limited biological knowledge. There are at least 25 years of annual catch and fishing 
effort data available for analysis for a wide range of Western Australian fisheries. A set of 
monitoring rules, designed to alert management to control aspects, is adapted to suit fisheries 
data. Acceptable catch ranges are calculated based on the history of catches in the fisheries. 
The quality control methods in this paper are closely aligned with the theory of control 
charting, placing emphasis on consistency and rigour across the fisheries. The analysis is 
compared with similar management techniques used for Western Australian fisheries in the 
past. 

3.2 Introduction 
Stock assessments for many fisheries rely only on catch range or catch rate forecasts. For 
some fisheries, there is insufficient research to enable more advanced modelling procedures 
such as age-structured models or yield per recruit models. Several reasons for this include 
lack of biological data, environmental effects and/or recruitment information on the fishery. 
For these situations, the more phenomenological models such as time series analysis or 
statistical quality control charting may explain the dynamics of the fishery. These simpler 
models directly identify trends, cycles and other repeated behaviour based on the given data 
rather than the biological estimates. When forecasting catches or catch-per-unit-effort 
(CPUE), the simpler models prove to be more reliable than the complex models (Noakes et al. 
1990; Stocker and Noakes 1988; Roff 1983). We show that statistical quality control analysis 
utilizing easily obtainable Western Australian fisheries data such as catch and fishing effort 
provides quantitative insight into, and useful management advice for, many of the key 
Western Australian fisheries. Statistical quality control charts have been proven to enhance 
stock assessment methods (Okpanefe 1988). The research in Okpanefe (1988) has shown that 
quality control charting is a useful direct tool for monitoring average fish size and thus the 
status of some fisheries in Nigeria. 
 
This paper is intended to provide an exploratory account of statistical quality control charting 
of catches and CPUE for a wide range of fisheries of Western Australia. The standard quality 
control rules for “alert” are investigated in a fisheries setting, and the upper and lower control 
and warning limits are adapted to suit fisheries data. Acceptable catch ranges are calculated to 
gauge sustainability limits on each fishery. The interpretation of a fishery’s status is enhanced 
by comparing quality control charts for the catch and CPUE series. The effects of 
management intervention on the data in some fisheries through quality control charting are 
also discussed.  
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3.3 Methods 
Statistical quality control charts of the annual catch and annual CPUE were calculated for a 
variety of commercial Western Australian fisheries. Catch and CPUE data range from 
1964/65 to 2000/01 for the three fishing zones of western rock lobster (Panulirus cygnus) and 
1975/76 to 2001/02 for the Esperance southern rock lobster (Jasus edwardsii) fishery defined 
between the boundaries  and . For the Shark Bay and Exmouth Gulf, data is 
available from 1971 to 2001, however the 1981 data for Shark Bay is missing. Catch and 
CPUE data is available from July 1975 to June 2000 for many finfish fisheries. Included in 
this paper are Australian herring (Arripis georgiana), western Australian salmon (Arripis 
truttacea), Spanish mackerel (Scomberomorus commerson), pilchards (Sardinops sagax), 
westralian dhufish (Glaucosoma hebraicum), pink snapper (Chrysophrys aurataus), King 
George whiting (Sillaginodes punctata), tailor (Pomatomus saltatrix), baldchin groper 
(Choerodon rubescens), yellow-eye mullet (Aldrichetta forsteri) and sea mullet (Mugil 
cephalus). The finfish fisheries are year-round fisheries. The catch and fishing effort data is 
selected for each finfish species based on a financial year or a calendar year, depending on the 
seasonality of the fishery.  

E120° E125°

 
The upper and lower warning limits were set at stx df 10.0,+  and ( )0,max 10.0, stx df− , where 
x  and s are the sample mean and standard deviation, respectively, and df is the number of 
data points less one. The control limits were calculated from the warning limits and set at 

stx df 02.0,+  and ( )0,max 02.0, stx df− . Variances of the series are assumed to be constant. 
 
Based on a modified Shewart technique, the following rules are used to identify whether the 
process is out of control. When any of the following are observed, the process may be 
considered out of control: 
A1: A point lies outside the control limits. 
A2: Two consecutive points lie outside the warning limits. 
A3: Seven consecutive points occur in either an upward or downward trend. 
A4: Seven consecutive points occur on the same side of the centreline. 
 
The control limits were calculated as 96% confidence intervals by setting the probability that 
a point falls outside the control limits to the probability of two consecutive points falling 
outside the 80% warning limits. A3 and A4 were set to seven points since fisheries time series 
are generally autocorrelated. If the observations were independent, the number of points 
required to trigger a warning would be five, since  becomes smaller than 0.04 when N−2

5=N . The property of autocorrelation increases the conditional probabilities of consecutive 
points occurring in a trend or occurring on the same side of the centerline. 
 
To calculate the acceptable catch range, we allow isolated points outside the warning limits, 
but inside the control limits. The sustainable catch period in a given fishery is determined 
subjectively as the catch range for which the fishery is considered sustainable over the long 
term. The sustainable catch period is maintained and affected by management intervention 
measures. For the purpose of this research, we assume that the sustainable catch period is the 
period available for the data set. The acceptable catch range is then given by 
( ) %100limits control and  warningbetweenpoint  isolated ofy probabilit1 ×−  confidence 
intervals. Given that a point is between the warning and control limits ( )16.0=p , the next 
point must be within the warning limits ( )8.0=p . Thus, the acceptable catch range is defined 
by the 87.2% confidence intervals for the sustainable catch period. 
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3.4 Results 
Table 3.1 presents sample means, warning limits and control limits for the fisheries studied. 
An analysis of the control charts is studied below for each fishery. 
 
Western rock lobster – Zone A 
The 1998/99 catch exceeded the upper control limit. The 1998/99 and 1999/00 CPUEs 
exceeded the warning limits. Therefore, the catch for the 1998/99 season is not considered 
unreasonably high since there is an indication that abundance at that time was quite high. The 
implementation of the 1993/94 management package has not decreased catches in zone A, 
however the CPUE has been above the centreline for longer than the last seven seasons. The 
most likely interpretation of this result is that in this fishing zone there may have been 
competition among pots before 1993/94. 
 
Western rock lobster – Zone B 
Since the period from 1964/65 to 1976/77, catches have dramatically increased. Two 
consecutive catches were above the warning limits (1977/78 to 1978/79), commencing a 
consecutive seven point run above the mean. By contrast, the CPUEs have not increased. This 
points towards increasing fishing pressure over time, which may warrant a restraint in zone B 
in the future, such as a further pot reduction. 
 
Western rock lobster – Zone C 
Similarly to zone B, catches prior to 1976/77 were mostly below average. The catches during 
the period from 1977/78 to 1984/85 were above the overall mean, indicating the fishery may 
have experienced a period of good recruitment and/or higher exploitation. The 1999/00 catch 
was exceptionally high, significantly exceeding the upper control limit. Since the CPUE for 
that season also exceeded the upper control limit, the catch was most likely due to 
improvement in recruitment rather than the stock being subjected to increased exploitation.  
 
Esperance southern rock lobster 
Catches were below average from 1975/76 to 1990/91, however CPUE has not increased 
since this low-catch period. CPUEs exceeded the upper warning limit for three consecutive 
seasons (1991/92 to 1993/94), followed by a similar scenario for catches from 1993/94 to 
1995/96. Increases in live storage capacity most likely led to the increased interest in the 
Esperance southern rock lobster fishery. Catches peaked above the upper control limit in 
1998/99: a lower than expected CPUE for that season indicates the possibility of increased 
fishing pressure for that season. Catch rates have since declined to record low levels for the 
27-year period, however catches remain average.  
 
Shark Bay prawns 
CPUEs were not included in the analysis, since it is very difficult to split the fishing effort 
over the multi-targeted fishery. Shark Bay tiger prawn catches were below average throughout 
the 1980s, however the king prawn fishery profited during that period. Shortly after, in 1990, 
the king prawn fishery suffered one of its worst years of catches, dropping below the lower 
control limit. In the same year, management implemented a buy-back of 8 vessels out of a 
prawn trawl fleet of 35 to reduce fishing effort. The tiger fishery seemed unsustainable 
throughout the 1970s and more recently from 1994 to 2000, however several complications 
arising from the use of GPS and year-to-year management changes make a conclusion 
regarding the state of the fishery difficult. 
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Exmouth Gulf prawns 
CPUEs were not included in the analysis for the same reason as for Shark Bay prawns. The 
Exmouth Gulf prawn fishery is notoriously volatile so it is difficult to infer much from the 
control chart analysis. The only period where either fishery looked to be at dangerously low 
levels was from 1982 to 1984 when the tigers recorded very low catches and recruitment 
overfishing has been identified as the cause. Fishers appeared to be targeting tigers more than 
the kings in the 1970s. Management policies have implemented a shift in emphasis away from 
tiger catches and towards king catches since 1980. 
 
Australian herring 
Catches and CPUEs have shown a general increase from 1975/76 to 1991/92. The catch and 
CPUE for 1990/91 exceeded the respective upper control limits. Three out of four consecutive 
catches from 1988/89 to 1991/92 exceeded the upper warning limit. There was little concern 
from a management perspective, however, since environmental or biological effects most 
likely gave rise to high catch rates and thus attributed to the unusually high catches. The series 
was otherwise in control. 
 
Western Australian salmon 
While the high catch in 1983/84 was accompanied by an unusually high CPUE in the same 
year, this was not the case for the record catch in 1994/95. However, salmon stocks do not 
seem to have suffered since 1994/95. 
 
Spanish mackerel 
Catches and CPUE have experienced an upward trend from 1976 to the present day. The 
record catch in 1997 was accompanied by a series of three consecutive CPUE years (1997 to 
1999) exceeding the upper warning limit. While the initial increase in CPUE and 
correspondingly catches from 1991 was probably a result of GPS technology, the recent high 
catches may have been recruitment driven or the result of coverage of new fishing grounds.  
 
Pilchards 
Catches dramatically increased during the 1970s and early 1980s, but then slumped from late 
1998 into 1999 and 2000 due to mass mortality probably caused by herpesvirus (Gaughan et 
al. 2000). The record catch in 1996 was more a result of high abundance than any presence of 
fishing pressure, since the CPUE exceeded the upper warning level from 1995 to 1997. 
 
Westralian dhufish 
The catch and CPUE series were in control with the exception of a particularly high catch in 
1986 but only an average CPUE. Thus, the 1986 catch level is considered unsustainable. 
 
Pink snapper 
The series were in control except for a record high catch in 1985, which can be partially 
explained by an above average CPUE in the same year. 
 
King George whiting 
CPUEs were particularly low from 1989 to 1997. However, the fishery made a remarkable 
recovery to post a record catch in 1999, with a corresponding record CPUE above the upper 
control limit signifying high abundance. King George whiting catches have otherwise 
remained in control. 
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Tailor 
Tailor stock appeared to suffer in 1986, but catches have remained above average since 1992. 
The CPUE has remained in control except for 1986. More stringent management of the 
recreational fishing sector, which is larger in volume than the commercial sector, may have 
led to the higher than average commercial catches more recently. For example, the 1999 and 
2000 catches both exceeded the upper warning limit, pushed up by the high CPUEs which 
were near the upper warning limit. 
 
Baldchin groper 
The baldchin groper fishery has experienced an increasing trend in catch through the 1970s 
and 1980s. Two consecutive seasons (1987/88 to 1988/89) of catches exceeded the upper 
warning limit. This was not accompanied by an increase in catch rates, so these catches were 
likely to be unsustainable. Since this period, catches of baldchin groper have been average. 
 
Yellow-eye mullet 
Catches in yellow-eye mullet have experienced a decrease since the mid-1970s. Catches have 
been below average from 1990. Stocks appear to be nearing a dangerously low level, with the 
CPUEs from 2000 to 2002 reported below the lower warning limit for the fishery. 
 
Sea mullet 
The 1979/80 and 1980/81 reported catches exceeded the upper warning limit. CPUE exceeded 
the upper control limit in 1982/83. Therefore, sea mullet was most likely highly abundant 
during this period. More recently, catches have been particularly low. Catch rates have held 
steady, however, indicating there is probably less demand for sea mullet in recent times. 

  

3.5 Discussion 
Acceptable catch range estimates for many fisheries have been estimated by calculating 80% 
confidence intervals about the historical mean of the double exponential smoothed data in the 
past. These estimates have been incorporated into the “State of the Fisheries Report” series 
since the 1990s. In some cases where there are trends in the fisheries data, 80% confidence 
intervals over the last 10 fishing seasons may best serve as the catch range estimate. Double 
exponential smoothing is known to be capable of forecasting data series with linear or sub-
linear trends. Exponentially weighted moving average method (and consequently double 
exponential smoothing) is a useful approximate tool for independently, identically distributed 
data even when the parameter estimates are suboptimal. However, Muth (1960) pointed out 
that (single) exponential smoothing will only provide rational forecasts of future data if the 
data series follows an  process. Similarly, we show in Appendix A that double 
exponential smoothing can provide rational forecasts only if the data series is an 

 process. Such a process in fisheries exists but is scarce. As shown in 
Appendix A, a double exponential smoothing of the data is a sub-class of  
models. Optimizing the parameter for the double exponential method is not a trivial 
procedure. 

(0,1,1ARIMA )

)( 2,2,0ARIMA
( )2,2,0ARIMA

 
One serious limitation of exponential or double exponential smoothing is the possibility of 
false alarm signals in the presence of autocorrelated data. Exponential moving average 
methods and CUSUM techniques have been shown to be sensitive to autocorrelated data 
(Bagshaw 1974; Bagshaw and Johnson 1975; Harris and Ross 1991; Alwan 1992; Woodall 
and Faltin 1993). The results in this paper show that the vast majority of annual fisheries 
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catch data is autocorrelated. Therefore, the author suggests either calculating confidence 
intervals of the raw data series in the form of upper and lower warning limits to be used as the 
catch range estimate or, preferably, using a more sophisticated method such as ARMA 
charting (Jiang et al. 2000) to allow for autocorrelation. 
 
In the present day, more reliable one-step ahead catch and CPUE forecasts may be estimated 
by maximum likelihood by fitting an ( )p,d,qARIMA  model, where p is the number of 
autoregressive parameters, d is the number of differences required to achieve stationarity and 
q is the number of moving average parameters. p and q are chosen by Hurvich and Tsai’s 
(1989) small sample bias-corrected version of Akaike’s (1974) AIC criterion. Exogenous 
variables such as recruitment and/or environmental information can be included in the form of 
transfer function(s) if there are significant relationships. Rarely would a series require 2 
differences as the double exponential smoothing method suggests. Table 3.2 is a summary of 
the optimal ARIMA model for each fishery which has been analyzed by quality control 
charting. The AICc statistic has been included for the optimal ARIMA model, the optimal 
exponential smoothing, and the optimal double exponential smoothing. The only fishery 
where double exponential smoothing is superior to ARIMA is sea mullet, where there is a 
strong downward trend in the catch data.  
 
Technological advances have changed the effectiveness of the fishing effort over the long 
term. However, there is no need to scale the nominal fishing effort data to effective fishing 
effort when calculating quality control charts. The technological knowledge of fishermen 
combined with management regulatory measures generally match the state of the fishery, 
keeping the CPUE series stationary in most cases.  
 

3.6 Appendix A 
We show that a double exponential smoothing of a data series is a special case of an 

 process. The double exponential smoothing method described by Brown 
(1963, pp. 128-132) and Gilchrist (1976, pp.72-74) is as follows. Let {

( 2,2,0ARIMA )
}tx~  be the (single) 

exponential smoothing of a data series { }tx , and ( ){ }2~
tx  be the double exponential smoothing 

of . These series are defined for each t: { }tx
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( ) ( ) ( ).~~1~

~1~
2
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2
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    (1) 

 
Then the 1-step ahead forecast is given by 
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Thus, we can write 
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where tε  is the process error at time t. Lagging (3) one step and multiplying by α  gives 
 

( ) ( )
1

2
221

~~1 −−−− +−+= tttt xxx αεαα .   (4) 
 
Subtracting (4) from (3), and using the second equation from (1), 
 

( ) .~1~2 1211 −−−− −++−=− tttttt xxxx αεεαα   (5) 
 
Replacing 2

~
−tx  using the first equation from (1) gives 

 

111
1~1

−−− −+⎟
⎠
⎞

⎜
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⎛+⎟

⎠
⎞

⎜
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⎛ −

= ttttt xxx αεε
αα

α .  (6) 

 
Again lagging (5) by one step and multiplying by α , 
 

( ) 2
2

1221
~1 −−−−− −++−= ttttt xxx εααεαα .  (7) 

 
Subtracting (6) from (5) gives the resulting equation: 
 

2
2

121 22 −−−− +−+−= tttttt xxx εααεε ,  (8) 
 
which is an  process. ( 2,2,0ARIMA )

 

3.7 Further Developments 
An ARMA(2,2) statistical quality control charting method has since been devised to account 
for the autocorrelation properties of fisheries catch data described in this chapter. The method 
is a generalization of the exponentially weighted moving average technique adjusted for catch 
series with the ARMA(1,1) property, and is defined as follows: 
 

102211 −−− −++= ttttt XXZZZ θθφφ , 
 
where 
 
{ tX } is the original data, {  is the monitoring process and }tZ 210 1 φφθθ −−+= . These 
parameters are estimated by fitting an ARMA model to the original time series. The 
stationarity and invertibility conditions of the original process can therefore be checked. The 
ARMA(2,2) method is to be implemented to estimate acceptable catch ranges for many 
fisheries in WA. The range is calculated based on 87.2% confidence intervals, as outlined 
above, but adjusted for autocorrelation in the data. The method of adjustment involves an 
estimate of the variation of the observations compared with the variation of the predictions for 
a suitably relevant time period for each fishery. Where there are long-term trends in the catch 
data and the fishing effort correlates with the catches, a transfer function technique (see 
section 2.6) can be used to estimate an acceptable catch range based on historical catch and 
fishing effort data given an appropriate level of fishing effort. 
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Table 3.1. Table of annual sample mean catches (tonnes) and CPUE (kg/pot lift for lobsters, 
kg/hour for prawns, kg/boat day for finfish), control limits and warning limits. 
 
 Series x  uc  lc  uw  lw  

Catch 1651 1946 1357 1841 1461 Western rock lobster –  
Zone A CPUE 1.31 1.66 0.96 1.53 1.08 

Catch 3351 4839 1863 4310 2393 Western rock lobster –  
Zone B CPUE 0.92 1.18 0.66 1.09 0.76 

Catch 4949 7381 2518 6516 3383 Western rock lobster –  
Zone C CPUE 0.95 1.35 0.55 1.21 0.70 

Catch 33.6 78.3 0.0 62.2 4.9 Esperance southern rock 
lobster CPUE 0.82 1.20 0.44 1.06 0.58 
Shark bay prawn – tiger Catch 491 874 108 736 245 
Shark Bay prawn – king Catch 1309 1837 782 1648 971 
Exmouth Gulf prawn – tiger Catch 442 971 0 781 102 
Exmouth Gulf prawn – king Catch 364 567 162 494 234 

Catch 938 1464 412 1274 601 Australian herring 
CPUE 143 220 66 192 94 
Catch 1985 3585 385 3008 961 Western Australian salmon 
CPUE 756 1343 169 1131 381 
Catch 314 618 10 508 119 Spanish mackerel 
CPUE 96 188 5 155 38 
Catch 4881 12494 0 9751 10 Pilchards 
CPUE 999 2156 0 1739 259 
Catch 197 274 120 246 148 Westralian dhufish 
CPUE 19 26 13 23 15 
Catch 825 1276 374 1114 536 Pink snapper 
CPUE 65 87 43 79 51 
Catch 37 69 4 57 16 King George whiting 
CPUE 9 15 3 13 5 
Catch 41 64 19 56 27 Tailor 
CPUE 14 19 9 17 11 
Catch 45 79 10 67 22 Baldchin groper 
CPUE 8 12 5 11 6 
Catch 342 782 0 623 61 Yellow-eye mullet 
CPUE 47 77 16 66 27 
Catch 506 748 265 661 352 Sea mullet 
CPUE 47 58 37 54 40 
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Table 3.2. Optimal ARIMA models for catch data. 
 
Species ARIMA model AICc 

(optimal model) 
AICc 

(exp smooth) 
AICc 

(double exp 
smooth) 

W.r.lobster (Zone A) ( )1,0,0  4.87−  5.75−  5.76−  
W.r.lobster (Zone B) ( )1,0,1  6.41−  8.38−  5.38−  
W.r.lobster (Zone C) ( )1,0,1  2.26−  9.13−  4.3−  
S.r.lobster (Esperance) ( )1,0,1  18.2 19.9 26.7 
SB tiger prawn ( )1,0,1  11.9 17.6 22.3 
SB king prawn ( )0,0,1  1.22−  2.17−  8.14−  
EG tiger prawn ( )0,0,1  43.4 44.8 54.2 
EG king prawn ( )1,0,0  09.5−  27.1−  2.68 
A. Herring ( )0,0,1  26.4−  0.70 10.0−  
WA Salmon ( )0,0,1  17.0 20.6 22.2 
Sp. Mackerel ( )0,1,0  1.32 3.15 4.33 
Pilchards ( )0,1,0  19.3 20.9 25.6 
W. Dhufish ( )0,0,1  5.23−  7.19−  7.19−  
Pink Snapper ( )0,0,1  45.4−  16.0−  0.96 
KG Whiting ( )0,0,1  20.9 34.0 36.3 
Tailor ( )0,0,1  97.7−  50.3−  0.72 
Baldchin groper ( )0,0,1  47.1−  3.48 3.70 
Yellow-eye mullet ( )1,1,0  20.9 20.9 22.9 
Sea mullet ( )1,1,0  1.19−  1.19−  4.21−  
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Westralian dhufish 
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King George whiting 
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Sea mullet 
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4.0 Prediction of western rock lobster (Panulirus cygnus) 
monthly catches using seasonal ARIMA transfer 
function models with fishing effort and puerulus 
indices 

 
M. D. Craine, Y. W. Cheng, N. Caputi, C. F. Chubb 
WA Marine Research Laboratories, Department of Fisheries, Western Australia 
 

4.1 Abstract 
Time series methods are becoming increasingly popular for forecasting fisheries data. Four 
seasons (1996/97 to 1999/2000) of commercial western rock lobster monthly catches in each 
of three fishing zones are forecasted using seasonal ARIMA transfer function (SARIMAX) 
models based on historical data from 1976/77 to 1995/96. This paper suggests a general 
modelling procedure to treat nonlinear transfer components found in fisheries science theory. 
Piecewise-linear interpolations of the nonlinear catch-effort-puerulus (post-larval) settlement 
relationships are developed to easily validate the stationarity and invertibility conditions. Our 
results indicate that SARIMAX models describe the catch data well and give reliable 
predictions for each zone with the possible exception of zone C. The puerulus settlement and 
fishing effort variables are analyzed for significance in these time series models. The 
methodology developed in this paper is designed to provide an alternative for prediction of 
the likely range of future sustainable catches for fisheries management purposes, and will also 
be applicable to fisheries with limited biological data but a long time series of catch and 
fishing effort data.  
 

4.2 Introduction 
The western rock lobster (Panulirus cygnus) is the most valuable marine fishery in Australia 
comprising, on average, twenty percent of the total value of Australia’s total fisheries 
production. The 1999/2000 western rock lobster catch was a record, posting a landed catch of 
over 14,000 tonnes and a landed revenue of A$390 million. To ensure that fishing pressure on 
this valuable fishery does not significantly deplete breeding stock levels, as occurred during 
the late 1980’s, management adjusts fishing effort based on forecast catches (Chubb 2000). 
This ability to control annual catches is being further refined to keep breeding stocks within 
an acceptable range, above the biological reference point for this fishery of approximately 20-
25% of the virgin biomass level (Hall and Brown 2000). This methodology has been possible 
for the western rock lobster fishery due to the successful annual recruitment forecasting 
system for this stock (Caputi et al. 1995a, 1995b), but would be very useful for many other 
fisheries without such forecasting systems. The purpose of this research is to develop 
alternative catch forecasting models using time series methods for a wide range of fisheries, 
and compare the methodology against “biological” forecasting systems where they exist. 
  
There are three major zones in the fishery off the Western Australian coast (Figure 4.1). Zone 
A operates between Dongara and Kalbarri, and comprises fishing grounds adjacent to the 
offshore Abrolhos Islands. Zone B is situated to the north of latitude S, excluding that 
area of the fishery designated as zone A. Zone C extends south of latitude S to Cape 
Leeuwin. The fishing season since 1977/78 consists of 7.5 months, with the ‘whites’ fishing 

o30
o30
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season operating from mid-November to January and the ‘reds’ fishing season operating from 
February to June. These names relate to the colour of the exoskeleton of the same population 
of lobsters. The lobsters moult in November and the whites moult again in February, changing 
colour to red. The fishing season for zone A only operates during the red season from mid-
March to June. However, boats with a zone A licence are permitted to operate in zone B from 
November to mid-March. 
  
Seasonal catch and effort data dates back to the 1964/65 season, while puerulus (post-larval) 
settlement information has been collected since the early 1970’s. However, historical 
management changes to the fishing season in the past only feasibly allow the use of seasonal 
catch and effort data sets from the 1977/78 season onwards. The 1976/77 season of data is 
used for conditioning purposes only when modelling. 
  
Traditionally, linear regression models have been used to model catch predictions based on 
levels of puerulus settlement 3 to 4 years prior to the season (Phillips 1986, Caputi et al. 
1995b). Catch predictions for western rock lobster are made using variations of an annual log-
log puerulus-catch linear regression model (Caputi et al. 1995a, 1995b) defined by  
 
(1)  TTTT PbPbaC ε+++= −− 4433 loglogloglog , 
    
where T is time in years,  is the yearly catch data,  is the mean of puerulus settlement 
data obtained from six collectors,  and  are parameters to be estimated and 

TC TP

3b 4b Tε  are 
normally and independently distributed with mean zero and constant variance, that is, 

( )2,0~ σε NIDT . Advantages in favour of this model are that any software package will 
quickly find the regression coefficients and that it has been reasonably reliable for annual 
catch predictions. However, the Gauss-Markov assumption of independence of the residuals is 
violated for (1) when fitting the annual white season catch series, annual red season catch 
series or the disaggregated catch series of the combined white and red seasons for each zone. 
For example, the Durbin-Watson (1950, 1951) statistic for the zone C log-log linear 
regression model (Caputi et al. 1995a, 1995b) with 10 observations taken from the white 
season using puerulus settlement information from 1986/87 to 1995/96 was 3.292, which is 
very close to the tabulated value 303.34 =− ld  at a 5% significance level (Greene 1993, p. 
741). This result indicates that the residuals may be significantly negatively correlated for the 
annual white season regression model. A further problem with (1) is that the prediction 
estimates and confidence intervals of the predicted catches using log transformations are 
biased. The level of bias depends on the residual mean square error statistic. 
  
A second model of interest is a delay-difference model (Hall 1997, Walters et al. 1993, 
Sullivan 1992, Schnute 1985, Deriso 1980). Length-age, weight-age relationships for 
differing sexes of the western rock lobster are estimated from this detailed model. One of the 
main disadvantages of this model is that the estimation process is very complex and time-
consuming, involving at least 32 parameters (Sullivan 1992). It is also very difficult to 
estimate the standard errors associated with the estimated parameters. 
  
The focus of this paper is on the application of seasonal autoregressive integrated moving 
average transfer function noise (SARIMAX) models with annual puerulus settlement 
information and annual fishing effort to predict seasonal catch data, and to examine the effect 
of these variables in the model. Transfer function models (TFMs), otherwise known as 
ARIMAX models, are appropriate modelling methods where the variables or the error terms 
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under consideration are significantly serially correlated, since the models incorporate 
autoregressive and moving average terms (Box and Jenkins 1976). They can also handle time 
series with sub-exponential trends by the integrated process of differencing. The general form 
of these models is 
 
  NoiseDynamicsOutput += , 
 
where the dynamic component involves exogenous variables and the noise component is a 
seasonal ARIMA model in this paper. 
 

4.3 Methods 
The models used in this paper are defined as follows 
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where  is the monthly catch data over tiC CB,A,=i  zones, (2) is said to be a SARIMA 
model and (3) is a SARIMAX model. The left-hand dynamical component of (3) includes a 
continuous function  of the annual effort variables  and the annual puerulus settlement 
variables  calculated as a Winsorized mean (Kendall and Stuart p. 544, Phillips et al. 2000 
chap. 1) of six collectors over respective zones. 

if tiE

tiP
( )BEiω  and ( )BPiω  are finite polynomials of 

the backward difference operator ( ) 1−•=• ttB , and ( )BEiδ  and ( )BPiδ  are finite polynomials 
of B with identity constant term I. The seasonal ARIMA components in (2) and (3) are 
defined in terms of finite nonseasonal and seasonal autoregressive polynomials ( ) ( )is

ii BB Φ,φ  
of degrees  and , respectively, and finite nonseasonal and seasonal moving average 
polynomials 

ir iR
( ) ( )is

ii BB Θ,θ  of degrees  and , respectively, where the length of the season 
 months for zone A and 

iz iZ
4A =s 8CB == ss  months for zones B and C.  and 

 are nonseasonal and seasonal differencing operators, respectively. 
BI −=∇

is
s BI −=∇ tiε  and tiε~  are 

white noise terms with mean zero and constant variance. The seasonal ARIMA modelling 
notation used in this paper is thus SARIMA ( ) ( )

isiiiiii ZDRzdr ,,,, × .  
  
For example, a SARIMA  filter is later shown to be optimal for zone C. We 
will assume the catch for year T depends on effort in year T and a linear combination of the 
puerulus settlement information at annual time lags 

( ) ( 82,1,40,0,3 × )

( )3−T  and ( )4−T . Dropping the C=i  
subscript, the SARIMAX model is written and estimated in the form 
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For the purposes of this paper, we put all ( ) IBi =•δ  since causality is assumed for biological 
reasons. In other words, we assume that the catch at a given time is not affected by fishing 
effort nor puerulus settlement levels in future time. 
  
To establish the significance of the effort and puerulus settlement variables in (3), consider 
the SARIMA models in (2) which are fitted as follows 
 
  ( ) ( ) ( ) ti

s
iiti

D
s

ds
ii

i

i

i BBCBB εθφ Θ=∇∇Φ)( , 
     
and then enter the puerulus settlement information and fishing effort into (3). The procedure 
we follow is to select and then fix the order of model (2) for each zone, and use the same 
respective model order to fit (3). The significance of the annual effort and puerulus settlement 
variables can be thus identified for each model by carrying out asymptotic t tests based on the 
information matrices. Orders of differencing, autoregression and moving average components 
for (2) are chosen by minimization of the AICc (Hurvich and Tsai 1989), subject to the model 
satisfying the stationarity and invertibility conditions. The AICc is a bias-corrected version of 
Akaike’s (1974) AIC statistic for small samples. Stationarity and invertibility conditions are 
re-checked throughout the analyses of the models defined by (3). The AIC and AICc statistics 
depend on the actual size of the observations, so to ascertain approximately correct 
penalization factors for these statistics, we scale the catch data by dividing through by its 
mean. Selection of the dynamic characteristic polynomials is based on biological criteria. In 
this respect, it is assumed that only the effort in year T determines the catch in year T and, for 
biological reasons, the puerulus settlement information only in years  and ( 3−T ) ( )4−T  
affect the catch in year T for all models analysed. These are the time lags which have been 
shown to affect the catch (Caputi et al. 1995b). 
   
There are many model derivations for puerulus-catch relationships in fisheries science. 
Besides the log-log linear model (1) (Caputi et al. 1995a, 1995b), a traditional model that 
appears in fisheries literature (Phillips et al. 2001) is the power curve 
 
(4)  ( ) T

b
TT PaC η+= −
*

3 , 
 
where a and b are constants to be estimated, ( )2,0~ ηση NT  and  is a linear combination 
of the lagged puerulus index data , i.e. 

*
3−TP

43  and −− TT PP
 
(5)  , ( ) 43

*
3 1 −−− −+= TTT PPP ππ

 
with 10 ≤≤ π . Models (1) and (4) assume that the catch continues to increase as the pueruli 
rise in numbers. Such an assumption is often not justified because the food supply is limited 
for juveniles and possibly older lobsters. Neither of these models has a biological derivation, 
and the estimation of π  for the power curve is heavily biased since the estimated π  is often 
negative unless constrained by a trigonometric transformation (Phillips et al. 2001, chap. 1). 
One biologically derived model is the Ricker-related curve (Ricker 1975, Phillips et al. 2001), 
viz. 
 
(6)  ( ) TTTT PbPaC η~~exp~ *

3
*

3 +−= −− , 
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where a~  and b~  are parameters to be estimated,  is defined in (5) and *
3−TP ( )2

~,0~~
ηση NT . For 

 beyond a certain point, the expected catch decreases with increasing puerulus settlements. 
However, current levels of puerulus settlement and catches have shown no indication that this 
point has been reached. 

*
•P

  
We use the Beverton-Holt (1957) two-parameter density dependent mortality curve to define 
a catch-puerulus settlement curve 
 

(7)  PT
T

T
T P

lPC ε
β

+
+

=
−

−
*

3
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where l and β  are parameters to be estimated and ( )2,0~ PPT N σε . (7) is used in this paper on 
the empirical basis that the western rock lobster population exhibits compensatory mortality 
behaviour and that the biological derivation of (7) is straightforward. Other assumptions in (7) 
include: i) the expected puerulus settlement observations are proportional to the actual level of 
puerulus settlement for a given year and ii) the expected catch is proportional to the number 
of individuals present. While these assumptions are somewhat reasonable, a further 
assumption for the models in (2) and consequently (3) is that catches are linearly related to 
historical catches according to the specifications of the SARIMA models. This linearity 
assumption must be kept in mind throughout the analyses for respective zones. 
  
An approximate catchability function that has been used (Phillips et al. 2001) to adjust (7) for 
fishing effort is given by 
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where ρ  and k are parameters to be estimated and E  is the average annual effort. (8) is used 
because of the difficulty of very high correlations among parameters for the theoretical 
catchability function given by DeLury (1947, 1951; see Ricker 1975, pp. 153-154), viz. 
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where ζ  is a proportionality constant to be estimated and q is a catchability parameter to be 
estimated. These problems provide further valid reasons for constructing linear interpolations 
of the fitted curves. The catch-effort-puerulus settlement model is thus constructed from (7) 
and (8) following the method of DeLury, viz. 
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where ρα l= ,  is defined in (5) and *

3−TP ( )2,0~ PETPE N σε . 
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A nonlinear regression is performed to estimate the parameters πβα ,,  and k. We then 
construct a piecewise linear interpolation of the first term in (9) and rescale the puerulus 
settlement and fishing effort variables to achieve approximate linearity. Thus, the stationarity 
and invertibility conditions are easily checked so that a linear TFM software package can be 
used. The stationarity and invertibility conditions must be met to obtain reliable forecasts.  
   
Our piecewise-linear interpolation method is as follows. Partition the in-sample domain of the 
puerulus settlement variable  into a finite number *

•P p~  of subintervals. Then the set of 
endpoints of these subintervals can be written in the form { }pp xxxS ~21~ ,,,,0 K= , where 

. Define piecewise-linear approximations of the projected puerulus-catch 
curve for each fixed effort value in the data set, where  is the set of abscissae of points 
lying on each curve. For fixed 

pxxx ~210 <<<< K

pS ~

p~  and fixed effort level, minimize the total absolute area of the 
difference between each projected puerulus-catch curve and its corresponding piecewise-
linear interpolation over all possible . Let  be the set of abscissae of points that 
minimizes the absolute area for given effort level and 

pS ~
*
~tpS

p~  as just described. Since the absolute 
area is minimized, it can be shown that the location of the points in  is independent of the 

effort level and thus independent of t. Thus, we can just write  instead of . For the 
Beverton-Holt case (9) and 

*
~tpS

*
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p~  fixed, we have a system of nonlinear equations 
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with 0>β . Remembering that  is known, (10) reduces to a univariate equation in . For 
the case of four interpolation points, for example, this equation is 

px~ 1x
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This piecewise-linear interpolation defines the following rescaling of : *
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and  are the ordinates that correspond with  on the projected puerulus-catch curve for 
each effort level. Figure 4.2 illustrates the fitted nonlinear regression and piecewise-linear 
interpolation procedure for the zone B puerulus-catch curves adjusted by effort. Finally, an 
adjustment is made for each approximate puerulus-catch line proportionately to its observed 
level of effort to form a new puerulus-effort index (Figure 4.3). 

*
jtC *

~pS

  
Selection of the number of points p~  for the piecewise linear approximation can be obtained 
by minimization of the SICc criterion (McQuarrie 1999), which is a small-sample correction 
for Schwarz’s (1978) BIC criterion. 
  
Regarding the puerulus settlement information, there are six years of missing data for zone A 
(79/80 through 84/85). The procedure we follow is to substitute the corresponding mean-
scaled puerulus settlement data from zone B, since zone A is wholly enclosed within zone B. 
A similar procedure is used for the zone C Alkimos puerulus settlement data by replacing the 
missing values from 69/70 to 81/82 and from 93/94 through 97/98 by the corresponding 
mean-scaled zone C Jurien puerulus settlement data. Alkimos data is chosen over Jurien data 
wherever possible. The Alkimos puerulus settlement data is more representative of the zone C 
catch as it is near the centre point of the fishery. 
  
From the construction of TFMs, there is little analysis required to produce catch predictions 
and corresponding 95% confidence intervals for each zone. The data starting from the 
1976/77 season through to the 1995/96 season is fitted, and four years of predictions are made 
from 1996/97 to 1999/2000 for the respective zones using the TFMs in (3). 
 

4.4 Results 
Using relevant years of data from each zone, the puerulus-effort-catch parameters were 
estimated as per (9) using nonlinear regression (Table 4.1). No selection of a subset of 
parameters is made at this stage since the estimates may be biased due to the correlation 
structure of the residuals in (9). The number of points for the linear interpolation method was 
4, 4 and 3 for zones A, B and C, respectively (Table 4.2).  
  
For each zone, we selected the SARIMA model in (2) with the lowest AICc statistic (Hurvich 
and Tsai 1989) that satisfied the stationarity and invertibility conditions and for which there is 
a biological interpretation. Values of the AIC (Akaike 1974) and BIC (Schwarz 1978) 
statistics are included for comparison with the AICc statistic. 
 
Zone A 
After a seasonal differencing of the catch data to achieve stationarity, the model that best 
describes that data on the basis of the AICc criterion is of the form 
SARIMA . Table 4.3 summarises the method of order selection 
based on over- and under-fitted models of the selected one. The selected model describes 
autocorrelated monthly catch data up to first order with three moving average terms about a 
seasonal trend and residual white noise. The third order multiplicative seasonal moving 
average term is chosen to avoid unit root invertibility problems. 

( ) ( ) ( ) 434 1,0,02,1,00,0,1 ×××

  
The parameters for SARIMA model (2) are, with standard errors in 
parentheses, ( ) ( ) ( ) ( .11.033.0,10.038.0,10.044.0,11.023.0 43A2A1A1A −= )Θ−=Θ−=Θ= ×φ  
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Since 11A <φ , the SARIMA model is stationary after a seasonal differencing. 1Aφ  decribes 
the month-to-month correlation structure, while the negative 1AΘ  term indicates that a larger 
(smaller) than expected catch for one season results in a smaller (larger) than expected catch 
for the next season, and so on from one year to the next. The negative 2AΘ  and  terms 
have similar effects from each year to two to three years henceforth. 

43A ×Θ

  
The residual sums of squares from the 1978/79 season to the 1995/96 season were used to 
compare models (Table 4.6). 2R  percentages of variation compared to the total sum of 
squares of the null model ( )2

A0A0A0AA ,0~, σεε NCC ttt +=  are given in parentheses. The 
standard errors of the regression variables and the asymptotic analyses of variance based on 
SARIMAX (3) show that the annual puerulus variable has a significant effect on catch for 
zone A, but the annual effort data does not contribute significantly more information to the 
variation in catch data. Puerulus settlement is therefore included in (3) but not fishing effort. 
Figures 4.4 and 4.5 illustrate the seasonal predictions from 1977/78 to 1995/96 and seasonal 
forecasts from 1996/97 to 1999/2000 from zone A. SARIMAX model (3) gives reliable 
forecasts with 31 out of 32 actual catch points within the 95% confidence intervals. 
 
Zone B 
After a seasonal differencing of the catch data to achieve stationarity, the model that best 
described that data on the basis of the AICc criterion was of the form 
SARIMA . The method of order selection based on over- and under-
fitted models of the selected one is summarised in Table 4.4. The selected model describes 
autocorrelated monthly catch data up to third order with a first order seasonal autocorrelation, 
third order seasonal moving averages and a seven year cycle about a seasonal trend with 
residual white noise. 

( ) ( ) ( ) 878 1,0,03,1,10,0,3 ×××

  
The model parameters for the SARIMA model in (2) are 

( ) ( ) ( ) ( ),47.059.0,08.015.0,084.0045.0,08.012.0 1B3B2B1B −=Φ=== φφφ  
( ) ( ) ( ) ( ).10.022.0,09.019.0,28.049.0,46.010.0 87B3B2B1B =Θ−=Θ−=Θ=Θ ×   

The nonseasonal parameters 3B2B1B  and , φφφ  describe the month-to-month correlations. The 
seasonal autoregressive term  and seasonal moving average term 1BΦ 1BΘ  describe a negative 
catch correlation for consecutive years, as expected. The two- and three-year moving average 
terms have the effect of smoothing fluctuations from year to year. We checked the stationarity 
and invertibility of the chosen model at each step of the TFM process after one seasonal 
differencing. For example, the roots of the monthly autoregressive characteristic polynomial 
for (2) were found to have magnitudes 001.2,001.2,656.1=z , which are all greater than 
one. Similarly, the magnitude of the roots of the seasonal moving average characteristic 
polynomial for (2) are 046.2,046.2,241.1=z , indicating the process is invertible. 
  
One of the interesting results for this zone is the presence of a significant positive seven-year 
multiplicative moving average term. This correlation signifies that the average life cycle is 
approximately seven years. These biological properties of the life cycle can be illustrated by 
the following chronological diagram, where ,  and  represent catch, spawning 
activity and puerulus settlement levels, respectively, in year T.  

TC TS TP

   TTTTTT CPSC →→→ −−−−− 4,35,47
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Western rock lobsters mature at about seven years, the larval stage exists for approximately 
one year, and lobsters are caught predominantly at the age of four or five years, including the 
larval stage. This interpretation is in approximate agreement with the accepted knowledge that 
“immature females are fished 1-2 years before they reach (sexual) maturity” (Chubb 2000). 
  
The residual sums of squares are calculated from the 1979/80 season to 1995/96 (Table 4.6). 
It is clear from the standard errors and the F statistics that the puerulus variables for the white 
and red seasons on their own are only marginally significant for the catch model for zone B, 
but the combined puerulus settlement-effort variables are highly significant. Figures 4.4 and 
4.5 illustrate the seasonal predictions from 1979/80 to 1995/96 and seasonal forecasts from 
1996/97 to 1999/2000 for zone B using SARIMAX model (3). This model gives reliable 
forecasts with 1 actual catch point out of 32 outside the 95% confidence intervals. 
 
Zone C 
After a seasonal differencing of the catch data to achieve stationarity, the model that best 
described that data on the basis of the AICc criterion was of the form 
SARIMA . Table 4.5 summarises the method of order selection based on over- 
and under-fitted models of the selected one. The selected model describes autocorrelated 
monthly catch data up to third order with four seasonal autocorrelation terms and second 
order seasonal moving averages about a seasonal trend with residual white noise. 

( ) ( 82,1,40,0,3 × )

  
The model parameters for SARIMA model (2) are ( ),09.039.01C =φ  

( ) ( ) ( ) ( ),16.057.0,46.002.0,09.034.0,09.012.0 2C1C3C2C −=Φ−=Φ=−= φφ  
( ) ( ) ( ) ( ).20.037.0,45.058.0,25.007.0,19.044.0 2C1C4C3C =Θ−=Θ−=Φ−=Φ  

The seasonal moving average terms are negative as expected. The observation that the fourth 
seasonal moving average term appears insignificant and yet contributes to the model implies 
that linear SARIMAX models may not be appropriate for zone C catches. There is no 
indication that normality assumptions have been broken. We checked the stationarity and 
invertibility of the model for zone C at each step of the TFM process after one seasonal 
differencing. For example, the roots of the monthly autoregressive characteristic polynomial 
for model (2) were found to have magnitudes 526.1,526.1,275.1=z , which are all greater 
than one. Similarly, the magnitudes of the roots of the seasonal autoregressive characteristic 
polynomial are 642.4,668.2,102.1,102.1=z , indicating seasonal stationarity. Finally, the 
roots of the seasonal moving average characteristic polynomial have magnitudes 

652.1,652.1=z . 
  
The residual sums of squares are calculated from the 1982/83 season to 1995/96 (Table 4.6). 
For zone C, the effort and puerulus settlement variables have a significant effect on catch. 
Figures 4.4 and 4.5 illustrate the seasonal predictions from 1982/83 to 1995/96 and seasonal 
forecasts from 1996/97 to 1999/2000 for zone C using SARIMAX model (3). This model 
gives guided forecasts for zone C with 7 actual catch points out of 32 outside the 95% 
confidence intervals. The reasons why this method has not produced very reliable forecasts 
will be discussed in the next section of this paper. 
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4.5 Discussion 
Seasonal ARIMA catch models explain over 90% of the variation in monthly western rock 
lobster catches for each zone by taking into account the autocorrelation structure of the catch 
data and the correlation structure of the residuals. Our method separately incorporates the 
form of the exogenous puerulus settlement and fishing effort variables over the red and white 
seasons. An interesting outcome of the analysis was a confirmation of the approximate life 
cycle of lobsters caught in zone B from the order of the SARIMA model. Since the catch 
series satisified the stationarity and invertibility conditions for every zone, SARIMAX models 
are robust to the constant changes in management measures such as reductions in allowable 
fishing effort, changes to minimum and maximum legal sizes and release of mature females 
with visible setae. The main management implementations for the western rock lobster 
industry are summarised in Caputi et al. (1997) and Chubb (2000). However, a further 
enhancement to the SARIMAX modelling techniques used in this paper would be to conduct 
an intervention analysis to model the effects of the 1993/94 management changes. This study 
takes into account the enforced 18% pot reduction through the effort variable but the 
intervention analysis may be required to further model the increase in minimum size in white 
lobsters which has resulted in a transfer of catch to the red lobsters. 
  
The required computing time for estimation of the proposed SARIMAX models is 
comparable with the log-log linear regression model (1) (Caputi 1995a, 1995b). Time series 
methods are more appropriate when the residuals in (1) or similar nonlinear regression models 
of catches are significantly serially correlated. The estimation procedures are faster than the 
delay-difference stock assessment model (Hall 1997, Walters et al. 1993, Sullivan 1992, 
Schnute 1985, Deriso 1980), which can take a day to estimate if a solution is found. The bias 
in parameter estimates is reduced significantly by using these time series methods. The 
information matrix is always positive definite and the seasonality is clearly detected. 
  
The transfer function models we have used provide adequate descriptions of monthly western 
rock lobster catches for zones A and B but the linearity assumption for zone C may have been 
violated. A nonlinear model or volatility model such as one chosen from the generalized 
autoregressive conditional heteroscedastic (GARCH) family of models may therefore be more 
appropriate for modelling the zone C data. Examination of the autocorrelation function of the 
squared residuals for the best SARIMAX zone C model confirms that a GARCH model is 
more suitable. One would hardly question the use of the Beverton-Holt mortality model or 
other similar models, since puerulus settlement and fishing effort contribute significantly less 
to total monthly variation than the catch data does. 
  
The 1999/2000 season was a difficult season for monthly catch forecasts. For example, there 
are 3 actual catch points out of 8 that lie outside the 95% confidence intervals for zone C over 
the 1999/2000 season, leaving 77% of points inside the confidence region between 1996/97 
and 1998/99. The primary reason for these difficulties is that 1999/2000 provided a record 
catch for the western rock lobster fishing industry, and the bulk of that landed catch came 
from zone C. The extra market demand for western rock lobsters stemming from the 
Millenium celebrations could have contributed to this record catch, however our models did 
not include any econometric variables. 
  
To carry out an analysis on the significance of puerulus settlement and fishing effort in the 
SARIMAX models, our procedure was to fix the order of the seasonal ARIMA noise 
component. The choice of model (3) may be a good fit, however this model may be globally 
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suboptimal. Finding a global optimal order for (3) may therefore improve the predictions 
slightly further, but improving predictions was not the sole emphasis of this paper. 
  
By applying a linear interpolation method and scaling the puerulus settlement and fishing 
effort data to form approximate linear relationships with the catch data, the model estimation 
process is possible in a linear SARIMAX framework. The main advantages of the linear 
interpolation method are that the stationarity/causality and invertibility conditions can be 
easily checked and a number of complications associated with the statistical analyses are 
significantly reduced. The stationarity and invertibility conditions are as important in time 
series analysis as the Gauss-Markov conditions for linear regression. The linear interpolation 
method can speed up the theoretical calculations while the time series problem remains 
nonlinear. An alternative approach is a nonlinear TFM analysis, but this would involve 
writing a nonlinear software package and deriving theoretical stationarity and invertibility 
conditions. The stationarity and invertibility conditions are unknown for many nonlinear 
formulations. Finding these conditions remains an open problem in time series analysis, 
requiring intense theoretical and computational work for specific cases. 
  
The linear interpolation method is flexible since any continuous function can be interpolated 
and adapted to conform to the linear SARIMAX form. There are many ways of improving the 
approximation method. For example, splines or other smoothing functions could be used in a 
generalized additive modelling framework. Multivariate adaptive regression splines (MARS) 
(Friedman 1991) could be incorporated into the methodology to enhance the nonlinear 
parameter estimates. 
  
The transfer function time series approach to modelling catches is generally useful in cases 
where there is an indicator of recruitment strength, as in the western rock lobster fishery. The 
methods also have considerable potential in fisheries where biological data is limited but a 
long time series of catch and fishing effort data is available. 
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Table 4.1. Estimated catch-effort parameters for model (9). The standard error of each 
estimated parameter is given in parentheses. 
 
 â  

( )310×  
β̂  π̂  k̂  

Zone     
A 2083 

(145) 
13.26 
(4.61) 

0.684 
(0.153) 

-0.135 
(0.221) 

B (white) 2454 
(197) 

24.14 
(8.57) 

0.444 
(0.154) 

0.812 
(0.207) 

B (red) 1945 
(153) 

14.63 
(7.47) 

0.669 
(0.216) 

1.135 
(0.171) 

C (white) 3484 
(353) 

2.220 
(1.351) 

0.068 
(0.155) 

0.975 
(0.388) 

C (red) 3109 
(235) 

2.521 
(0.939) 

0.629 
(0.127) 

0.676 
(0.303) 

 
 
Table 4.2. Selection of the number of points in the partition (including the end-points) for the 
linear interpolation method based on minimization of the SICc criterion. 
 
 2 points 3 points 4 points 5 points 
Zone A -2.423 -4.606 -4.787 -4.199 
Zone B 
(white season) 

-2.196 -3.094 -3.695 -3.441 

Zone B 
(red season) 

-1.881 -3.080 -3.799 -3.595 

Zone C 
(white season) 

-1.313 -3.311 -3.172 -2.929 
 

Zone C 
(red season) 

-1.724 -3.883 -3.682 -3.516 
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Table 4.3. Order selection process of the SARIMA model for zone A western rock lobster 
catch data. A SARIMA ( ) ( ) ( ) 434 1,0,02,1,00,0,1 ×××  model was chosen as it minimized both 
AICc and BIC statistics and satisfied the stationarity and invertibility conditions. 
 
 AIC AICc BIC Stationary? Invertible?
( )40,1,0  -78.28 -78.28 -78.28 Y Y 
( ) ( )40,1,00,0,1 ×  -88.43 -88.37 -86.11 Y Y 
( ) ( 40,1,00,0,2 × )  -85.08 -84.91 -80.47 Y Y 
( ) ( )40,1,01,0,1 ×  -87.14 -86.97 -82.50 Y Y 
( ) ( 40,1,10,0,1 × )  -81.88 -81.70 -77.35 Y Y 
( ) ( 41,1,00,0,1 × )  -87.52 -87.35 -82.89 Y Y 
( ) ( 42,1,00,0,1 × )  -99.59 -99.25 -92.64 Y N 
( ) ( )43,1,00,0,1 ×  -101.38 -100.80 -92.11 Y N 
( ) ( )41,1,30,0,1 ×  -79.26 -78.21 -68.55 Y Y 
( ) ( ) ( ) 434 1,0,00,1,00,0,1 ×××  -92.27 -92.10 -87.64 Y Y 
( ) ( ) ( ) 434 1,0,01,1,00,0,1 ×××  -98.35 -98.01 -91.40 Y Y 
( ) ( ) ( ) 434 1,0,02,1,00,0,1 ×××  -103.01 -102.44 -93.74 Y Y 
( ) ( ) ( ) 434 1,0,02,1,01,0,1 ×××  -101.45 -100.58 -89.87 Y Y 

 

Table 4.4. Order selection process of the SARIMA model for zone B western rock lobster 
catch data. A SARIMA ( ) ( ) ( )1,0,03,1,10,0,3 878 ×××  model was chosen as it minimized the 
AICc statistic and satisfied the stationarity and invertibility conditions. 
 
 AIC AICc BIC 
( ) ( 83,1,10,0,2 × )  51.00 51.63 67.74 
( ) ( 83,1,10,0,3 × )  50.18 51.02 70.82 
( ) ( 83,1,10,0,4 × )  52.61 53.71 76.14 
( ) ( 83,1,00,0,3 × )  57.12 57.71 75.14 
( ) ( 83,1,20,0,3 × )  51.46 52.62 74.58 
( ) ( 81,1,10,0,3 × )  60.57 61.01 75.31 
( ) ( 82,1,10,0,3 × )  50.48 51.11 68.17 
( ) ( 84,1,10,0,3 × )  50.79 51.88 74.38 
( ) ( ) ( ) 878 1,0,02,1,10,0,3 ×××  48.18 49.03 68.83 
( ) ( ) ( ) 878 1,0,03,1,10,0,3 ×××  47.47 48.57 71.06 
( ) ( ) ( ) 878 1,0,04,1,10,0,3 ×××  48.68 50.05 75.22 

 FRDC Project No. 1999/155  64



 

Table 4.5. Order selection process of the SARIMA model for zone C western rock lobster 
catch data. A SARIMA  model was chosen as it minimized the AICc statistic 
and satisfied the stationarity and invertibility conditions. 

( ) ( 82,1,40,0,3 × )

 
 AIC AICc BIC 
( ) ( 82,1,40,0,2 × )  45.57 46.89 67.74 
( ) ( 82,1,40,0,3 × )  27.08 28.76 51.94 
( ) ( 82,1,40,0,4 × )  27.18 29.27 54.71 
( ) ( )82,1,41,0,3 ×  27.97 30.04 55.59 
( ) ( 82,1,30,0,3 × )  37.25 38.49 59.87 
( ) ( 82,1,50,0,3 × )  31.51 33.75 58.42 
( ) ( 81,1,40,0,3 × )  29.74 31.06 51.82 
( ) ( 80,1,40,0,3 × )  29.49 30.52 48.82 
( ) ( 83,1,40,0,3 × )  28.57 30.64 56.19 

 
 
Table 4.6. Summary for the selected SARIMA and SARIMAX models for each zone. Details 
on regression parameter estimates with standard errors, residual sums of squares, 2R  
percentages of variation and asymptotic F tests are given.  
 
 Regression parameter 

estimates (st. err.) 
RSS ( )910×  

( )2R  

( )05.0
, 21 υυF   ( ).critF
p-value 

ZONE A    
Null model  4756.04  
SARIMA model  160.12 (96.6%)  
With puerulus 0347.0ˆ =ω (0.0136) 148.37 (96.9%) 5.86 ( , 0.018 )97.3>
With effort and puerulus 0358.0ˆ =ω (0.0151) 148.85 (96.9%) 5.60 ( , 0.021 )97.3>
ZONE B    
Null model  17588.19  
SARIMA model  1688.60 (90.4%)  
With puerulus ( )

( )0216.00411.0ˆ
0154.00355.0ˆ

=
=

R

W

ω
ω

 
1620.91 (90.8%) 2.90 ( , 0.058 )06.3≤

With effort and puerulus ( )
( )0083.00329.0ˆ

0081.00479.0ˆ
=
=

R

W

ω
ω

 
1366.54 (92.2%) 16.38 ( , 0.000 )06.3>

ZONE C    
Null model  35831.91  
SARIMA model  2577.76 (92.8%)  
With puerulus ( )

( )0613.01701.0ˆ
0380.01482.0ˆ

=
=

R

W

ω
ω

 
2319.83 (93.5%) 6.39 ( , 0.002 )07.3>

With effort and puerulus ( )
( )0483.01570.0ˆ

0302.01361.0ˆ
=
=

R

W

ω
ω

 
2242.33 (93.7%) 8.60 ( , 0.000 )07.3>
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Fig 4.1. Map of the fishing zones A, B and C off the Western Australian coast for the western 
rock lobster industry. 
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Fig. 4.2. The fitted puerulus-catch projection curves (solid lines) for different levels of effort 
for the zone B western rock lobster data measured annually over the white seasons from 
1976/77 to 1995/96, and the linear interpolation (dotted line) for the 8.1=E  (million pot lifts) 
puerulus-catch projected curve connecting the points marked X.  
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Fig 4.3. The adjustment of the fishing effort levels (millions of pot lifts) for each scaled 
puerulus-catch projected curve defines a new puerulus-effort index for the zone B white 
season. 
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Fig. 4.4. SARIMAX seasonal predictions and forecasts of western rock lobster catch data for 
zones A, B and C, respectively. 
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Fig. 4.5. Seasonal forecasts from 1996/97 to 1999/2000 with 95% confidence intervals of 
western rock lobster catch data for zones A, B and C, respectively.  
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5.0 Improving Catch Predictions for Management of the 
Western Rock Lobster (Panulirus cygnus) Fishery 
Using Time Series Analysis 

M. Craine , Y. W. Cheng , N. Caputi  and C. Chubb  a b a a

a Western Australian Marine Research Laboratories, Department of Fisheries, WA.  
b WACEIO, Curtin University of Technology (mcraine@fish.wa.gov.au) 
 

5.1    Abstract  
The western rock lobster fishery is the most valuable single-species fishery in Australia, 
having posted a world record catch for rock lobster species for the 1999/00 season of 14 500 
tonnes. Management is therefore interested in improving methods of catch prediction that are 
currently based on observed puerulus (one year-old post-larvae) settlement levels by 
designated collectors. The abundance of rock lobster three to four years into the future is 
reflected by the puerulus settlement indices for three zones, enabling accurate annual catch 
forecasts. However, catch forecasts for the migratory “whites” season (Nov-Jan) and the non-
migratory “reds” season (Feb-Jun) are more challenging as these seasonal catches of different 
life history stages are significantly correlated. Thus, methods including nonlinear regression 
techniques and classical ARIMAX time series analysis are used to reduce the temporal bias in 
the seasonal catch predictions. In 1993/94, a management package was implemented to 
reduce the risk of exploitation in the western rock lobster fishery, to smooth the seasonal 
catches and to allow breeding stock levels to gradually increase. Some of the main effects of 
the management package on catches are analyzed in a time series intervention analysis 
framework. Forecasts of seasonal catches are made from 2000/01 to 2002/03 for all zones 
using ARIMAX time series models with puerulus settlement indices, fishing effort and 
management intervention terms. 
 
Keywords: Western rock lobster; puerulus indices; nonlinear regression; time series analysis. 

5.2 Introduction 
The western rock lobster (Panulirus cygnus) is the most valuable single-species fishery in 
Australia comprising, on average, twenty percent of the total value of Australia’s total 
fisheries production. The 1999/2000 western rock lobster catch was a world record, posting a 
landed catch of over 14,000 tonnes at an approximate value of A$390 million. 

 
There are three major zones in the fishery off the Western Australian coast (Figure 1). Zone A 
operates between Dongara and Kalbarri, and comprises fishing grounds adjacent to the 
offshore Abrolhos Islands. Zone B is situated to the north of latitude , excluding that 
area of the fishery designated as zone A. Zone C extends south of latitude  to Cape 
Leeuwin. The fishing season since 1977/78 consists of 7.5 months, with the migratory 
‘whites’ fishing season operating from mid-November to January and the non-migratory 
‘reds’ fishing season operating from February to June. These names relate to the colour of the 
exoskeleton of the lobsters. The lobsters moult in November and the whites moult again in 
February, changing colour to red. The fishing season for zone A only operates during the red 
season from mid-March to June. However, boats with a zone A licence are permitted to 
operate in zone B from November to mid-March. 

S30°
S30°
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Figure 5.1.  Map of the fishing zones off the West Australian coast for the western rock 
lobster industry. 
 
 
To ensure that fishing pressure on this valuable fishery does not significantly reduce breeding 
stock levels, as occurred during the late 1980’s, management can adjust fishing effort based 
on forecast catches if necessary [Chubb 2000]. The management objective is to keep breeding 
stocks at the levels of the late 1970’s and early 1980’s, above the biological reference point 
for this fishery of approximately 20-25% of the virgin biomass level [Hall and Brown 2000; 
Hall and Chubb 2001]. The approach to control annual catches has been possible for the 
western rock lobster fishery due to the relatively unique recruitment forecasting system for 
this stock [Caputi et al. 1995a and b]. 
 
During the early 1990’s, it was contended that the western rock lobster breeding stock was 
becoming significantly reduced. Management therefore made a decision in the 1993/94 
season to introduce a package aimed at a recovery in the breeding stock. The main elements 
of the management package that were implemented from 1993/94 to 1999/00 are as follows: 

 
• 18% temporary reduction in pot usage; 
• 1 mm increase in the legal minimum size from November 15 to January 31 (‘whites’ 

fishery); 
• total protection for mature females (setose, tar-spotted and egg-bearing); 
• maximum size limit for females of 115 mm for C zone and 105 mm for A and B zones). 
 
The anticipated effects of this package included an overall reduction in exploitation rate 
leading to a greater survival of lobsters, a gradual boost in the number of large breeding 
females, a reduction of whites catches and a transfer of this reduction to the reds fishery with 
the objective that more lobsters are able to spawn. The 18% pot reduction is reflected through 
the fishing effort data. Also, a proportion of the transfer of whites catches to reds catches is 
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due to fishing effort. However, accurate predictions of whites and reds catches and an analysis 
of the transfer of whites catches to reds catches requires a time series approach to account for 
the correlation structure of catches from one moult stage to the next and from year to year. 
 
Seasonal catch and fishing effort data dates back to the 1964/65 season, while puerulus (post-
larval) settlement information has been collected since the late 1960’s at some locations. This 
information has been used to form a recruitment-catch relationship to predict annual catches 
[Caputi 1995a and b]. 
 
The focus of this paper is therefore to predict whites and reds catches for all zones of the 
western rock lobster fishery and to assess the effects of the 1993/94 management package on 
catches using time series intervention analysis and recruitment-catch relationships. Seasonal 
catches are forecasted from 2000/01 to 2002/03 using these classical time series models with 
puerulus settlement indices, fishing effort and management intervention variables. 

5.3 Methods 
Traditionally, log-log linear regression models have been used to model catch predictions 
based on levels of puerulus settlement 3 to 4 years prior to the season [Phillips 1986; Caputi 
et al. 1995b]. Catch predictions for western rock lobster can also be made using variations of 
an annual puerulus-effort-catch nonlinear regression model defined by  

( ) ,
242

exp;cossin 1

22
2

4
2

3 t
tt

tttt
EqqEEbPPfaC εθθ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+ −−= (1) 

where  

( )
1

;
+

=
bx

xbxf        (2) 

is a Beverton-Holt [1957] mortality function, tC  is the annual catch data (kg) which can be 
disaggregated into whites and reds catches, t  is the annual, whites or reds fishing effort in 
pot lifts, t  is an annual accumulation of the Winsorized mean [Kendall and Stuart 1973, 
p.544] of puerulus settlement data obtained from up to six collectors, 

E
P

qba ,,, θ  are parameters 
to be estimated and ( )2

11t . The effort function in (1) is a truncation of DeLury’s 
[1947, 1951; see Ricker 1975] abundance-effort equation. 

,0~ σε N

 
Regarding the puerulus settlement information, there are six years of missing Abrolhos Island 
collector data for zone A (79/80 through 84/85). The procedure we follow is to substitute the 
corresponding mean-scaled Dongara puerulus settlement data from zone B, since zone A is 
wholly enclosed within zone B. Dongara puerulus settlement data is complete and this data 
set is used to model zone B catches. A similar procedure to that of zone A is used for the zone 
C Alkimos puerulus settlement data by replacing the indices from 69/70 to 81/82 by the 
corresponding mean-scaled zone C Jurien Bay puerulus settlement data. The Alkimos 
puerulus settlement data is regarded as more representative of the zone C catches as it is near 
the centre of the fishery. 
 
When the catch series is disaggregated into white/red seasonal catches, the errors are 
significantly correlated for all fishing zones. Thus, a time series analysis is required for 
reliable predictions of white and red seasonal catches. Linear autoregressive integrated 
moving average (ARIMA) models [Box and Jenkins 1976] are fitted to each chronological 
whites/reds catch series as follows: 
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where tWR,  is the whites/reds catch series, C WR  is the mean of the whites/reds catches, 1C Φ  
and 1  are finite autoregressive and moving average polynomials of orders r and z 
respectively, of the backward difference operator B, 

Θ
∇  is a differencing operator, d is the 

number of differences required to achieve stationarity, and ( )2
22 ,0~ σε Nt .  

 
The order component ( )zdr ,,  of the ARIMA model for each zone is selected by minimization 
of Akaike’s [1974] bias-corrected AICc statistic [Hurvich and Tsai 1989]. To validate the 
stationarity and invertibility conditions and to avoid nonlinear time series likelihood 
calculations, we estimate { }qb,,θ  in (1) sub-optimally by performing a nonlinear regression 
and then enter the deterministic component of (1) as a transfer function component of an 
ARIMA transfer function (ARIMAX) model. White and red seasons are fitted separately for 
the nonlinear regression model (1) to estimate { }qb,,θ  for each season. Two dummy 
intervention variables that measure a mean increase in catches or a further transfer from 
whites catches to reds catches that is not reflected through fishing effort as an effect of the 
1993/94 management package are also analyzed as transfer function components. The whites 
(reds) seasonal intervention variable is defined as 1 for the whites (reds) season from 1993/94 
onwards, and 0 otherwise.  
 
The ARIMAX model is therefore defined as follows: 

( ) ( ) ( ) ,32
1

,
2

,
2 t

N

i WR

ti
i

d

WR

tWRd B
C
T

B
C
C

B
T

εα Θ+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑∇Φ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∇Φ

=
 (4) 

where T  is the number of transfer function variables, N ( )Tti, NiT ,,1 K=  comprise the 
transfer function variables, Ti ( )Ni ,,1K=α  are the transfer function coefficients needed to 
be estimated, 2  and 2Φ Θ  are autoregressive and moving average polynomials of orders r and 
z, respectively, as in (3) and ( )2

33t  is assumed. Asymptotic F tests are conducted on 
the transfer function variables to attain their significance for each zone. 

,0~ σε N

 

5.4 Results 
Table 5.1 summarizes the parameter estimates and 2R  values for parsimonious models of the 
form (1) that describe whites and reds catches for respective zones. For all models, estimates 
for the nonlinear parameter  were insignificant. The inclusion of fishing effort enhances all 
zone B and C models, however fishing effort is not included in the zone A model. The 
puerulus settlement indices are significant for prediction of catches for zones B and C, but 
only significant for the zone A model when a dummy intervention variable (taking 0 values 
before 1993/94 and 1 values from 1993/94 onwards) is included. 

q̂

 
Tables 5.2 and 5.3 describe the ARIMA and ARIMAX model fits and estimated parameters 
for the annual (reds) catches for zone A and the whites/reds chronological catch series for 
zones B and C. There are significant autocorrelations in catches taken from all zones from one 
moult season to the next and from year to year (Table 5.2). The puerulus settlement indices, 
combined with fishing effort in the case of zones B and C, obtained from nonlinear regression 
models (1) remain significant variables in these time series models.  
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The intervention variables represent percentage increases or decreases in whites and reds 
catches from 1993/94 onwards. These terms are significant for all zones, however the two 
intervention terms for zone C could be replaced by a single one, expressed as the sum of the 
two terms, since there is no significant difference between these. This means there is no 
significant transfer from whites to reds catches other than that which is reflected through 
fishing effort for zone C. Estimates from (1) and the intervention terms are therefore included 
as transfer functions in the ARIMAX models for all zones. Using these exogenous variables, 
seasonal ARIMAX catch predictions are shown for each zone in Figure 5.2, and forecasts for 
the three seasons 2000/01 to 2002/03 are calculated. 
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Figure 5.2.  ARIMAX time series catch predictions and forecasts (2000/01 to 2002/03) with 
95% confidence intervals for zones A, B and C, respectively. 
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The ARIMAX models are validated by fitting the catch data up to 1996/97 and comparing the 
forecast catches (with 95% confidence intervals) between 1997/98 and 1999/00 with the 
actual catches. For all zones, actual catches are within the forecasted confidence intervals for 
the three years. 

 
Assessing the fishing effort effects of the 1993/94 management package, the changes in 
fishing effort in pot lifts are calculated by comparing 6-year means in effort immediately 
before and after the reduction in effort in 1993/94 for zone C and 1992/93 for zone B. The 
results are that fishing effort decreased by 18.6% in zone A, 24.2% and 18.4% for the white 
seasons in zones B and C, respectively, and 8.6% and 10.4% for the red seasons in zones B 
and C, respectively. The parsimonious ARIMAX model for zone A does not involve fishing 
effort and there is no whites season for zone A, so no changes would be expected from the pot 
reduction and minimum size change since 1993/94. However, setose females may affect the 
catches in zone A. In fact, the significant positive intervention term in the zone A ARIMAX 
model indicates overall catches have increased by 8.1% since 1993/94 despite the 18.6% 
decrease in fishing effort and the greater protection of females. There is evidence that some of 
the transfer from whites catches to reds catches for zones B and C is reflected by fishing effort 
since the percentage decreases in fishing effort for zone B during the white seasons exceeded 
18% and the fishing effort for zones B and C during the red seasons decreased by 
significantly less than 18%. This reflects the latent fishing capacity which existed in the reds 
fishery. For zone B, the intervention analysis indicates significant decreases ( , Table 
5.3) in whites catches transferring to increases in reds (0.2446, Table 3) catches beyond that 
which was reflected through fishing effort. For zone C, however, a further transfer (0.1464 
and 0.2300, Table 5.3) from whites to reds catches since 1993/94 appears insignificant. 

0583.0−

 

5.5 Discussion 
The seasonal catch predictions and thus forecasts are significantly enhanced by the usage of 
ARIMAX time series models. These models account for significant correlations in the catch 
data while fitting the puerulus settlement indices and fishing effort information together with 
intervention variables associated with some of the outcomes of the 1993/94 management 
package. The time series models focus more accurately on the annual catches for zone A and 
the proportions of whites and reds catches for zones B and C. Seasonal catches were 
forecasted for the three years from 2000/01 to 2002/03 using the most parsimonious time 
series models encountered in this analysis. 
 
The 1993/94 management intervention process has been effective in zones B and C. In 
particular, there have been significant transfers from whites to reds catches in zones B and C. 
For zone C, this was due to effort. For zone B, however, the intervention variables detected a 
further transfer from whites to reds. This reflects a higher proportion of smaller lobsters (76 
mm) in zone B compared to zone C. Our methods used dummy variables that described 
instantaneous changes in catches and then constant effects of intervention for all years. These 
assumptions may not be valid. Mixture distribution time series methods may more accurately 
model the gradual and long-term effects of the management intervention process. 
 
Further research is required to optimally estimate the nonlinear transfer function parameters 
for the ARIMAX equations presented in this paper. Our approach was hierarchical whereby 
nonlinear regression estimation was used and the estimated parameters were then put into the 
time series models. The effects are minimal for the modelling procedures in this paper, but 
errors would increase for a hierarchical monthly time series analysis. 
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Table 5.1. Parameter estimates (and standard errors) and 2R  values for catch-puerulus-effort 
nonlinear regression models given by (1). 
  
 

 

( )510

ˆ

×

a
 θ̂  b̂  2R  

Zone A 2.990 
(1.829) 

0.438 
(0.570) 

0.163 
(0.108) 

13.3% 
 

Zone B : 
whites 
 

1.014 
(0.264) 

0.912 
(0.155) 

0.042 
(0.014) 

67.3% 
 

Zone B : 
reds 
 

0.911 
(0.267) 

0.692 
(0.178) 

0.041 
(0.015) 

78.8% 
 

Zone C : 
whites 
 

9.342 
(2.753) 

1.122 
(0.157) 

0.254 
(0.093) 

62.0% 
 

Zone C : 
reds 
 

6.412 
(1.325) 

0.839 
(0.121) 

0.172 
(0.047) 

59.2% 
 

 
 
Table 5.2. ARIMA and ARIMAX models and 2R  values for whites/reds chronological catch 
series for each zone. 
 

ARIMA Puerulus index + 
Fishing effort 

ARIMAX 

 

Model 
( )zdr ,,

 

2R  Model 
( )zdr ,,

 

2R  

Zone A: 
without intervention 
including intervention 

 
(0,0,1) 
(0,0,1) 

 
38.3% 
43.1% 

 
(0,0,1) 
(0,0,1) 

 
48.7% 
56.7% 

Zone B:  
without intervention 
including intervention 

 
(2,0,2) 
(2,0,1) 

 
72.7% 
73.0% 

 
(1,0,2) 
(1,0,2) 

 
83.3% 
88.7% 

Zone C: 
without intervention 
including intervention 

 
(3,0,0) 
(3,0,0) 

 
63.7% 
66.6% 

 
(0,0,2) 
(2,0,1) 

 
70.5% 
80.6% 
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Table 5.3.  Estimated ARIMAX model (4) coefficients (with standard errors) for whites/reds 
catches. 
 

 Puerulus 
index + effort 

on whites 
catches 

Puerulus index 
+ effort on 

reds catches 

Whites 
intervention 

Reds 
intervention 

Zone A 
Puerulus index 

 
 
 

 
0.9952 

(0.0208) 

  

 
Puerulus index + 
intervention 

  
0.9738 

(0.0207) 

  
0.0813 

(0.0375) 
     
Zone B 
Puerulus index 

 
0.9901 

(0.0325) 

 
1.004 

(0.0341) 

 
 

 

 
Puerulus index + 
intervention 

 
1.0147 

(0.0253) 

 
0.9308 

(0.0275) 

 
-0.0583 
(0.0489) 

 
0.2446 

(0.0508) 
     
Zone C 
Puerulus index 

 
0.9979 

(0.0314) 

 
0.9925 

(0.0330) 

 
 

 

 
Puerulus index + 
intervention 

 
0.9491 

(0.0318) 

 
0.9121 

(0.0348) 

 
0.1464 

(0.0611) 

 
0.2300 

(0.0671) 
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6.0 A catch rate-environment time series approach to the 
prediction of catches taken from the Esperance 
southern rock lobster fishery 

 
M. D. Craine , Y. W. Cheng  and J. Prescott  a b c

a WA Marine Research Laboratories, Department of Fisheries, Western Australia. 
b WACEIO, Curtin University of Technology. 
c South Australian Research and Development Institute (SARDI), South Australia. 
 

6.1 Abstract  
Catches for the southern rock lobster fishery in the Esperance area (  to ) of 
Western Australia are a challenge to predict. Southern rock lobsters at the puerulus stage are 
difficult to find, and a stock assessment is economically infeasible. The CPUE series for the 
fishery has varied widely between 0.50 and 1.17 kg/pot lift in the past. The fishery has 
experienced catch rates of below 0.91 kg/pot lift for the past eight seasons. This paper 
explores the possibility of catch prediction using existing monthly catch and fishing effort 
data from relevant fishing regions in South Australia and Western Australia, and an 
environmental variable. We show that annual catches are highly correlated with lagged 
interactions involving catch rate data in May from the central area of the northern zone of the 
South Australian southern rock lobster fishery and a yearly moving average of the Fremantle 
Sea Level indicator. The formulation emulates the biological possibility that larvae may be 
transported from South Australian waters to the Esperance area during a one to two year 
timeframe. This assessment highlights some interesting relationships that need to be 
confirmed with further analyses and an understanding of the source of recruitment for WA 
populations. Monthly catches are predicted using a seasonal ARIMAX model, where the 
transfer function is defined by the annual nonlinear regression specification. The model is 
validated by forecasting the latest three fishing seasons (1999/2000 to 2001/2002) of catches. 
The transfer function component is highly significant for the seasonal ARIMAX model. 
Further techniques to enhance the error forecasts are discussed. 

E120° E125°

 
Keywords: Time series; ARIMAX; Nonlinear regression; Fishery.
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6.2 Introduction 
One of the main issues concerning the southern rock lobster (Jasus edwardsii) fishery off the 
Western Australian coast is the absence of puerulus index data as a biological predictor of 
annual catches. Catches of the WA southern rock lobster fishery are taken from November to 
June along the south coast of WA, with peak fishing occurring from December through 
February. Reliable data dates from 1975/76 to 2001/02; less reliable data dates back to 
1968/69. Catches are greatest in the Esperance area, defined from to . A plot of 
historical annual southern rock lobster catch data from the Esperance area of the Western 
Australian fishery reveals significant time trends (Fig. 6.1). Annual catch-per-unit-effort 
(CPUE) data for the Esperance fishery exhibit a widely fluctuating distribution with a 
decreasing trend over the last eight years (Fig. 6.1). Time-lagged monthly catch rates 
measured from the Esperance fishery cannot explain the variation in annual CPUE data in 
Esperance. We therefore seek to explain annual catches adjusted for fishing effort by 
dynamically constructed catch rate-environment indices from South Australia. Lagged 
monthly catch rates may indicate annual variations in spawning activity from relevant regions 
in South Australia. Environmental data provide information on currents, wind speed and other 
effects on larval recruitment. 

E120° E125°

 
It is hypothesized that a proportion of the recruitment of Jasus edwardsii in the Western 
Australian fishery is likely to be independent of the WA brood stock (Melville-Smith, 1999). 
Upon inspection of the South Australian fishery data, which is available for as many seasons 
as the Western Australian data, we found that the central northern zone of South Australia 
(Fig. 6.2) is a good candidate for recruitment. The bulk of the southern rock lobster catches in 
the northern zone of the South Australian fishery is also taken from the central region. The 
duration of larval development for southern rock lobsters near New Zealand is said to be at 
least 12-22 months (Lesser 1978, Booth 1994). Research by Pashkin (1968) and Natarov and 
Pashkin (1968) indicated that winter currents could direct larvae from the northern zone of 
South Australia across the Great Australian Bight to the Esperance area during certain years. 

 
The focus of this paper is the modelling of annual and monthly catches of the southern rock 
lobster in the Esperance area using nonlinear regression and ARIMA transfer function time 
series analysis, respectively. The annual models are derived on the basis of fisheries science 
theory, combining fishing effort data with lagged monthly catch rates and environmental data. 
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Figure 6.1. The annual southern rock lobster catch and CPUE series from 1975/76 to 2001/02 
for the Esperance area. 

 FRDC Project No. 1999/155  81



 

 
 

6.3 Methods 
Following the methodology of DeLury (1947, 1951), a theoretical annual catch-abundance-
effort equation is 

 
( )[ ] tttt qENC 1exp1 ε+−−= ,  (1) 

 
where  is the catch subject to abundance  and fishing effort  in season t (available 
from 1975/76 to 1998/99), 

tC tN tE
Rq ∈  is a catchability estimate and ( )2

11 ,0~ σε Nt . Finding initial 
points generally makes q difficult to estimate, so a fourth order Taylor series approximation in 

 of (1) is used, viz. ( tqE )
 

tttttt EqEqqENC 2
2

2

242
exp ε+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−= , (2) 

 
where ( )2

22 ,0~ σε Nt . Another advantage of (2) is that the nonlinear component can be 
dropped if q is not significantly different from zero. For q small in magnitude, the estimation 
becomes linear in , viz. ( tqE )
 

tttt qENC 3ε+= ,   (3) 
 
 

 
 

Figure 6.2. Map of the northern fishing zone of South Australia. 

 FRDC Project No. 1999/155  82



 

where ( )2
33 ,0~ σε Nt . Since  is unknown, (3) is more parsimonious than (2). (3) is a first 

order Taylor approximation of (1). 
tN

 
Estimation of  is the next consideration of the model formulation. We assume a Beverton-
Holt mortality function over an l to 

tN
( )jl +  year time lag ( )0>j , where data availability 

restricts us to only consider  for the analysis in this paper, viz. 1=j
 

[ ]
1*

*

+
=

−

−

lt

lt
t bN

NNE α .   (4) 

 
Here,  is the expectation of , [ tNE ] tN α  and  are parameters to be estimated, and  is a 
population abundance estimate lagged l and 

b *
ltN −

( )1+l  years. Much of the relevant environmental 
information is contained in the Fremantle Sea Level (Pearce and Phillips, 1988), denoted , 
which is calculated as a yearly aggregate of the monthly data. It is thus proposed that the 
Fremantle Sea Level is an indicator of environmental factors on the first year of larval life of a 
southern rock lobster caught in Esperance. A model for  is therefore 

tS

*
ltN −
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SAtC ,  and  are monthly catches and fishing efforts, in season t, respectively, taken from 

one or a combination of the western, central or southern areas of the northern zonal fishery of 
South Australia. The selection of region and month, or combinations of months, is based on 
the best correlation between those catch rates and the total catches in l to (  years 
henceforth. 

SAtE ,

)1+l
ϕ  describes the year-class proportion for lobsters originating from the chosen 

area of the northern zone of South Australia. SAω  describes the strength of the effect of the 
Fremantle Sea Level average on the catches. The denominators in (5) are expressed in 
parsimonious form in the same way that (2) approximates (1).  is therefore a nonlinearity 
parameter to be estimated. 

SAq

 
The model that is used to describe catches of southern rock lobster in the Esperance area is 
thus 
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where 
 

1
);(

+
=

bx
xbxf     (7) 

 
is the Beverton-Holt mortality formulation and ( )2,0~ ση Nt . Following the methodology of 
Box and Jenkins (1976), a seasonal autoregressive integrated moving average transfer 
function (SARIMAX) model is used to fit the monthly catches for the southern rock lobster 
fishery in the Esperance area, viz. 
 

( ) tmSASAtttm qqbaSEgc ζωϕ += ,,,,,;, . (8) 
 
Here,  is the monthly catch in fishing season t (available from 1975/76 to 1998/99) and 
month m (from November to June). g is the (annual) expectation of (6) replicated over the 
eight fishing months of season t. The parameter a becomes the transfer function coefficient. 
The other parameters defining g are estimated using (6). 

tmc

tmζ  are seasonal ARIMA (SARIMA) 
errors defined as 
 

( ) ( )
( ) ( ) tmdDtm BB

BB ξ
φ

θζ 8
8

8

Φ∇∇
Θ

= .  (9) 

 
where ΘΦ  and ,, θφ  are polynomials of finite order , respectively, of the 
backward difference operator B, defined by 

RPrp  and ,,
( ) ( )1−⋅=⋅ ttB .  and  are 

seasonal and nonseasonal backward difference operators, respectively. D and d are seasonal 
and nonseasonal orders of differencing, respectively, selected as the minimum non-negative 
integers required for the data to be seasonally and nonseasonally stationary. 

8
8 1 B−=∇ B−=∇ 1

tmξ  is assumed to 
be a zero mean white noise process. The notation for (9) is thus SARIMA . 
Order selection of the model for (8) is calculated by minimization of the AICc statistic 
(Hurvich and Tsai, 1989), which is a bias-corrected version of the AIC (Akaike, 1974). 95% 
confidence intervals are calculated based on the assumption that the SARIMA errors 

( ) ( 8,,,, RDPrdp × )

tmζ are 
normally distributed. The significance of the transfer function component g in (8) is tested by 
comparing residual sums of squares for (8) and for the corresponding SARIMA model 
(without the transfer function). 
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6.4 Results 
Catch rates taken from one of three northern zones in South Australia or additive 
combinations of those zones were tested in model (6) by individual fishing months or 
consecutive combinations of fishing months. Our best measure for a settlement index as 
specified in (6) is obtained by calculating central northern South Australian catch rates in 
May. Since May occurs near the end of the fishing season, these catch rates may be 
approximating unfished biomass available for spawning throughout winter and spring. In 
addition, it was found that the sex ratio for the May catches from 1993/94 to 1996/97 in the 
central northern zone of South Australia was heavily biased towards females (Prescott et al. 
1998).  
 
Lags of six and seven years were found to be the best combination for explaining annual catch 
variation. This result approximately agrees with Booth’s (2000) New Zealand estimates which 
state that “most female J. edwardsii take 7-11 years to reach legal size, and males 5-7 years.” 
Von Bertalanffy (1938) growth estimates were calculated for Jasus edwardsii near Stewart 
Island, New Zealand using tagged samples (McKoy 1985). According to those estimates, the 
minimum legal sizes of 96 mm for males and 92 mm for males would be attained at about 6 
years after settlement. The minimum legal size for Jasus edwardsii in the Esperance area is 
98.5 mm for males and females. Given that southern rock lobsters may mature approximately 
one year earlier in the warmer waters of the southern coast of Western Australia or the 
northern zone of South Australia, the six and seven year lags are in approximate agreement 
with these results. 
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Figure 6.3. CPUE for the Esperance fishery from 1982/83 to 2001/02 versus catch rates from 
South Australia lagged six to seven years. 
 
 
q in (2) was found to be insignificantly ( 22.0=p ) different from zero. Table 6.1 summarises 
the parameter estimates for a, b, ϕ ,  and SAq SAω . SAω  is negative, which indicates that a 
stronger west-to-east current may restrict larvae from flowing against the current. The 
nonlinear function on the right-hand side of (6) is highly significant ( ). Figure 3 
depicts the relationship between annual Esperance CPUE and May catch rates lagged six and 
seven years from the centre of the northern zone of South Australia. (6) is fitted using the data 
from 1982/83 to 1998/99 (17 fishing seasons) and forecasts are made from 1999/00 to 

0001.0<p
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2001/02 (Fig. 4). The forecasts reveal a large decrease in catches from a near-peak in 1999/00 
to pre-1992 levels in 2001/02. Table 6.2 summarizes the improvement in the annual catch 
models. 
 
The SARIMAX model (8) is used to predict and forecast monthly southern rock lobster 
catches in the Esperance area (Fig. 6.5). The SARIMA component that best fits the monthly 
catch data in (8) is SARIMA ( ) ( )81,1,10,0,1 × . The estimated parameters (with standard errors 
in parentheses) are  for the nonseasonal autoregressive term, and 

 and 
( 080.0479.01̂ =φ )

)( 140.0276.0ˆ
1 −=Φ ( )131.0429.0ˆ

1 −=Θ  for the seasonal autoregressive and moving 
average terms, respectively. The transfer function component of this seasonal time series 
model is highly significant ( ) with (linear) coefficient of 0.604 and asymptotic 
standard error 0.097. The 

0001.0<p
2R  value for SARIMAX model (8) is 85.4%, compared with 76.3% 

for the equivalent SARIMA model. GARCH effects appear to be marginal in the monthly 
time series. For example, the McLeod and Li (1983) test with 24=L  gives a p-value of 0.050. 
The 1999/00 to 2001/02 forecasts for monthly catches are reliable (Fig. 6.6) with 5 out of 24 
actual data points outside the 95% confidence intervals. Model (8) has forecast a decreasing 
trend in annual catches from 1999/00 to 2001/02, in line with the actual fishing realizations 
during these three years. Catches for fishing season 2000/01 were lower than expected, 
similar to the annual forecasts in Fig. 6.4.   
 

6.5 Discussion 
Our analysis shows that catches are correlated with relevant lagged South Australian catch 
rates and environmental data. Thus if South Australian catch rates for the southern rock 
lobster fishery in the northern zone continue to drop, it would not be surprising for the 
Esperance fishery to face similar difficulties. Both annual and seasonal models predicted the 
significant reduction in catches from 1999/00 to 2001/02. Although our models imitate a 
hypothesized recruitment process, there is very little biological evidence of the larval 
transportation phenomenon. Further investigations may be needed to show that the Jasus 
edwardsii fishery in Western Australia is not self-contained.  
 
The Fremantle Sea Level was used to indicate the environmental factors governing the current 
flow. However, the effects of water currents, water temperatures and upwelling are probably 
more complicated in reality than the modelling of the single data stream measured at 
Fremantle. 
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Figure 6.4. Annual catch-settlement index relationship for the Esperance area with forecasts 
from 1999/00 to 2001/02. 
 
The diagnostic residual time series for SARIMAX model (8) shows the presence of 
conditional heteroscedasticity. If the residuals are split into two subsets of equal length, 
namely (i) from November 1982 to February 1990 and (ii) from March 1990 to June 1997, 
then the ratio of the variance of series (ii) to the variance of series (i) is 4.1. Using an F-test, 
this difference is highly significant ( 0001.0<p ). The residuals plot shows that the variance 
undergoes a change in regime from about 1990 onwards. This timeframe coincides with the 
simultaneous introduction of GPS technology and live tanks to stock the lobster product. 
Before 1990, the lobsters were placed in freezers and stocking space was limited. From 1990 
onwards, live tanks have availed more product storage space and expanded the international 
export market. Thus, a further model of the Esperance southern rock lobster monthly catches 
may include a SARIMAX model with two levels of variance. If the time series components of 
the model were found to involve seasonal or nonseasonal moving averages, however, the 
computational estimation process for this type of model would potentially be difficult. 
 
Another problem observed during the analysis was that the assumption of normally 
distributed SARIMA errors resulting in the 95% confidence intervals falling in the negative 
catch region. A block bootstrap of the stationary, stochastic seasonal ARMA component was 
carried out, but there was very little improvement. A multiplicative error modelling approach 
is also possible as follows. Replace the additive stochastic SARIMA component on the right-
hand side of (8) by a non-negative multiplicative error term from a distribution such as the 
lognormal density function. Then the 95% confidence intervals are theoretically and 
practically more valid. However, taking transformations (e.g. logarithmic) of the catch and 
fishing effort data may not preserve the behaviour of the autoregressive and moving average 
processes. Transformations may also lead to difficult estimation problems not least because 
there are zero catches in the southern rock lobster data. 
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Figure 6.5. Predictions from 1984/85 to 1998/99 and forecasts from 1999/00 to 2001/02 by 
(8) of Esperance southern rock lobster monthly catches.  
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Figure 6.6. Forecast monthly catches (solid line) from 1999/00 to 2001/02 and 95% 
confidence intervals (dotted lines) assuming normal errors. 
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Table 6.1. Parameter estimates with standard errors for the nonlinear regression model 
specified by (6). 
 

 â  b̂  ϕ̂  SAq̂  SAω̂  
Estimates 4.91 (1.17) 2.94 (1.13) 0.73 (0.11) 40.1−  (0.13) 070.0−  (0.016)

 
 
 

Table 6.2. 2R  values for model subsets of (6). 
 
  

2R  
Number of  
parameters 
in model 

 
Problems with model 

Effort 87.0% 1 Time trends in residuals 

Effort-recruitment 91.9% 4 1994/95 catch unexplained 
( 2  std. err.) −<

Effort-recruitment-environment 97.0% 5  
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7.0 Modelling the spatial distribution of the prawn 
fisheries in Shark Bay, Western Australia, by seasonal 
autoregressive moving average models 
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7.1 Abstract 
The Shark Bay Prawn (SBP) Managed Fishery is bounded by the Ningaloo Marine Park in the 
north and a point just below Zuytdorp Point in the south, including waters within Shark Bay 
below this latitude. It is the largest prawn fishery in Western Australia. The SBP fishery 
targets two major species - king and tiger prawns. The catch in 2000 was 2250 tonnes, which 
was comprised of 1555 tonnes of king prawns and 689 tonnes of tiger prawns and valued at 
around $40 million. Seasonal autoregressive moving average (SARIMA) time series models 
are used to model the spatial distribution of king and tiger prawns in the seven regions 
extended from West Peron to Quobba. Thirty years of monthly catch and effort logbook data 
are fitted to investigate the spatial autocorrelations over the seven regions. The SARIMA 
model order is consistently  over all areas for king catches, tiger catches and 
total catches, and ( )  for total monthly catch rates. The monthly autoregressive 
coefficients for the SARIMA models are high over the main spawning regions, and low 
elsewhere. A SARIMA transfer function model was used to study the effect of fishing effort 
on the total monthly catches. The variability in fishing efficiency among the areas is 
explained. Multivariate contemporaneous SARIMA (CSARIMA) models are tested and 
validated for the total monthly catch rate data to investigate correlations among the seven 
fishing areas. The main result is that the two Denham Sound areas form a separate sub-fishery 
from the sub-fishery containing the five zones northward of Peron Point. 

( ) ( )121,1,11,0,1 ×
( )121,1,11,0,2 ×

 
Keywords: prawn; fishery; time series; SARIMA. 
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7.2 Introduction 
Prawning is Western Australia’s third most valuable commercial fishing industry, (after rock 
lobster and pearling) and is worth around $62 million annually. Prawns are trawled in several 
managed fisheries off the Western Australian coast (Figure 7.1). There have been small 
subsistence prawn fisheries around Perth and the Peel Inlet since settlement in 1829, but 
serious commercial prawning did not begin in WA until the early 1960s. The commercial 
prawning industry in Shark Bay (Figure 7.2), WA takes primarily the western king prawn 
(Penaeus latisulcatus) and brown tiger prawn (P. esculentus), along with by-catch such as the 
blue endeavour prawn (Metapenaeus endeavouri), squid, scallops and crabs. 
 
Figure 7.1. Main commercial prawn fishing 
areas in Western Australia. 

Figure 7.2. Location  of management 
zones in Shark Bay. 
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Careful management of the fishing effort has ensured that breeding stocks are maintained, 
which assists in maintaining stable prawn stocks and catches. Management of the prawning 
industry in Western Australia is complex and arrangements can vary annually to maintain 
breeding stocks and to optimise the value of the catch from each fishery. Management aims 
include sustaining prawn stocks and maintaining economic viability. Management measures 
have produced an increased proportion of large (and more valuable) prawns. Currently, 
management priority is on the tiger prawn stocks which are vulnerable to overfishing in multi-
species fisheries. However, the mainstay of the Exmouth Gulf and Shark Bay prawn fisheries 
is the king prawn, which is caught in greatest quantity. 

Catches of prawns can be highly variable in Shark Bay and other areas, due to environmental 
factors such as water temperatures, cyclones, and broad-scale oceanographic features. King 
prawns dominate the catch (69%), ranging between 1110 tonnes and 1656t and averaging 
1404t, during the period 1995-2001. Tiger prawns make up the rest of the catch (31%), 
ranging 371t-784t and averaging 617t during the same period. Tiger prawn annual catches 
have varied from an average of 600t in the 1970s to 300t in the 1980s (Figure 7.3). Research 
assessments suggested that fishing pressure on the tiger prawn stock contributed to the lower 
catches. In 1989, management measures were introduced to reduce fishing effort on the 
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juvenile tiger prawns and enhance the spawning stock. These, combined with favourable 
environmental conditions, resulted in the annual catches returning to the 600t average from 
1995 to 2000. 

 

Figure 7.3. The annual catch of prawns in Shark Bay from 1962 to 1998. 

 
 Fishing Management 

Because the Western Australian prawning industry did not really develop until the late 1960’s, 
the Department of Fisheries researchers and managers were able to develop and implement a 
variety of fishing controls and modern management measures to ensure prawn stocks were not 
over-fished. These controls aimed at safeguarding the long-term sustainability of prawn 
stocks, improving quality, and working with industry members to maintain high economic 
returns from these fisheries. 

Fishing controls employed in managing the prawn fisheries include:  

• seasonal closures (prawns are normally fished between March and November, with 
fishing closed during Summer).  

• temporary closures of some areas within each fishery to protect spawning stocks and 
increase the proportion of larger export grade prawns in the catch,  

• nursery areas in which trawling is banned to protect habitat,  

• limiting vessel numbers and licences, and  

• trawl gear and vessel restrictions (covering vessel size, net head-rope lengths and mesh 
size specifications).  

A number of buy-back schemes have operated in Exmouth, Shark Bay and Onslow. These 
schemes have removed boats from these fisheries, with part of the licence fees for boats which 
remain going towards the purchase and cancellation of licences. 
‘Moon closures’ in Shark Bay and Exmouth Gulf involve closing the fishery for three to five 
nights around the full moon. The closures reduce the proportion of soft, newly-moulted 
prawns in the catch and improves the efficiency of the fleet. Other benefits are improved 
vessel maintenance and a better social or family life for crews.  

 
Seasonal autoregressive integrated moving average (SARIMA) time series models have 
proven more accurate than many other modelling methods for the prediction of monthly 
fisheries catch or catch per unit effort (CPUE) data (Lloret et al. [7], Stergiou [11], Noakes et 
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al. [8], Stocker and Noakes [12], Saila et al. [9]). These methods are very time conserving and 
need not use any biological data. It is shown that monthly catches and catch rates of king and 
tiger prawns in Shark Bay can be reliably predicted by SARIMA models. Estimates of fishing 
efficiency are calculated for each area using a SARIMA transfer function model 
(SARIMAX). The correlation structure of catch rates over the eight fishing areas is examined 
and estimated. Thus, the spatial structure of the fishery can be better understood.  
 
The approach in this paper is contemporaneous by assuming that catches or catch rates by 
area are correlated at the same time. Furthermore, the model order is kept the same over all 
areas to allow for comparison of relevant parameter estimates over the different regions. 
 

7.3 Methods 
SARIMA models are fitted to 31 years of monthly king prawn catches, tiger prawn catches 
and combined species catch rates over the eight fishing regions of Shark Bay. Area A contains 
very little to no catch each year, so it is included in the analysis only for completeness, thus 
leaving seven main fishing regions. The behaviour of these time series may be predicted by 
estimating the parameters of the SARIMA ( ) ( )12,,,, QDPqdp ×  models, where p and P are the 
order of nonseasonal and seasonal autoregressive parameters, d and D are the order of 
nonseasonal and seasonal differencing, and q and Q are the order of nonseasonal and seasonal 
moving average parameters. d and D are chosen to be the minimum non-negative integers 
required to achieve stationarity for all areas. p, P, q and Q are chosen by the ACF and PACF 
of the appropriately differenced series as the minimum non-negative integers required for the 
residual series to be white noise processes over all areas. This differs to the AIC selection 
method of Akaike [1], however the suggested method is more parsimonious across all areas. 
Thus, the model selection parameters are fixed over all fishing areas.  
 
The variance-covariance matrix of the residual series of the catch rate models for the seven 
areas is contemporaneously calculated to understand how the catches are spatially correlated. 
This multivariate approach is contemporaneous because the correlations between are 
significant primarily at the same time, but at a much lesser extent at lagged monthly intervals. 
Contemporaneous multivariate models have been used in water resources by Salas et al. [10] 
and Hipel [6], and some contemporaneous ARMA applications were researched in Camacho 
[2] and Camacho et al. [3], [4]. 
  
SARIMAX models are fitted to the monthly combined species catches, where the exogenous 
variable is monthly fishing effort. The fishing efficiency may thus be calculated for each area. 
Total monthly catch and fishing effort data are linearly related for all areas. Therefore, the 
fishing effort is entered into the SARIMAX model as a linear, additive variable. The 
significance of the fishing effort variables over each area is calculated using a likelihood ratio 
test. 
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7.4 Results 
In most cases, the time series required seasonal differencing to achieve stationarity. The 
SARIMA model order for the king prawn catches, tiger prawn catches and combined species 
catches with fishing effort were of the form ( ) ( )121,1,11,0,1 × , while the order for the combined 
species catch rates was ( ) . The coefficients for the SARIMA king and tiger 
prawn catch models, SARIMAX combined species catch model with fishing effort, and 
SARIMA catch rate model are tabulated in Tables 7.1 through 7.4, respectively. The king 
prawn, tiger prawn and catch rate model predictions are illustrated in Figures 7.4 through 7.6. 
The fishing effort coefficients for the SARIMAX combined species catch model suggest that 
fishing is the most efficient throughout the season in area F (Figure 7.2), but the least efficient 
in the Denham Sound areas G1, G2 and G3 (Figure 7.2). 

( )121,1,11,0,2 ×

 
We observe that the seasonal autoregressive coefficients are insignificant or small in 
magnitude. This means that catches or catch rates are affected by catches and catch rates up to 
12 months previously, but no longer. This agrees with the known biological properties of the 
species, since prawns mature at about 10-12 months of age. The spawning occurs in offshore 
waters, larvae drift shoreward to shallow, hypersaline waters, and the juveniles develop until 
physiological changes demand they move back to oceanic waters to spawn, completing their 
life cycle. At the end of this migration of juvenile prawns, the prawns enter the trawl grounds 
where they can first be caught commercially. The seasonal moving average coefficients were 
significantly negative in all cases, which is a sign of fishing pressure on the prawn fishery in 
Shark Bay. 
 
The contemporaneous correlation matrix of the residuals (Table 7.5) given by the combined 
species catch rate model suggests that fishing through areas B to F are significantly correlated, 
as are G3 with G1+G2. However, there is a distinct lack of correlation between areas B to F 
and G1+G2+G3. Furthermore, there was a significant lag 3 correlation for the catch rate series 
in fishing areas G3 and G1+G2. Thus, we conclude that the dynamics of the fishing in 
Denham Sound (G1 to G3) is separate from the remainder of the fishery (B to F). 
 

7.5 Discussion 
The seasonal ARIMA modelling methods produce reliable predictions for the seven main 
fishing areas of Shark Bay. Time series models also enable the prediction of the 1981 season 
catches and catch rates, of which the data is missing in entirety. Another advantage of 
SARIMA time series models is that they do not require biological information. However, the 
predictions remain at least as accurate using time series models when compared to the 
predictions made by age-length structured models (Hall [5], ch. 3).  
 
An unbiased correlation matrix of the catch rates across all areas was estimated using a 
SARIMA time series model. Without a time series analysis, it would not have been possible 
to quantitatively verify that the Denham Sound sub-fishery is uncorrelated with the remainder 
of the Shark Bay fishery. This information is helpful for fishery management purposes, as it is 
known that king and tiger prawns spawn in the Denham regions. The Denham Sound area 
may therefore be considered a self-confined fishing region to be monitored from year to year. 
To enable future planning, research is needed into the relationship between marketing changes 
and fleet dynamics as the patterns of fishing effort may change according to the product 
demanded by the market. A recent shift in marketing requirements has meant fishers are 
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targeting larger sizes of prawns. This has had the effect of reducing overall annual tonnage 
caught from the fishery but may increase its value. A study of the market prices over time 
may generalize and improve the SARIMA or SARIMAX models. 

Further studies of environmentally driven changes in recruitment, such as the effects of the 
Leeuwin Current and tide cycles may prove useful in making future catch predictions. These 
environmental variables may be incorporated as exogenous variables in the seasonal ARIMA 
models. 
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Table 7.1. SARIMA model coefficients for king prawn catches in Shark Bay. 
 

Species Area SARIMA model ar1 ma1 sar1 sma1 
Kings A ( ) ( )121,1,11,0,1 ×  0.00 0.02 04.0−  00.1−  

Kings B ( ) ( )121,1,11,0,1 ×  0.13 0.12 12.0−  82.0−  
Kings C ( ) ( )121,1,11,0,1 ×  0.76 71.0−  0.24 91.0−  
Kings D ( ) ( )121,1,11,0,1 ×  0.53 0.03 0.18 80.0−  
Kings E ( ) ( )121,1,11,0,1 ×  0.56 20.0−  0.29 85.0−  
Kings F ( ) ( )121,1,11,0,1 ×  02.0−  0.30 0.33 82.0−  
Kings G3 ( ) ( )121,1,11,0,1 ×  0.41 02.0−  0.00 79.0−  
Kings G1+G2 ( ) ( )121,1,11,0,1 ×  0.35 0.00 0.06 63.0−  

 
 
Table 7.2. SARIMA model coefficients for tiger prawn catches in Shark Bay. 
 

Species Area SARIMA model ar1 ma1 sar1 sma1 
Tigers A ( ) ( )121,1,11,0,1 ×  0.00 0.35 0.17 71.0−  
Tigers B ( ) ( )121,1,11,0,1 ×  0.48 21.0−  22.0−  54.0−  
Tigers C ( ) ( )121,1,11,0,1 ×  0.78 71.0−  0.17 86.0−  
Tigers D ( ) ( )121,1,11,0,1 ×  0.30 10.0−  06.0−  79.0−  
Tigers E ( ) ( )121,1,11,0,1 ×  0.42 10.0−  14.0−  64.0−  
Tigers F ( ) ( )121,1,11,0,1 ×  0.31 0.21 0.18 91.0−  
Tigers G3 ( ) ( )121,1,11,0,1 ×  0.49 22.0−  0.13 88.0−  
Tigers G1+G2 ( ) ( )121,1,11,0,1 ×  0.52 20.0−  0.20 61.0−  
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Table 7.3. SARIMAX model coefficients for combined species catches in Shark Bay with 
exogenous fishing effort variable. 
 

Species Area SARIMA model ar1 ma1 sar1 sma1 Transfer 
function 

Total A ( ) ( )121,1,11,0,1 ×  0.11 22.0−  0.06 89.0−  7.14 (0.07) 
Total B ( ) ( )121,1,11,0,1 ×  0.32 0.11 12.0−  58.0−  9.77 (0.21) 
Total C ( ) ( )121,1,11,0,1 ×  0.42 0.07 0.13 91.0−  7.63 (0.21) 
Total D ( ) ( )121,1,11,0,1 ×  0.55 07.0−  0.14 79.0−  8.41 (0.35) 
Total E ( ) ( )121,1,11,0,1 ×  0.57 10.0−  0.03 66.0−  9.34 (0.41) 
Total F ( ) ( )121,1,11,0,1 ×  0.40 0.05 0.13 82.0−  13.25 (0.63) 
Total G3 ( ) ( )121,1,11,0,1 ×  0.34 0.10 0.09 79.0−  6.46 (0.22) 
Total G1+G2 ( ) ( )121,1,11,0,1 ×  0.38 0.04 0.10 82.0−  6.11 (0.22) 

 
 
Table 7.4. SARIMA model coefficients for combined species catch rates in Shark Bay. 
 

Species Area SARIMA model ar1 ar2 ma1 sar1 sma1 
Total A ( ) ( )121,1,11,0,2 ×  06.0− 0.01 0.18 0.30 75.0−

Total B ( ) ( )121,1,11,0,2 ×  0.19 0.20 0.07 09.0− 66.0−

Total C ( ) ( )121,1,11,0,2 ×  0.20 0.28 0.07 06.0− 65.0−

Total D ( ) ( )121,1,11,0,2 ×  08.0− 0.43 0.60 09.0− 62.0−

Total E ( ) ( )121,1,11,0,2 ×  0.28 0.18 0.06 09.0− 49.0−

Total F ( ) ( )121,1,11,0,2 ×  0.17 0.18 0.28 0.07 70.0−

Total G3 ( ) ( )121,1,11,0,2 ×  1.04 15.0−  80.0− 19.0− 36.0−

Total G1+G2 ( ) ( )121,1,11,0,2 ×  0.00 0.13 0.35 0.05 80.0−

 
 
Table 7.5. Contemporaneous correlation matrix of residuals from the combined species catch 
rate model. 
 

 A B C D E F G3 G1+G2 
A 1.00 0.07 0.03 02.0−  05.0−  03.0−  02.0−  0.05 
B  1.00 0.42 0.34 0.37 0.28 0.05 0.12 
C   1.00 0.33 0.32 0.27 0.00 0.14 
D    1.00 0.66 0.47 0.17 0.16 
E     1.00 0.74 0.07 0.10 
F      1.00 0.17 0.07 

G3       1.00 0.32 
G1+G2        1.00 
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Figure 7.4. Catch predictions for the king prawn fishery in Shark Bay using the 
SARIMA  model. ( ) ( )121,1,11,0,1 ×
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Figure 7.5. Catch predictions for the tiger prawn fishery in Shark Bay using the 
SARIMA  model. ( ) ( )121,1,11,0,1 ×
 

Area A

Time

C
at

ch
 (t

on
ne

s)

0.0
0.4
0.8

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01

Area B

Time

C
at

ch
 (t

on
ne

s)

0
20
40
60

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01

Area C

Time

C
at

ch
 (t

on
ne

s)

0
20
40

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01

Area D

Time

C
at

ch
 (t

on
ne

s)

0
20
40
60
80

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01

Area E

Time

C
at

ch
 (t

on
ne

s)

0
20
40
60

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01

Area F

Time

C
at

ch
 (t

on
ne

s)

0

100

200

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01

Area G3

Time

C
at

ch
 (t

on
ne

s)

0

10

20

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01

Area G1+G2

Time

C
at

ch
 (t

on
ne

s)

0
10
20

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01

 

 FRDC Project No. 1999/155  99



 

Figure 7.6. Catch rate predictions for the combined species prawn fishery in Shark Bay using 
the SARIMA ( )  model. ( )121,1,11,0,2 ×
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8.0 Time series modelling for south and west coastal 
finfish fisheries of Western Australia and implications 
for management 

 
E. K. M. Laia, Y. W. Chengb  and  M.  CraineaP
aWA Marine Research Laboratories, Department of Fisheries, Western Australia  
bWACEIO, Curtin University of Technology  
 

8.1 Abstract 
In recent years, the allocation of fish resources between the commercial and recreational 
fishing sectors and within the commercial sector has become a high priority issue for fisheries 
management in Western Australia.  Recovery of total management costs (stock monitoring 
research, compliance, etc.) from small-scale commercial fisheries is unlikely to be viable due 
to their lower revenue levels and profit margins compared with the larger, more productive 
commercial fisheries.  The lack of biological, environmental and economic information for 
some finfish species make them favourable targets for the use of time series modelling in fish 
stock assessment.  Time series techniques were applied to monthly commercial catch data for 
twelve important finfish species in the west coast and the south coast regions of Western 
Australia from 1976 to the present.  Seasonal trends in the catch for these species were 
observed. Seasonal autoregressive integrated moving average (SARIMA) models were 
identified by analysing the autocorrelation function (ACF) and partial autocorrelation function 
(PACF).  These finfish fisheries follow an ARIMA(1,1,1) process in the seasonal component.  
The Akaike information criterion (AIC) has been used for non-seasonal model component 
selection.  Eleven out of 12 finfish fisheries on the west coast follow a 
SARIMA  process.  Based on fitting the data from 1976 to 1998, forecasts of 
monthly catches for 1999 and 2000 are compared with the actual figures. From the result of 
the transfer function model estimation, the effect of fishing effort is significant for most of the 
west coast finfish fisheries, but not for the south coast. In the long term, the west coast region 
is likely to experience the greater risk of fishing pressure, and should be given preferential 
management priority compared with the south coast fisheries.  Fishing effort can be used as 
an effective input control for most of the finfish fisheries in this region.  On the south coast, 
the total allowable catch can be used as an effective output control for the majority of the 
finfish fisheries. 

( ) ( )121,1,10,0,1 ×

  
 
Keywords:  input control; output control; SARIMA; ACF; AIC.  
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8.2 Introduction 
Over the last ten years, the coastal finfish production in Western Australia (WA) has on 
average been worth about $40 million dollars each year.  Consumption of this resource has 
mainly been domestic ([15]).  The fish resources also provide fish stock for fishing bait and 
recreational angling.  With the increasing pressure from a growing population, coastal 
development and demands of competing user groups such as the commercial, recreational and 
conservation sectors, the majority of fish stocks are now fully exploited.  To maintain both 
sustainability and community values around the use of WA’s fisheries resources, effective 
fishery management is required.  
 
In fisheries management, allocation of fish resources can be made using the four common 
management tools (Charles, [1]): 

• Input controls – regulating what fishers bring into the fishing process, such as 
regulating the fishing gear types and the amount of gear to be used, restricting the 
number of fishers, restricting the time when access to the fishing ground is allowed.  

• Output controls – regulating what comes out of the fishing process such as restricting 
the catch in form of a total allowable catch, setting up fish size limits and bag limits 
for recreational catch.  

• Ecologically based management – establishing marine protected areas, setting up 
legislation to protect endangered species. 

• Indirect economic instruments – putting taxes on catches and licences. 
 
To make use of such management tools, a variety of information is needed for effective 
decision-making.  A knowledge of the fishery, historical levels of catch taken by each user 
group, the species biology, yield status, locality of the catch, information relating to important 
regional employment, economic and social lifestyle issues are all relevant.  Furthermore, 
future trend information on the catch and fishing effort levels, population, coastal 
development, and data on social and economic issues affecting future resource use patterns 
are also necessary. 
 
For small multi-species, multi-gear finfish fisheries, it is very difficult and expensive to 
collect the above data due to the lack of financial support and the diversity of the finfish 
species.  However, the data are essential, in particular, for reporting under the Ecologically 
Sustainability Development (ESD) framework which has recently been adopted by the WA 
fisheries management (Fisher, [4]; Fletcher, [13]).  All commercial, recreational and 
aquaculture fisheries need to be assessed against the ESD objectives with the report made 
available for public comment.  Furthermore, all export fisheries are now (or in the near future) 
required through legislation to have an assessment on their environmental sustainability 
before being granted an export licence.  Therefore, not only the maintenance of the target fish 
stocks is important, but protection of the by-catch or the non-target stocks is also needed.   
 
When there is lack of biological, environmental and economic information to assess the stock 
of a fish species with the traditional quantitative methods, such as the surplus production 
model, and the age and size-structured models, time series modelling is an alternative low 
cost method for estimation.  Various studies indicate that time series modelling is appropriate 
for determining the catch level for those fisheries where biological data are limited (Stergiou 
and Christou, [8]; Stergiou et al.,[9]; Lai et al., [5]).  Furthermore, He and Boggs found that 
transfer function models (TFMs) could be useful for estimating the fisheries impacts on fish 
abundance when only limited commercial data were available (He and Boggs, [14]).  They 
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used TFMs to investigate the impact of different fishing mortality in the Hawaii’s yellowfin 
tuna fisheries.  The basic requirements for using TFMs are that the time series of catch and 
catch-per-unit-effort (CPUE) have to be long term and the variation in catchability and in 
measurement of CPUE are minimal. 
 
In this paper, the usefulness of time series modelling is tested for forecasting the catch levels 
for twelve finfish species in the west and south coasts of WA.  This method is cost effective 
and can make use of the already available commercial catch and fishing effort data alone.  
The S-plus software has all the required functions to fit the series of monthly catch and fishing 
effort data (over 20 years), with seasonal autoregressive integrated moving average 
(SARIMA) models and SARIMA transfer function models (SARIMAX).  The effect of 
fishing effort on the catch has been tested for its significance using the likelihood ratio test.  
Implementation for fisheries management is discussed based on the results of the analysis.   
 

8.3 Methods and materials 
Autoregressive integrated moving average (ARIMA) modelling was developed by Box and 
Jenkins in 1976 (Box and Jenkins, [6]).  It assumes that a time series is a linear combination 
of its own past values and current and past values of a random error term, and the models can 
capture the historic autocorrelation of the data to extrapolate them into the future.  The 
technique applies to stationary time series.  Hence, for a time series which exhibits trends and 
seasonality, first or second-order differencing (non-seasonal and/or seasonal) is required to 
ensure that it is stationary before fitting the model.  A seasonal component is added into the 
ARIMA model when there is a seasonal pattern apparent in the data.  The definition of such a 
model is as follows:- 

Definition 1.  Seasonal Autoregressive Integrated Moving Average (SARIMA)  model 
 
Let { }tY  be a set of observations, each one being related to a specific time t .  Then a time 
series { }tY  is a SARIMA  process with period ( ) ( sQDPqdp ,,,, × ) s  if it satisfies a difference 
equation of the form 
 

                     ( ) ( )( ) ( ) ( ) ( ) t
s

t
Dsds ZBBYBBBB Θ=−−Φ θφ 11  ,   { } ( )2,0~ σΝtZ                   [1] 
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j  and   is the error term.   The parameters tZ

pφφ ,,1 K  are the autoregressive coefficients, PΦΦ ,,1 K  are the seasonal autoregressive 
coefficients, qθθ ,,1 K  are the moving-average coefficients and QΘΘ ,,1 K  are the seasonal 
moving average coefficients.   and D are the degrees of non-seasonal and seasonal 
differencing required to achieve stationarity respectively. 

d

 
When there is other relevant data available, the data can be incorporated into the SARIMA 
model as a transfer function (Brockwell and David, [10]), i.e. 
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    ( ) ( )( ) ( ) ( ) ( ) ( ) t

s
tt

Dsds ZBBXYBBBB Θ=−−−Φ θτφ 11  ,   { } ( )2,0~ σΝtZ                   [2] 
 
where  can be another time series, a constant term, a deterministic function of time, or 
dummy variables to model outliers.  This model is often referred to as SARIMAX model. 

tX

 
The appropriate seasonal component of the model is identified by examining the 
autocorrelation (ACF) and partial autocorrelation (PACF) functions of the time series.  In 
addition, the Akaike information criteria (AIC) is used to choose the best non-seasonal 
component of the model.  Verification of the model is performed through diagnostic checks of 
residuals.  These procedures are performed with the existing functions, such as the functions 
arima.mle and arima.filt, provided by the statistical software S-plus ([16]).  The S-plus 
function arima.mle fits ARIMA models to univariate time series data through Gaussian 
maximum likelihood.  With no missing data, an algorithm similar to that of Ansley (Ansley, 
[2]), which is based on the Choleski decomposition of the covariance of the process Y , is 
used to compute the likelihood.  With missing values present, the likelihood is computed 
using the Kalman filter (Kohn and Ansley, [11]).  The computational time for estimating the 
parameters in the model usually takes a couple of seconds.  

t

 
La

tit
ud

e 

WEST
COAST

SOUTH COAST

Western Australia

110°E 115°E 120°E 125°E

37°S

32°S

27°S

22°S

17°S

Port Hedland

Jurien

Perth

Bunbury

Albany

Esperance

Commercial fisheries data of twelve finfish species caught in the west coast of Western 
Australia, south of latitude 27°S and west of longitude 116°E, and in the south coast, east of 
longitude 116°E, are used in this paper (Figure 8.1).   All of these species can be caught 
throughout the year.  Some of them are the major species for the finfish fisheries in the west 
coast such as sea mullet (Mugil cephalus) and black bream (Acanthopagrus butcheri) for the 
estuarine fishery; while others are the targeted 
species in the south coast, like the Western 
Australian salmon (Arripis truttaceus) and Australian 
herring (Arripis georgianus).  Series of monthly 
catch and fishing effort (days fished) data from 1976 
to 2000 of the selected species are provided by the 
Department of Fisheries, Government of Western 
Australia.  Seasonal pattern and trends can be 
observed from the data.  Monthly catch for the last 
two years 1999 and 2000 is predicted using the 
previous years data with the SARIMA and 
SARIMAX models and compared with the actual 
data.   
 
 

 

Longitude

Figure 8.1. 



 

8.4 Results 
 
The selected SARIMA models fitted to the monthly catches of the twelve finfish species are 
presented in Table 8.1 and Table 8.2.  All of the series were seasonally non-stationary and had 
negative correlation at lag 12.  Hence, the seasonal component of the SARIMA model for all 
of the species was (1,1,1)12, which indicated that the catch at month t  was weighted with the 
catch of the same month a year ago.  The seasonal cycle of the catch was yearly based.  
Winter was the low season for the major targeted species such as the sea mullet, Western 
Australian salmon and Australian herring, while it was the high season for many of the other 
less valuable species.   
 
The non-seasonal component of the model was (1,0,0) for most of the species in the west 
coast (Table 8.1).  This showed that the catch for a month was dependent on the catch for the 
previous month.  The model (1,0,1)x(1,1,1)12 for the herrings and sea mullet showed that the 
catch for a month was not only dependent on the catch for the previous month, but also 
depended on the moving average of the series ended at the previous month.  
 
There were more variations in the model for the south coast (Table 8.2).  The non-seasonal 
component of the model for many of the species was different to that in the west coast.  This 
was due to the trends in the catch levels being quite different in the two regions for the same 
species. For example, the trend of the monthly catch data for cobbler (Cnidoglanis 
macrocephalus) was gradually decreasing in the west coast, while the trend was fluctuating 
seasonally in the south coast.  The resulting model indicated that the catch for one month was 
dependent on the previous three months. 
 
Table 8.1. Parameter estimates for the SARIMA model (p,d,q) x (P,D,Q)s for each finfish 
species in the west coast. Standard errors for each estimate are included in brackets. 
 

Finfish species SARIMA σ̂  1̂φ  1̂θ  1Φ̂  1Θ̂  

Black bream (Acanthopagrus butcheri) (1,0,0)x(1,1,1)12 1.176 0.436 
(0.058) - 

0.036 
(0.068) 

0.958 
(0.019) 

Cobbler (Cnidoglanis macrocephalus) (1,0,0)x(1,1,1)12 0.851 0.723 
(0.045) - 

-0.008 
(0.082) 

0.789 
(0.050) 

Sea garfish (Hyporhamphus melanochir) (1,0,0)x(1,1,1)12 1.000 0.316 
(0.061) - 

-0.073 
(0.093) 

0.653 
(0.071) 

Australian herring (Arripis georgianus) (1,0,1)x(1,1,1)12 0.662 0.757 
(0.151) 

0.605 
(0.184) 

0.193 
(0.064) 

1.000 
(0.000) 

Perth herring (Nematalosa vlaminghi) (1,0,1)x(1,1,1)12 0.725 0.703 
(0.093) 

0.321 
(0.124) 

-0.013 
(0.164) 

0.383 
(0.151) 

Leather jacket (Monacanthidae) (1,0,0)x(1,1,1)12 1.911 0.322 
(0.061) - 

-0.019 
(0.072) 

0.893 
(0.032) 

Sea mullet (Mugil cephalus) (1,0,1)x(1,1,1)12 0.418 0.375 
(0.106) 

-0.239 
(0.111) 

0.161 
(0.076) 

0.883 
(0.0361) 

Yellow-eye mullet (Aldrichetta forsteri) (1,0,0)x(1,1,1)12 0.373 0.739 
(0.044) - 

-0.083 
(0.085) 

0.723 
(0.059) 

Western Australian salmon (Arripis truttaceus) (0,0,1)x(1,1,1)12 2.203 - 
-0.232 
(0.063) 

0.177 
(0.068) 

0.954 
(0.021) 

Tailor (Pomatomus saltatrix) (1,0,0)x(1,1,1)12 0.819 0.428 
(0.058) - 

0.017 
(0.065) 

1.000  
(0.000) 

King george whiting (Sillaginodes punctata) (1,0,0)x(1,1,1)12 0.635 0.567 
(0.053) - 

0.289 
(0.062) 

1.000 
(0.000) 

Western sand whiting (Sillago schomburgkii) (1,0,0)x(1,1,1)12
0.392 0.680 

(0.047) - 
0.015 

(0.074) 
0.881 

(0.035) 
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Table 8.2. Parameter estimates for the SARIMA model (p,d,q) x (P,D,Q) s for each finfish 
species in the south coast. Standard errors for each estimate are included in brackets. 
 

Finfish species SARIMA σ̂  1̂φ  2̂φ  3̂φ  1̂θ  2θ̂  1Φ̂  1Θ̂  

Black bream (1,0,2)x(1,1,1)12 0.911 0.943 
(0.040) - - 

0.448 
(0.078) 

0.280 
(0.072) 

0.102 
(0.068) 

1.000 
(0.001) 

Cobbler (3,0,0)x(1,1,1)12 0.305 0.560 
(0.065) 

0.127 
(0.074) 

0.032 
(0.065) - - 

0.169 
(0.064) 

1.000 
(0.000) 

Sea garfish (1,0,0)x(1,1,1)12 1.082 0.250 
(0.062) - - - - 

0.075 
(0.064) 

1.000 
(0.000) 

Australian herring (0,0,1)x(1,1,1)12 0.857 - - - 
-0.005 
(0.065) - 

0.185 
(0.097) 

0.748 
(0.066) 

Leather jacket (2,0,0)x(1,1,1)12 0.815 0.430 
(0.059) 

0.394 
(0.059) - - - 

0.114 
(0.065) 

1.000 
(0.000) 

Sea mullet (1,0,1)x(1,1,1)12 0.73 0.816 
(0.073) - - 

0.514 
(0.108) - 

0.064 
(0.084) 

0.792 
(0.052) 

Yellow-eye mullet (1,0,2)x(1,1,1)12 0.654 0.869 
(0.133) - - 

0.471 
(0.154) 

0.221 
(0.100) 

0.007 
(0.075) 

0.871 
(0.041) 

Western Australian 
salmon (0,0,1)x(1,1,1)12 1.220 

- - - 
-0.008 
(0.065) - 

-0.353 
(0.109) 

0.251 
(0.113) 

Tailor (1,0,1)x(1,1,1)12 2.648 0.318 
(0.121) - - 

-0.226 
(0.124) - 

-0.089 
(0.076) 

0.821 
(0.043) 

King george whiting (1,0,2)x(1,1,1)12 0.517 0.928 
(0.039) - - 

0.382 
(0.077) 

0.107 
(0.073) 

-0.076 
(0.079) 

0.793 
(0.055) 

Western sand 
whiting (0,0,1)x(1,1,1)12 5.193 

- - - 
-0.006 
(0.065) - 

0.224 
(0.668) 

0.312 
(0.651) 

 
 
Table 8.3. Parameter estimates for the SARIMA model (p,d,q) x (P,D,Q) s with transfer 
function (τ ) for the finfish species in the west coast, of which the effect of fishing effort is 
significant at the 5% level.  Standard errors for each estimate are included in brackets.  
 

Finfish species SARIMA σ̂  1̂φ  1̂θ  1Φ̂  1Θ̂  τ̂  

Cobbler (1,0,0)x(1,1,1)12 0.8260 0.6115 
(0.0511)  - 

-0.0130 
(0.0777) 

0.8268 
(0.0437) 

3.4015 
(0.7973) 

Australian herring (1,0,1)x(1,1,1)12 0.6504 0.4406 
(0.3282) 

0.2861 
(0.3502) 

0.1980 
(0.0638) 

1.000 
(0.0066)  

4.6439 
(1.3032) 

Perth herring (1,0,1)x(1,1,1)12 0.7055 0.5859 
(0.1368) 

0.2622 
(0.1629) 

0.0119 
(0.1545) 

0.4274 
(0.1397) 

7.4435 
(1.9218) 

Leather jacket (1,0,0)x(1,1,1)12 1.7955 0.2450 
(0.0626) - 

-0.0312 
(0.0645) 

0.9997 
(0.0017) 

0.6122 
(0.1332) 

Sea mullet (1,0,1)x(1,1,1)12 0.4025 0.2428 
(0.1193) 

-0.3236 
(0.1163) 

0.1573 
(0.0699) 

0.9350 
(0.0251) 

3.7784 
(0.9730) 

Yellow-eye mullet (1,0,0)x(1,1,1)12 0.3557 0.6196 
(0.0507) - 

-0.0445 
(0.0767) 

0.8272 
(0.0431) 

6.0231 
(1.0448) 

Western Australian 
salmon (0,0,1)x(1,1,1)12 2.1637 

- 
-0.2136 
(0.0631) 

0.1796 
(0.0667) 

0.9671 
(0172) 

74.2739 
(27.0170) 

Tailor (1,0,0)x(1,1,1)12 0.7922 0.3632 
(0.0601) - 

0.0217 
(0.0645) 

1.000 
(0.0004) 

0.7537 
(0.1494) 

King george whiting (1,0,0)x(1,1,1)12 0.6182 0.4581 
(0.0574) - 

0.2683 
(0.0622) 

1.000 
(0.0004) 

0.8701 
(0.1985) 

Western sand whiting (1,0,0)x(1,1,1)12 0.3747 0.5438 
(0.0542) - 

0.0269 
(0.0706) 

0.9181 
(0.0280) 

1.4219 
(0.2440) 
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The predicted and actual monthly catch data were compared.  Figure 8.2 shows three 
examples of these comparisons for the west coast and Figure 8.3 shows three examples for the 
south coast.  In general, about 83-100 % of the actual monthly catches for 1999 and 2000 
were within the 95 % confidence intervals.   
 
The fishing effort is measured as the total number of days fished per year.  It was added into 
the SARIMA model as a transfer function in order to test the significance of the effect of 
fishing effort on the catch.  Likelihood ratio tests were performed.  It was found that the effect 
was not significant for all the species in the south coast, but was significant for most of the 
species in the west coast such as the sea mullet, Australian herring and western sand whiting 
(Table 8.3).  Figure 8.4 shows these three examples comparing the fitted values without 
fishing effort and the fitted values with fishing effort incorporated in the SARIMA model. 
 

8.5 Discussion 
The SARIMA models fitted to the monthly catch data were found to be reliable for the major 
targeted species such as the sea mullet, cobbler, Australian herring and western sand whiting, 
in the west coast and in the south coast of WA.  The effect of fishing effort on the catch was 
tested and found to be significant for most of the species in the west coast.  The models fitted 
to the data were similar to those results obtained by Lloret for the species in the Northwest 
Mediterranean Sea in terms of the simplicity of the model (Lloret et al., [7]).  Univariate 
SARIMA models were used to forecast monthly catches of fifty-three commercial species.  It 
was found that models fitted to most of the targeted demersal and benthic species.  One defect 
in the study was that only 27 models were identified.  However, models were identified for all 
species in this paper.  This may be related to the estimation methods used to obtain the model. 
 
Under the assumption that the fishing effort is calculated in a reasonable manner, it can be a 
significant factor for forecasting the catch level of a species.  The results in this paper showed 
that the effect of fishing effort on the catch level was significant for 10 out of 12 finfish 
species found in the west coast.  Some of them are commercially targeted species and some of 
them have become popular for recreational fishing.  Many of them are currently caught 
without restrictions on fishing gears or limitations on quantity.  In fact, these species are only 
a small selection of a large diversity of finfish species in the west coast caught by commercial 
and recreational fishers.  Management plans are in strong demand to protect biodiversity and 
maintain essential ecological processes in this region.  Based on the results, the use of input 
controls may be more effective in managing the west coast finfish species.   
 
The effect of fishing effort on forecasting the catch level was not significant for any of the 
twelve species in the south coast.  Most of the finfish fisheries in this region are relatively 
small and are multi-species and/or multi-gear fisheries. Attributing the level of fishing effort 
targeted to a particular species is not possible.  Thus, using the total number of days fished 
may not be an appropriate effort measure.  Despite all the difficulties, unmanaged fishing 
activities still need to be controlled to sustain the fish resources for the future.  Based on the 
results from the analysis, the use of output controls may be a more effective management tool 
for the south coast finfish species.   
 
The method used in this paper can be applied to all species with existing long-term 
commercial fisheries data to understand the historical catch levels and forecast future trends 
of species in Western Australia.  Unfortunately, in a biological aspect, time series modelling 
cannot estimate the population parameters such as natural mortality and catchability that is 
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used in traditional stock assessment methods.  Nevertheless, time series modelling can be 
useful for developing management plans which involve detecting certainty and predictability.  
Time series modelling can be a cost effective method to provide rapid feedback to fisheries 
managers that a major perturbation has occurred, or that the system is changing, so that 
appropriate management action may be implemented (Fisher, [4]).  With simple mathematical 
formulations and a few assumptions, time series modelling can be a low cost method for 
providing fisheries managers with immediate prediction using limited data.   
   

8.6 Further research 
It is often desirable to study the effects of environmental factors such as water temperature 
and tides on the catch and biomass of fish species.  If the biological and environmental data 
are available, they can be incorporated into the SARIMA model as a transfer function to 
estimate the catch and enhance the knowledge of the species life history from the trend 
behaviour.  If the errors from the fitted model are not independently normal distributed, 
SARIMA models with generalised autoregressive conditional heteroscedasticity (GARCH) 
errors can be used to improve the outcomes (Bollerslev, [12]; Wong and Li, [3]).   It can be 
observed from the data that when the catch of one major species is high, it will be low for 
another major species within the same fishing ground such as the Western Australian salmon 
and herring in the west coast. For this phenomenon, multivariate time series modelling may 
be useful to study the relationship among different species in the same region. 
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Figure 8.2.  Comparison between actual monthly catches of fish species together with 
fits and forecasts predicted from the SARIMA models for the west coast of WA.  
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Figure 8.3.  Comparison between actual monthly catches of fish species together with 
fits and forecasts predicted from the SARIMA models for the south coast of WA. 
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Figure 8.4.  Comparison between the predicted monthly catches of fish species from 
a SARIMA model and the predicted values from a SARIMAX model for the west. 
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9.0 Predicting Monthly Catch for Some Western Australia 
Coastal Finfish Species with Seasonal ARIMA – 
GARCH models  

 
E. K. M. Lai , Y. W. Cheng  a a and Michael McAleer b

a WA Marine Research Laboratories, Department of Fisheries, Western Australia 
b  Department of Economics, University of Western Australia 
 

9.1 Abstract 
In recent years, the conflict in sharing fish stocks between the commercial and recreational 
sectors has become a high priority issue for fisheries management in Western Australia.  The 
recreational anglers are concerned about the effect of commercial fishing activities on the 
stocks of some key recreational finfish species of the estuaries and the nearshore areas of WA.  
The lack of biological and economic information for some of these species makes them 
favourable targets for the use of time series modelling in fish stock assessment.  Monthly 
commercial catch data for four finfish species was available, back to 1976.  The species are 
King George whiting (Sillaginodes punctata), red emperor (Lutjanus sebae), sea mullet 
(Mugil cephalus) and yellow eye mullet (Aldrichetta forsteri).  Seasonal variations and trends 
in the catches for these species were observed.  The data was usually found to be stationary 
after one seasonal differencing.  Seasonal autoregressive integrated moving average (ARIMA) 
models were identified by analysing the autocorrelation function (ACF) and partial 
autocorrelation function (PACF).  Criteria for model selection such as Akaike information 
criterion (AIC) and bias-corrected version of the Akaike information criterion (AICc) were 
used.  After fitting the seasonal ARIMA models to the data, trends could be observed in the 
time series of the noise.  The conditional variance for the time series of the noise might not be 
constant over time.  A generalized autoregressive conditional heteroscedasticity (GARCH) 
model was then used to model the noise. A Ljung-Box test and a McLeod Li test were used to 
test the randomness of the noise.  It was found that the GARCH effect exists in the catch data 
of most of these species.  Based on fitting to data from 1976 to 1998, predictions of monthly 
catches for 1999 and 2000 were calculated and compared with the actual figures.  The results 
showed that the ARIMA-GARCH models applied in this study can describe the catch data 
and give better predictions in some cases. 
 
Keywords:  Seasonal ARIMA; GARCH; ACF; AIC. 
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9.2 Introduction 
The principal objectives for commercial fisheries management are to ensure the sustainability 
of fish stocks, establish a firm basis for a sustainable and profitable commercial fishing 
industry, and to fairly allocate fish stocks among the commercial fishing and recreational 
fishing and other sectors.  Prediction of commercial catches of  fish in terms of whole weight 
is important for management decision making.  For fisheries in Western Australia, the 
traditional methods for prediction are based on biological and environmental factors, such as 
spawning stock, recruitment and lunar cycle (Mendelssohn, 1988; Hall, 1997).  Unfortunately, 
collecting the biological and environmental data is very expensive and difficult.  These 
methods are especially difficult to apply to smaller and less valuable finfish fisheries in which 
the main species stocks are fully exploited.  Various studies indicate that time series modeling 
is appropriate for predicting catches for those fisheries where biological data are lacking (e.g. 
Mendelssohn, 1981; Freeman and Kirkwood, 1995; Stergiou et al., 1997).  In this paper, we 
study the application of the seasonal autoregressive integrated moving average (ARIMA) 
model with generalized autoregressive conditional heteroscedasticity (GARCH) errors for 
four finfish species with voer twenty years of commercial catch data. 
 
Autoregressive integrated moving average (ARIMA) models assume that a time series is a 
linear combination of its own past values and current and past values of an error term (Box & 
Jenkins, 1976).  They capture the historic autocorrelation of the data and extrapolate them into 
the future.  In classical ARIMA time series models, the conditional variance is assumed to be 
a constant, however, this may not be a sensible assumption in practice.  Among the models 
which take this into consideration, the generalized autoregressive conditional 
heteroscedasticity (GARCH) models are both popular and useful (Bollerslev, 1986).  
Definitions for these models will be given in the next section. 
 
Commercial fishermen are required by the Western Australian Department of Fisheries to 
report their monthly catch under the Fish Resources Management Act (1994) regulations.  
The data are entered into the Catch and Effort Statistics (CAES) System held in the research 
division of the department.  Monthly catch data for four finfish species since 1976 were 
obtained from the CAES system for this study.  They are King George whiting (Sillaginodes 
punctata), red emperor (Lutjanus sebae), sea mullet (Mugil cephalus) and yellow-eye mullet 
(Aldrichetta forsteri). 
 
King George whiting (Sillaginodes punctata) are popular recreational fish as well as targeted 
fish for some small fisheries located around Albany and Bunbury (Figure 9.1).  They inhabit 
shallow inner continental shelf waters, including bays and inlets (Jones et al., 1990).  In 1998, 
the total commercial catch in Western Australia was the highest for last 25 years.  Since then, 
the commercial catch has gradually decreased.   
 
Red emperor (Lutjanus sebae) are demersal fish inhabiting tropical and subtropical waters.  
They can be found in waters from Shark Bay to the W.A./Northern Territory border (Figure 
9.1).  They are the dominant sea perch taken in the commercial trap fishery around this area 
(Moran et al., 1988).  The catch of red emperor increased rapidly in the early 90’s and has 
gradually decreased from 1996 onwards.  This decrease was due to the introduction of a 
management plan which aims to reduce the commercial fishing effort, however, recreational 
fishing pressure has continued to increase.  
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Sea mullet (Mugil cephalus) are pelagic fish found in coastal bays and estuaries.  They 
occasionally venture into freshwater and are common from Port Hedland to Esperance in 
Western Australia (Figure 1).  They are caught throughout the year in estuaries, but the 
highest catches occur in late summer and autumn when movement of mature fish through the 
estuaries is greatest (Thomson, 1950).  There was a trend of slow depletion in the commercial 
catch for recent years which may relate to the decrease in fishing effort and market demands. 
 
Yellow-eye mullet (Aldrichetta forsteri) are schooling fish inhabiting bays, estuaries and open 
coastlines, from Shark Bay to the southern coast in Western Australia (Figure 9.1). They have 
been sold traditionally as rock lobster bait.  As there are now other bait sources being used, 
the demand for yellow-eye mullet has gradually decreased (Lenanton et al., 1984).   Therefore 
the commercial fishery has decreased.  On the other hand, the species has become more 
popular for recreational fishing.     

9.3 Methods 
A hierarchical approach will be used to fit a seasonal ARIMA model with GARCH errors to 
the time series of the mentioned finfish species.  Firstly, the data will be fitted with a seasonal 
ARIMA model.  Then the resulting residuals will be modeled by a GARCH model if 
necessary.  The estimated values using GARCH model will be compared with the predictions 
from the seasonal ARIMA model.   
 
The appropriate model is identified by examining the autocorrelation (ACF) and partial 
autocorrelation (PACF) functions of the time series.  Model selection can also based on the 
minimization of the Akaike information criterion (AIC) (Akaike, 1974) and bias-corrected 
version of the Akaike information criterion (AICc) (Hurvich & Tsai, 1989).  If the resulting 
residuals are found to be volatile with time then a GARCH model can be applied to smoothen 
the conditional variance and provide better predictions. We often regard this phenomenon as 
“GARCH effect”.  
 
Definition 9.1. Autoregressive integrated moving average (ARIMA) model  

Let { }t  be a set of observations , each one being related to a specific time .  The set X tX t{ }t  is referred as a time series.  If   is a nonnegative integer, then the time series X d { }tX   is 
an ARIMA (  process if {  satisfies a difference equation of the form ) }qdp ,, tX

( )( ) ( ) tt
d ZBXBB θφ =−1 ,  { } ( )2,0~ σΝtZ , 

where qp,  are positive integers, ( )⋅φ  and ( )⋅θ  are the  pth  and  qth  degree polynomials, 
 and    and  B  is the backward shift 

operator 
( ) p

p zzz φφφ −−−= L11 ( ) q
q zzz θθθ +++= L11

( )L,1,0,, ±=== −− jZZBXXB jtt
j

jtt
j .  t  is the error term. The parameters 

p

Z
φφ ,,1 K  are the autoregressive coefficients, and the parameters qθθ ,,1 K   are the moving-

average coefficients. d  is the degree of differencing required to achieve stationarity. 
 

Definition 9.2. Seasonal ARIMA model 
 
If  and  are nonnegative integers, then the time series d D { }tX  is a seasonal 
ARIMA  process with period  if the (differenced) series 

 satisfies a difference equation of the form 

( ) ( sQDPqdp ,,,, × ) s

( ) ( ) t
Dsd

t XBBY −−= 11
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( ) ( ) ( ) ( ) t
s

t
s ZBBYBB Θ=Φ θφ ,  { } ( )2,0~ σΝtZ , 

where , ( ) p
p zzz φφφ −−−= L11 ( ) P

P zzz Φ−−Φ−=Φ L11 , ( ) q
q zzz θθθ +++= L11  and    

.  The parameters ( ) Q
Q zzz Θ++Θ+=Θ L11 PΦΦ ,,1 K  are the seasonal autoregressive 

coefficients, and the parameters QΘΘ ,,1 K   are the seasonal moving average coefficients. 
 

Definition 9.3.  GARCH model - Modeling volatility  
 
The generalized autoregressive conditional heteroscedasticity GARCH ( )nm,  process {   is 
a solution of the equations  

}tX

,ttt ZX σ=   { }~tZ ( )1,0IDΝ  

where tσ  is the function of { , defined by  }tsX s <,

,
1

2

1

2
0

2 ∑∑
=

−

=

− ++=
m

j
jtj

n

i
itit X σβαασ  

with 00 >α and .,2,1,0, K=≥ jjj βα  
 
Checking model accuracy 
There are several methods to validate an ARIMA model, such as examining the 
autocorrelation function of the estimated residuals, calculating the Ljung-Box portmanteau 
statistic Q  (Ljung and Box, 1978) for the estimated residuals which is defined by  

( ) ( ) (kknnnQ
K

k

2

1

1 ˆ2 γ∑
=

−−+= )  , 

where K  is the number of lags,  is the number of observations used to compute the 
likelihood and 

n
)(ˆ kγ  is the autocorrelation of the data at lag k.  If the correct ARIMA model is 

fit, and the data are Gaussian, then Q  is approximately distributed as a chi-squared  
random variable with 

2χ
K  degrees of freedom.   

 
The existence of  “GARCH effect’ can be checked with the McLeod-Li test statistic for the 
squared estimated residuals (McLeod and Li, 1983).  The McLeod-Li test statistic Q~  is 
defined by 

( ) ( ) (kknnnQ
K

k

2

1

1 ˆ2~ ρ∑
=

−−+= )  , 

where K  is the number of lags,  is the number of observations used to compute the 
likelihood and 

n
)(ˆ kρ  is the autocorrelation of the squared data at lag k.  The hypothesis of  IID 

normal data is then rejected at level 05.0=α  if  Q~  is larger than the 0.95 quantile of the chi-
squared distribution with K  degrees of freedom.  In other words, the “GARCH effect” exists 
if the p-value of  Q~   is significant at level 05.0=α . 
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9.4 Results 
 
King George Whiting 

There was a seasonal pattern in the catch time series with the peak at April in each year.  The 
data was first fitted with a seasonal ARIMA ( ) ( )121,1,11,1,1 ×  model which was identified by 
the AIC and AICc criteria.  The estimated parameters were 

 and . The Ljung-Box 
portmanteau statistic   indicated that the selected model was appropriate 
for the data.  The McLeod-Li statistic 

,1005.5 1
1

−×=φ ,1095.8 1
1

−×=θ 2
1 1070.6 −×=Φ 1

1 1094.8 −×=Θ
04.19=Q ( 52.0=p )

65.19~ =Q  ( )47.0=p  indicated that the “GARCH 
effect” did not exist.  The plot of the estimated residuals showed a random pattern.  Hence, 
the conditional variance could be assumed as a constant and further modeling on the noise 
was not necessary.  The fitted and predicted catch values are shown in Figure 9.2.  About 96% 
of the real monthly catches for 1999 & 2000 lay within the 95% confidence interval (Figure 
9.3). 
 
Red emperor 

There was a seasonal pattern in the catch time series with the peak around August in each 
year. The commercial catch increased rapidly from an average of 10 tonnes in 1988 to 50 
tonnes in 1996, but was gradually decreasing after 1996.  This was due to the reduction of 
commercial fishing effort for the purpose of fish stock control.  A seasonal ARIMA 

 model was selected to fit the data.  The estimated parameters were 
  1  1 ,  

and  The Ljung-Box portmanteau statistic 

( ) ( )121,1,21,1,2 ×
,1002.4 1

1
−×=φ ,1010.7 2

2
−×−=φ ,1027.8 1−×=θ 11094.1 −×−=Φ 1

2 1030.2 −×−=Φ
.1020.5 1

1
−×=Θ 75.15=Q   indicated 

that the selected model was appropriate for the data.  The fitted and predicted catch values are 
shown in Figure 9.2.  The McLeod-Li statistic 

( 73.0=p )
21008.1~ ×=Q  ( )141024.4 −×=p  indicated that 

there exist the “GARCH effect”.  The estimated residuals were found to be gradually 
increasing with time.  Hence, a GARCH ( )1,1 model was selected by AIC to fit the estimated 
residuals.  The resulting parameter values were  6

0 101.85×=α ( )004.0 =p ,  
 and  

-1
1 101.20 ×=α

( )001.0=p 1
1 1032.8 −×=β ( 00.0 )=p .  Predictions for 1999 & 2000 are shown in 

Figure 9.3.  These predictions obtained by using the GARCH model were similar to those 
using only the seasonal ARIMA model.  The Q  statistic for the estimated standard residuals 
and the Q~  statistic for the squared standardized residuals were 5.98  and 8.31 

.  These results showed that the selected GARCH model was appropriate for the 
data.  About 98% of the real monthly catches for 1999 & 2000 lay within the 95% confidence 
interval (Figure 9.3). 

( 92.0=p )
)

)

( 76.0=p

 
Sea mullet 

There was a seasonal pattern in the catch time series where most of the catch was taken in 
winter.  There was also a trend of slow depletion which might be related to the decrease in 
commercial fishing effort, or to the number of fishermen.  The data was first fitted with a 
seasonal ARIMA  model.  The estimated parameters were 

and  The Ljung-Box portmanteau statistic 
  indicated that the selected model was appropriate.  The fitted and 

predicted catch values are shown in Figure 9.2.  The McLeod-Li statistic 

( ) ( )121,1,01,1,1 ×
,1001.5 1

1
−×=φ 1

1 1085.9 −×=θ .1014.8 1
1

−×=Θ
14.24=Q ( 06.0=p

92.43~ =Q  
( )41012.1 −×=p  indicated that there exist the “GARCH effect”.  The estimated residuals 
were found to be gradually decreasing with time.  Hence, a GARCH ( )1,1 model was selected 
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by AIC to fit the estimated residuals.  The resulting parameter values were  
,   and  

6
0 1030.2 ×=α

( )22.0 =p 2
1 1001.7 −×=α ( )03.0 =p 1

1 1010.9 −×=β ( )00.0 =p .  Predictions for 1999 
& 2000 are shown in Figure 9.3.  Better predictions for months with low catch in a year were 
obtained by applying the GARCH model.  The Q  statistic for the estimated standard residuals 
and the Q~  statistic for the squared standardized residuals were 9.07 ( )69.0=p  and 16.81 

.  This showed the selected GARCH model was appropriate.  About 88% of the 
actual monthly catches for 1999 & 2000 lay within the 95% confidence interval (Figure 9.3). 
( 16.0=p )

68.1 −×−=φ

Yellow-eye mullet 

In general, there was a seasonal pattern in the catch time series.  Most of the catch was taken 
in winter.  The catch has been following a decreasing trend since 1976, along with the number 
of commercial fishermen.  The data was first fitted with a seasonal ARIMA  
model.  The estimated parameters were 

3 and . 
The Ljung-Box portmanteau statistic 

( ) ( )121,1,10,0,3 ×

,1077.6 1
1

−×=φ ,1081.1 1
2

−×=φ ,10 1 2
1 1070.9 −×−=Φ 1

1 1010.7 −×=Θ
95.10=Q  ( )95.0=p  indicated that the selected model 

was appropriate.  The fitted and predicted catch values are shown in Figure 9.2.  The 
McLeod-Li statistic 11066.6~ ×=Q  ( )71042.6 −×=p  indicated that there exist the “GARCH 
effect”.  The estimated residuals were found to be gradually decreasing with time.  Hence, a 
GARCH model was fitted to the estimated residuals.  The resulting parameters’ values 
were  ,  

( )1,1
6

0 1027.1 ×=α ( )19.0=p 2
1 1003.5 −×=α ( )06.0=p  and  

.  Predictions for 1999 & 2000 are shown in Figure 9.3.  The GARCH model had 
improved the predictions for most of the months with low catch.  The Q  statistic for the 
estimated standard residuals and the 

1
1 1034.9 −×=β

( 00.0=p )

Q~  statistic for the squared standardized residuals were 
8.88 and 9.57 ( .  The selected GARCH model was appropriate.  About 
92% of the actual monthly catches for 1999 & 2000 lay within the 95% confidence interval 
(Figure 3). 

( 71.0=p ) )65.0=p

 

9.5 Discussion 
In this study, the commercial catch history of the four species over twenty years was used to 
predict the catch of two consecutive years.  The method of modeling time series of catch data 
in a hierarchical approach was found to be the most satisfactory for sea mullet and yellow-eye 
mullet.  As the conditional variance of the model is found to be volatile with time for these 
two species,  the GARCH model has well addressed this phenomenon.  It is reasonable to use 
the past history as basis for prediction because of the steady decreasing trend in the time 
series and the slowly diminishing noise.   
 
The time series for red emperor has reflected a common scenario in commercial fisheries.  
The species was targeted by some commercial fisheries in recent years and its stocks were 
found to be fully exploited.  This led to the introduction of management controls on fishing 
effort and the number of commercial fishers.  The effect is clearly shown in the time series.  
Fishing effort was down in 1998 in response to the introduction of management controls for 
red emperor.  The models have addressed this change and give  good predictions.  The 
GARCH model made no great impact on the predictions in this case due to this unexpected 
change.   
 
Similar situation in reverse occurred for King George whiting in 1998.  The catches were 
steadily decreasing prior to 1997.  A sudden jump happened  in 1998 and the catch fell down 
again from 1999. This very high 1998 catches resulted from high juvenile recruitment into 
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Wilson Inlet several years earlier (Penn et al. 2000; pp87-89).  The seasonal ARIMA model 
has addressed this change and gives good predictions.  The volatility of the time series was 
found to be not significant.   
 
There are several other factors which many fishermen and biologists think have of strong 
impact on the catch rates, for example, fishing effort, fishing power and weather.  However, 
these relevant biological and environmental data are very difficult to record properly and 
precisely.  They are also expensive to collect evaluate, however, when they are available, 
these factors can be added to the ARIMA model as a transfer function.  Moreover, it can be 
observed that some of the time series of finfish species exhibit long memory time series 
properties.  Long memory time series modeling could be used to examine finfish data.  Also, 
the optimization for forecasting the catch is to model both the seasonal ARIMA part and the 
GARCH part together as one step instead of in a hierarchical approach as in this study.  
Further study using different types of GARCH models could be done.  Multivariate time 
series modeling could be explored to study the relationship among different species in the 
same region. 
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Figure 9.1.  Geographic distribution of the four species in Western Australia 
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Figure 9.2.  Graphical presentation of the fitted and predicted monthly catch values from a 
seasonal ARIMA model for the four finfish species time series over the last 25 years. 
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Figure 9.3.  Graphical presentation of the predicted monthly catch values for 1999 & 2000 
from a seasonal ARIMA model with or without GARCH errors for the four finfish species 
time series.   
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10.0  A dynamical reconstruction of monthly and annual 
catch prediction indices for five key Western 
Australian finfish fisheries 

 
M. D. Craine, Y. W. Cheng, S. Ayvazian, R. Lenanton 
WA Marine Research Laboratories, Department of Fisheries, Western Australia 
 

10.1  Abstract 
Much of the biological information that affects catches for many Western Australian fisheries 
is difficult and expensive to collect. Alternative methodologies are required to explain 
variations in catches from year to year and to make reliable forecasts. In this paper, dynamical 
spawning indices are statistically developed by nonlinear regression techniques using catch 
rates, environmental data and fishing effort to predict annual catches for five finfish fisheries 
of Western Australia. The results indicate that multiplicative interactions involving some or 
all of these factors significantly contribute to annual catch variations. The statistically 
significant factors closely resemble the biological characteristics of each of the five fisheries. 
Seasonal ARIMA transfer function models using the annual spawning indices are developed 
to predict monthly catches. To validate the respective annual regression and monthly catch 
models, the last three available years of catches (1998-2000) are forecasted and compared 
with the actual catches for each species. 

 

10.2 Introduction 
One of the main concerns surrounding the modelling of fish populations is the absence of 
useful spawning or recruitment index data. It is a very difficult and expensive exercise to 
obtain and maintain reliable, real-time spawning or juvenile recruitment data for one or many 
species. The emphasis in this paper is the development of biology-based catch prediction 
indices using the existing monthly catch and fishing effort time series data of selected 
fisheries. The advantage of these techniques is that at least 25 years of data is available for 
most commercial fisheries off the Western Australian coast. Reliable catch prediction indices 
are necessary for stock assessment purposes since they provide much of the information on 
the status of the population at a given time. Information on global environmental effects is 
known to improve the indices for Western Australian fisheries (Lenanton et al. 1991, Caputi 
et al. 1996). This paper makes use of the Fremantle Sea Level indicator of the Leeuwin 
Current following the aforementioned papers, but also reveals the significance of the Southern 
Oscillation Index. Use of these historical indices allows the forecasting of catches into the 
future with a measurable degree of accuracy. 
 
We present an alternative to biological collector problems in the form of a dynamical 
reconstruction of spawning data for five major finfish populations. These species are 
Australian herring (Arripis georgiana), western Australian salmon (Arripis truttacea), 
pilchards (Sardinops sagax), Spanish mackerel (Scomberomorus commerson) and Westralian 
dhufish (Glaucosoma hebraicum). Our findings are that catch rate estimates during specific 
months can signify a pattern of spawning activity and indicate trends in juvenile stocks over 
the long term. The variation in catch rates in a given month for different years coupled with 
information on global environmental effects during the first year of development of the 
species may indicate a similar variation in abundance and therefore catches n years later, 
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where n is approximately the age at catch of the fish species. There are many factors 
influencing the biological processes between spawning and catch. However, we demonstrate 
that monthly catch rate estimates combined with a single global environmental variable are 
sufficient to capture a large amount of time series predictor information on the annual catch 
for the selected fisheries. 
 
The data used in this analysis consist of Western Australian commercial catches by weight 
and fishing effort in boat days per boat. The commercial data from June 1975 to December 
2000 have been extracted from the Catch and Effort System (CAES) of the Department of 
Fisheries, Western Australia. A brief description of the five commercial fisheries is given 
below. 
 
Australian herring 
Australian herring catches in Western Australia for 1999 totalled 765 tonnes, with 642 tonnes 
being caught on the south coast. The estimated annual value for this season for only the south 
coast fisheries was $260 000. Approximately 86% of the total Australian herring catch from 
WA is taken off the south coast. The main fishing methods include the use of trap (‘G’) nets 
and beach seines. Catches are highly seasonal and peak when the south coast trap net fishery 
catches fish during their spawning migration to the lower west coast of Western Australia 
between March and April. The fishery is open all year except from February to late March. 
 
Western Australian salmon 
For 1999, Western Australian salmon catches totalled 1725 tonnes for an estimated value of 
$827 000. Approximately 77% of the total WA salmon catch is taken off the south coast. 
Beach seining is the main fishing method. Catches peak between February and April each 
year as the salmon make a pre-spawning migration from eastern to western Australia. There 
are two managed salmon fisheries. The south coast managed fishery permits authorised 
licence holders to fish from specific beaches between Shoal Cape and Cape Beaufort. The 
south west coast managed fishery operates north of Cape Beaufort along specific beaches 
through a sharing arrangement of netting. 
 
Spanish mackerel 
The total catch of Spanish mackerel in Western Australia for 1999 was 336 tonnes to the 
value of $1.75 million. The main method of fishing is trolling. Spanish mackerel can be found 
mostly in the northern waters of Western Australia. Annual catches rose slowly between 1978 
and 1990, but the entry of two main present-day operators increased catches in the Kimberley 
region by over 110 tonnes from 1991 onwards. The Western Australian Spanish mackerel 
fishery is controlled by allowing access to the fishery by licensed fishers only. 
 
Pilchards 
The largest pilchard fisheries in Australia are located off Fremantle, in King George Sound 
and surrounding Albany and Bremer Bay. The bulk of catches occurs in winter. However, the 
impact of mass mortality events in 1998/99, probably due to herpesvirus (Gaughan et al. 
2000), has led to large-scale reductions in stock size and catches in Western Australia. 
Catches for the calendar year 2000 totalled only 932 tonnes to the value of approximately 
$900 000, compared with a mean of 8750 million tonnes during 1988-1997. Purse seine nets 
are the main fishing gear used to target pilchards. The distribution of schools of pilchards 
extends from Red Bluff on the west coast southward across the Great Australian Bight. The 
management controlling processes are complicated, including limited entry schemes, 
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additional controls on boat and net sizes, limited licences, and individually transferable 
quotas. Total allowable catches are imposed on developing fishery regions. 
 
Westralian dhufish 
The main methods of commercial fishing are bottom set gillnets, droplines, bottom set 
longlines and handlines. Peak catches generally occur between December and February, 
coinciding with the main spawning period. The catches are taken off the Western Australian 
coast from Bremer Bay northward to Shark Bay with the bulk coming from the mid-west 
region of Geraldton. The commercial catch for the 1999/2000 season totalled 207 tonnes with 
an estimated value of $1.6 million. The only commercial restriction is a legal minimum total 
length of 500mm. 
  
Predictions of annual fish catches for the five species listed above involve nonlinear 
regression models developed from fisheries science theory. Seasonal autoregressive integrated 
moving average transfer function models are used to model monthly catches. The transfer 
function component incorporates the annual expression. Three years of forecasts are then 
made for each fishery and compared with the actual catch data for validation purposes. 
 

10.3 Methods 
Following the methodology of DeLury (1947, 1951; see Ricker 1975), a theoretical catch-
abundance-effort equation for a single species is 
 

( TT
T

T qEqN
dE
dC

−= exp )

)

))

))

,     (1) 

 
where T is time in years,  is the abundance subject to fishing and  is the 
probability of survival of a fish for one boat day of fishing effort. Solving (1) gives 

TN ( q−exp

 
(( TTT qENC −−= exp1 .     (2) 

 
The estimation of q in (2) is usually difficult because numerical schemes such as the Gauss-
Newton method may not converge. A very good initial condition is required, however this is 
usually difficult to find. We therefore approximate the catchability function 
 

( ) (( TT qEqEu −−= exp1;      (3) 
 
by a second order analytic approximation of the form 
 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +−= 2

24
1

2
1exp;~

TTtT qEqEqEqEu .   (4) 

 
It turns out that (4) is also a third order approximation, and we assume that  is small. The 
estimation of q in (4) is significantly easier. At the same time, (3) and (4) differ only by fourth 
order in . The annual model used in this paper is therefore a stochastic form of the 
following deterministic equation. 

TqE

TqE

 
( qEuNC TTT ; )~= .     (5) 
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In general,  is unknown. In the simplest case,  may be replaced by a time-
independent parameter to be estimated. Then for some fisheries, the estimate of q in (5) may 
not be significantly different from zero. In these cases, (5) becomes a linear regression of 
catch against effort. Thus, annual catch per unit effort (CPUE) may be a reliable indication of 
abundance within the ranges of the data series. Catch and effort are related in a nonlinear way 
if q is nonzero. 

TN qNT

 
There are two components in (5), namely abundance  and catchability TN ( )qEu T ;~ . 
Catchability was expressed in (4). Abundance is estimated by calculating monthly catch rates 
for the specific months that significantly contribute to variation in (5). There may be more 
than one month that contributes to variation in catch. Combining two or more months may be 
a difficult modelling procedure. Such methods are not included in this paper, so only one 
month is included in the model. Catch also comprises a distribution of age classes of the 
species, so there may be several significant time lags, say . The catch rates are 
weighted over significant age classes in the form of linear combinations. An appropriate 
mortality function f is multiplied into the model to account for mortality from the juvenile 
recruitment stage until catch. A multiplicative function g of a suitable environmental index 
may be a significant factor in determining abundance. A deterministic model of catch 
incorporating these variables is thus 
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where l is the time lag between spawning and catch,  and  are monthly catches, 
monthly fishing effort and a monthly catchability coefficient, respectively. Parameters to be 
estimated are 

MM EC , Mq

ωααα ,,,,,,, 21 Ms qba K  and q, where the iα ’s sum to one and are estimated 
by reparameterisation into hyper-spherical coordinates { }121 ,,, −sϕϕϕ K . The parameters are 
estimated by nonlinear regression of the natural logarithms of each side of (6) and by 
assuming additive normally distributed error terms, viz. 
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, . (7) 

 
The logarithmic transformation assumes that the deviation of the catch data is proportional to 
its expected value. This transformation is used to reduce bias that may be caused by outliers in 
the regression process. Selection of feasible parameters is based on partial likelihood ratio 
tests, where ( )2,0~ σε NT . The month M is selected by maximizing the likelihood function. 
 

TV  defines a suitable environmental variable which we choose from either the Southern 
Oscillation Index (SOI) or the Fremantle Sea Level (FSL). For the given fisheries, our 
assumption is that fish in their egg/larval or early juvenile stage are more vulnerable, and thus 
more sensitive, to environmental factors than for the later stage of their lives. We therefore 
assume that a large proportion of the mortality effects due to environmental influences occur 
over the first year of life, on average, so the SOI and FSL data are calculated as one-year 
moving averages of the raw monthly series.  
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The function f is defined as follows: 
 

( )
1

;
+

=
bx

xbxf .      (8) 

 
Thus, f is chosen to be the more parsimonious function between the Beverton-Holt 
specification if there is significant density dependent mortality, or the identity (if ) if 
there is insufficient evidence of density dependent effects. For purposes of simplicity, we 
restrict the function g in (7) to the exponential function, viz. 

0=b

 
( ) ( xxg )ωω exp; = ,      (9) 

 
or the identity if the parameter ω  does not significantly differ from zero. The parameter ω  
indicates the strength of the environmental effect on survival of the species. 
 
The linear combination of the catch rate-environmental terms in (7) is similar to an age-class 
description of the fishery. However, (7) assumes that the mortality function f is statistically 
the same for all ’s. In most cases, il 2≤s  so this assumption is adequate. In summary, the 
data used to predict annual catches in (7) include annual fishing effort, catch rates for a 
specific month and an environmental variable. 
  
For each fishery, the monthly catches  are predicted using SARIMAX models.  tc
 

( ) ( ) ( ) ( ) t
tdD BB

c
cBB 11

12
1121

12
1 111 εθφ Θ=⎟

⎠
⎞

⎜
⎝
⎛ −∇∇Φ ,  (10) 

 
In (10), B is the backward difference operator defined by ( ) 1.. −= ttB , and  and 

 are nonseasonal and seasonal differencing operators. 
BI −=∇

12
12 BI −=∇ 1Φ  and 1φ  are seasonal 

and nonseasonal autoregressive polynomials, respectively, 1Θ  and 1θ  are seasonal and 
nonseasonal moving average polynomials,  and  are nonnegative integers, and 1D 1d

( )2
11 ,0~ σε Nt . The seasonal ARIMA (SARIMA) component is optimized by minimization of 

the AICc statistic (Hurvich and Tsai 1989), which is a small-sample bias correction of the 
AIC statistic (Akaike 1974). Stationarity and invertibility conditions are verified for each 
optimal model.  
 
The transfer function for the SARIMAX model is the annual index defined by (7) with the 
same estimated parameter values repeated for each month of the designated fishing season. 
For the fisheries where the transfer function component significantly improves the monthly 
catch model, the SARIMAX model that is estimated is of the following form: 
 

( ) ( ) ( )[ ] ( ) ( ) tTMTMTTt
dD BBECVEhcBB 22

12
2,,122

12
2

ˆ;,,,22 εθϑδφ Θ=−∇∇Φ , (11) 
 
where h is the annual index formulation repeated for every month of the given season, viz.  
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{ }qqb Ms ˆ,ˆ,ˆ,ˆ,ˆ,,ˆ,ˆˆ

121 ωϕϕϕϑ −= K  is the vector of estimated parameters from (7), δ  is a 
parameter to be estimated, , 2Φ 2φ , 2Θ  and 2θ  are polynomials,  and  are nonnegative 
integers, and 

2D 2d
( )2

22 ,0~ σε Nt . Monthly forecasts are made for the next three years using the 
most parsimonious model chosen from (10) or (11). 
 

10.4 Results 
The mackerel and pilchard fisheries are modelled by calendar year (January 1 to December 
31), whereas the other three fisheries are modelled by financial year (July 1 to June 30). For 
each fishery, the choice between calendar or financial year was made by separating the fishing 
seasons according to where the annual troughs in catchability occurred, on average. The 
results for each fishery governed by models (7), (10) and (11) are summarized in Tables 10.1, 
10.2 and 10.3. These results are explained below for each fishery. 
 
Australian herring 
The analysis of the annual catch rate estimates suggests that 5 to 6 year old Australian herring 
females produce more offspring than any other pair of consecutive age classes, on average. 
The lags associated with the Southern Oscillation Index are 2 or 3, indicating that A. herring 
are predominantly 2 to 3 years of age at catch. The SOI parameter is positive, meaning that 
warmer water temperatures off the coast of Western Australia are more favourable for 
survival of A. herring than colder water temperatures. This is one species of the five studied 
where catches do not appear to depend on fishing effort. October catch rates correlate the 
highest with annual catches. The data for the month of October is describing the spatial 
movements of spawning fish better than the data from other months, since herring can be 
found in many south coast estuaries only in October. February catch rates also correlated 
significantly with annual catches but not to the degree that October catch rates did. This is 
probably because the south coast A. herring fishery comprises over 80% of the total catch, on 
average. 

 
Seasonal ARIMA models did not fit the monthly data well. This is because there are a couple 
of months of high catches (usually March and April) with relatively little caught between. 
Instead, we aggregated the monthly catch and effort data into four seasonal groups, namely i) 
July to February, ii) March, iii) April and iv) May and June. The time series models were then 
fitted in the usual way to this data. A ( )40,1,1SARIMA  model was optimal by AICc (see 
Table 10.3). The seasonal moving average parameter is given in Table 4. The seasonal 
ARIMAX model proved very reliable, with the actual catches from 1997/98 to 1999/2000 
falling within the 95% confidence intervals.  

 
Western Australian salmon 
For the annual model, estimates for age of maturity and age at catch are one year older for 
western Australian salmon than for A. herring. The parameter indicating the strength of the 
FSL oscillator on catches was negative. It is stated in State of the Fisheries 1999/2000 that 
“with respect to the south west salmon managed fishery, warmer waters are believed to deter 
a significant quantity of salmon from migrating around to the west coast”. Our statistical 
observation is that there is a stronger effect of the FSL indicator than the SOI oscillator on 
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catches. Thus, for years when the Leeuwin current is strong, there may be a restriction of 
northward migration of WA salmon from the south coast to the west coast of Western 
Australia. April is posited as the primary spawning month for WA salmon. 

 
Similar to the herring data, problems were encountered when attempting to fit a SARIMA 
model to the monthly catch data. The monthly catch and fishing effort data were aggregated 
in the same way as for the herring fishery. The seasonal ARIMA model that best fit the 
salmon catch data was ( ) ( )40,1,11,0,0SARIMA × . The transfer function was marginally 
significant (see Table 10.3), so the exogenous component was included for forecasting 
purposes. The catch forecasts from 1997/98 to 1999/2000 were not as reliable as for the 
herring fishery. While the forecasts showed a decrease in catches for the 1998/99 and 
1999/2000 seasons, the 1998/99 catch was over-predicted. This is mainly due to the irregular 
catching patterns from year to year in the salmon industry. For example, the month of high 
catches occurred later in 2000 than in 1998 and 1999. Warmer waters and/or a southward 
flowing current in 1998/99 and 1999/2000 most likely deterred the salmon from migrating 
around to the west coast. 
 
Spanish mackerel 
Our estimates of age at catch and age at maturity are 2 to 3 years. This coincides with the 
primary age classes of Spanish mackerel. The estimated SOI recruitment parameter is positive 
and the stock is known to prefer warmer waters. Catches are taken north of  latitude. 
Little is known about the spawning behaviour of Spanish mackerel. October catch rate 
estimates correlate best with annual catch. 

S28°

 
Based on the AICc criterion, the optimal model was ( ) ( )122,1,11,0,0SARIMA × . The transfer 
function component of the SARIMAX model proved insignificant, so it was not used in the 
forecasting procedure. The SARIMA model was reliable, producing 33 out of 36 monthly 
catch forecasts from 1998 to 2000 inside the 95% confidence intervals. 
 
Pilchards 
Fishing effort did not improve the model of pilchard catches. Our age at catch estimates 
include the 2 to 3 year range. Catches are known to usually range between 2 and 5 years of 
age. Our model suggests that maturity is achieved mostly at 3 years of age. Pilchards are 
known to be mature when caught. The estimated SOI environmental parameter was negative, 
suggesting the pilchard fishery performs better in colder temperatures. Pilchards prefer mean 
annual water temperatures of between  and  and spawning has been recorded only 
when surface temperatures are between  and . It is also known that a strong Leeuwin 
current can push the larvae and juveniles up to 140km per week to the east of Albany (Caputi 
et al. 1996) to the detriment of the WA fishery. 

°9 C21°
°14 C21°

 
A ( ) ( )121,1,01,1,1SARIMA ×  model was optimal for pilchards. Because the mass mortality 
event for pilchards approximately occurred at the commencement of the forecasting period, 
the forecasts given by the SARIMAX model gave over-predictions. An intervention term is 
required and can be calculated using the available data to 2000, but could not be calculated 
based on the data to 1997. 
 
Westralian dhufish 
The fishing effort data used to describe the catch model was given by 

( ) ( )[ ]FSLFSLqEu TT −⋅ −52exp;~ ω , 
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where q and 2ω  were estimated parameters. The correlation between  and the 
residuals of the model fitted with just the 

5−TFSL
( )qEu T ;~  fishing effort term was found to be  91.0−  

(see Fig 10.2). The fishing effort is dependent on the western rock lobster industry, since 
Westralian dhufish fishing licences are predominantly shared with western rock lobster 
fishing licences. We postulate that  is an approximate measure of western rock lobster 
abundance. If lobsters are highly (lowly) abundant at catch, then there will be less (more) 
fishing effort applied to dhufish catches. We estimated age at catch is dominated by 6 to 7 
year olds. This agrees with the von Bertalanffy growth estimates for ages at legal size. Age at 
maturity was estimated between 4 and 5 years. The estimated SOI parameter is positive, 
indicating that dhufish prefer warmer waters. We found that November catch rates when 
combined with the SOI indicator form reliable predictions. The spawning season is postulated 
to occur between October and March.  

5−TFSL

 
A ( ) ( )120,0,31,0,2 SARIMA ×  model was optimal. The forecasts show a decrease from 
1997/98 to 1999/2000, but the actual catches remained stable. 7 out of 36 points occurred 
above the upper 95% confidence interval, showing an overall under-prediction of catches 
during the 1997/98 and 1999/2000 fishing seasons. The reasons for this may include loose 
management regulations on the fishery and a recent increase in economic demand in dhufish 
licences. 
 

10.5 Discussion 
Monthly catch rates describe temporal and spatial distributional information of fish 
responsible for spawning. Typically, the month that gives the best estimate of abundance 
consists of low catch rates following shortly after the peak months of catches. Therefore, 
monthly catch rates may also reflect remaining biomass information from year to year, which 
is often represented by the DeLury (1947) depletion experiments for the estimation of fish 
populations. The methods in this paper are thus applicable if catch at age is not too variable 
from year to year and there is evidence of seasonal variability in the catches. 
 
The index information is highly significant for the annual specifications described by (7). 
However, the significance of the annual transfer function is highly variable when applied to 
the seasonal model (11), depending on the seasonal composition of the fishery. The transfer 
functions enhance the SARIMA model for Australian herring, pilchards and dhufish, but not 
for Western Australian salmon nor Spanish mackerel.  
 
The three-year forecasts proved to be helpful for ascertaining the status of the five selected 
fisheries. The exogenous variables were significant for the monthly catch models for herring, 
pilchards and dhufish. However they were only marginally significant for salmon and 
insignificant for Spanish mackerel. It is possible that carefully selected temperature data may 
be more reliable than the Fremantle Sea Level or Southern Oscillation Index data for these 
fisheries, thus enhancing the significance of the exogenous components for these and other 
fisheries. 
  
Other methods such as generalized additive modelling techniques or isotonic regression could 
be used to semi-parametrically define the functions f and g in (8) and (9), respectively. These 
techniques are more appropriate since the theoretical relationships between environmental 
variables or mortality and catch are not usually known. The model specifications in (7) and 
(11) would thereby be enhanced. 
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Further research methods that may improve the monthly prediction and forecasting methods 
of finfish fisheries include multivariate nonlinear regression and multivariate time series 
analysis. These techniques may further assist the annual predictions for fisheries with shared 
licences. For example, the negative correlation between western rock lobster and westralian 
dhufish catches may be further qualified. Fishing effort for herring and fishing effort for 
salmon may be analyzed for a negative correlation, although this relationship has never been 
found to be significant. 
 

10.6 Further Developments 
A linear annual relationship between an independently sampled lagged recruitment index for 
herring interacted with the lagged Southern Oscillation Index (SOI) versus the Melville 
Angling and Aquatic Club (MAAC) recreational herring catch series from the Swan River 
affirms the validity of the significant positive correlation effect of the SOI on herring catches 
in WA. The sampled recruitment index has been constructed from two FRDC projects, 
calculated as mean catch rates of recruits taken from Warnbro on the west coast and Emu Pt 
on the south coast from September of each year to August of the subsequent year. The 
recruitment index is lagged 1-3 years, while the SOI index is lagged 0-1 year. While there is 
no direct effect of the lagged recruitment index on the MAAC catches for herring (Fig. 10.5), 
the introduction of the lagged SOI interaction effect provides a significant relationship (Fig. 
10.6, ). Furthermore, the strength of the SOI effect (0.0426) and the corresponding 
standard error of the 

039.0=p
ω  parameter (0.0167) for the Swan River model are similar to those 

found in Table 10.1 for commercial herring catches. 
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Table 10.1. Annual model specification and estimated parameters for (7) for each fishery. 
 
  Fishing

Year 
Fishing 
Effort 

Function 

f Lag 
time

s 

Environmental 
Variable 

Catch 
rate 

month 
M 

â  q̂  θ̂  b̂  Mq̂  ω̂  

Herring       Financial None Beverton
-Holt 

5,6 
3,2 −− ttSOI  Oct 16.572

(0.293) 
 
 

1.190 
(0.176) 

 

7.730 
(3.885) 

0.0382
(0.0187) 

Salmon  Financial
tElog  Beverton

-Holt 
6,7 FSLFSL tt −−− 4,3  Apr   9.513

(1.836) 
0.756 14.09 

(0.499) (27.10) 
3.954 

(0.577) 
-0.300 
(0.164) 

Spanish 
mackerel 

Calendar 
2

2

242
log ttt EqEqE +−  

Identity       2,3
3,2 −− ttSOI  Oct 5.957

(0.067) 
0.00144 

(0.00016) 
2.346 

(0.078) 
0.0346

(0.0090) 

Pilchards        Calendar None Beverton
-Holt 

3,4 
3,2 −− ttSOI  Jun 15.889

(0.107) 
0.614 0.278 

(0.112) (0.108) 
-0.0332
(0.0131) 

Dhufish  Financial
2

2

242
log ttt EqEqE +−  

Beverton
-Holt 

5 
7−tSOI  

 
FSLFSLt −−5  

Nov     9.858
(1.165) 

0.000467 
(0.000005) 

 248.3
(291.0) 

0.2502
(0.0903) 
-0.00731 
(0.00105) 

 
Table 10.2. Annual model calibration. 
 
Species 2R  for model with 

fishing effort 
2R  for model with 

fishing effort, mortality 
and catch rates 

2R  for full 
model 

Herring    N/A 47.0% 62.5%
Salmon    18.0% 50.2% 73.0%
Spanish mackerel N/A 47.8% 73.5% 
Pilchards    38.6% 92.5% 94.8%
Dhufish    86.1% 93.5% 95.2%
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Table 10.3. SARIMA model specification for monthly transfer function time series model for 
each fishery. The standard error of each transfer function is an asymptotic calculation. The p-
value of each transfer function is calculated by an F-test on the change in variation between 
the SARIMA model and the SARIMAX model. The change of degrees of freedom for each 
model equals the number of parameters estimated in (7). 
  
Species SARIMA Model Transfer 

function 
( )s.e.  

Transfer 
function 
p-value  

Herring ( )41,1,0  0.226 
( )062.0  

0.020 

Salmon ( ) ( 40,1,10,0,1 × )  0.451 
( )115.0  

0.12 

Spanish mackerel ( ) ( )122,1,10,0,1 ×  0.035 
( )014.0  

0.32 

Pilchards ( ) ( )121,1,01,1,1 ×  0.058 
( )016.0  

0.016 

Dhufish ( ) ( )120,0,31,0,2 ×  0.082 
( )0004.0  

4101 −×<  

 

Table 10.4. SARIMA model (10) parameters for each finfish fishery. 
 
Species ar1 ar2 ma1 sar1 sar2 sar3 sma1 sma2 

Herring       58.0−  
( )11.0  

 

Salmon 0.14 

( )14.0  

  58.0−

( )11.0  

    

Spanish  
mackerel 

0.44 

( )07.0  

  73.0−  

( )24.0  

  0.14 

( )26.0  

27.0−  

( )17.0  

Pilchards 0.42 

( )07.0  

 97.0−

( )02.0  

   63.0−  

( )06.0  

 

Dhufish 1.11 

( )80.0  

24.0−  

( )40.0  

72.0−

( )78.0  

0.24 

( )10.0  

0.12 

( )10.0  

0.24 

( )11.0  
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Fig 10.1. Annual catch-index relationship for each fishery with three years of forecasts. 
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Fig 10.2. Relationship between residuals for dhufish model (7) and Fremantle Sea Level 
lagged 5 years. 
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Fig 10.3. Seasonal ARIMA transfer function (SARIMAX) model predictions for each fishery. 
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Fig 10.4. Seasonal ARIMA transfer function forecasts for each fishery. 
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Fig 10.5. Recruitment index from Warnbro and Emu Pt (lagged 1-3 years) versus Melville 
Angling and Aquaculture Club mean monthly recreational catch rates. 
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Fig 10.6. Interaction of recruitment index from Warnbro and Emu Pt (lagged 1-3 years) and 
the Southern Oscillation Index (lagged 0-1 year) versus Melville Angling and Aquaculture 
Club mean monthly recreational catch rates. 
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11.0 A juvenile-recruitment relationship for the commercial    
tailor fishery in the Swan River, Western Australia 

 
S. Ayvazian, M.D. Craine, R. Lenanton 
WA Marine Research Laboratories, Department of Fisheries, Western Australia 

 

11.1 Abstract 
A unique estuarine juvenile-recruitment relationship for tailor is discovered in the Swan 
River, Western Australia. Annual and juvenile tailor catch rate surveys from 1994/95 to 
1999/2000 at Point Walter are shown to significantly correlate with commercial catches of 
tailor in the Swan River approximately two years later. The Point Walter index may therefore 
be used as a forecasting tool for commercial tailor catches in the Swan River. These monthly 
catches are predicted by a seasonal ARIMA transfer function model using the annual juvenile 
index from Point Walter. Forecasts for 2003 and 2004 using this model reveal a decreasing 
pattern in commercial Swan River catches. This information combined with a decreasing 
proportion of  juvenile tailor in the Swan River indicate stock levels are most likely at their 
lowest levels over the seven-year measurement period. The presence of a significant nonlinear 
relationship between annual commercial catches in the Swan River and commercial tailor 
catches taken between the previous November and April of the current season in the Perth 
metropolitan area indicates that stock levels are probably in a similar state in the Perth 
metropolitan ocean. Oceanic indices of tailor juveniles to the south (Koombana Bay) and to 
the north (Pinnaroo Point) are compared with the Point Walter juvenile tailor index as 
alternative predictors. Correlations between the juvenile tailor index at Point Walter and 
environmental effects, such as the Southern Oscillation Index and Fremantle Sea Level, are 
investigated to determine possible effects on settlement. 

+0

11.2 Introduction 
Tailor (Pomatomus saltatrix) is a cosmopolitan pelagic species occurring in warm temperate 
and cool tropical continental-shelf waters around the world (van der Elst 1981), and in 
particular the Atlantic Ocean (Juanes et al. 1996). Around Australia, tailor occurs chiefly 
between the midwest coast of Western Australia, along the south coast and midway up the 
eastern coast to Queensland (Hutchins and Swainston 1991; Lenanton et al. 1996).  
 
Tailor is one of the most important recreational finfish resources in Western Australia 
(Lenanton et al. 1996, Malseed and Sumner 2001). While the total recreational catch in WA is 
not known the current recreational catch estimate is between 500t and 1,000t per year based 
on preliminary assessments from an early census (Anon. 1987) and mark and recapture 
information (Young et al. 1999). The commercial catch of tailor in Australia is relatively 
small with an estimated annual total catch of <1,000 tonnes (Pollack 1980, Morton et al. 
1993, Anon. 1994, Cribb 1994) compared with those off the Atlantic coast of Brazil where 
annual catches of 7,000-12,000 tonnes (Krug and Haimovici 1991) and along the eastern coast 
of the USA annual commercial catches have averaged about 5,000 tonnes and recreational 
catches in the order of 20,000 metric tons annually over the past two decades (Lazar and 
Gibson, unpublished report). The annual commercial catch of tailor in nearshore and estuarine 
waters in Western Australia is in the order of 50 tonnes with a total of up to two tonnes 
reported from the Swan River since 1995. There are presently only four active commercial 
fishing units in the Swan River compared to 25 fishers actively fishing in the mid 1970’s. If 

 
FRDC Project No. 1999/155  140



 

interest in commercial tailor fishing in the Swan River grows again in the future, the 
management of the fishery would be well advised to verify that stocks are maintained. 

 
Currently, new recommended legal minimum length regulations propose that the tail length 
for tailor be increased from 250 mm to 280 mm. This will mean the proportion of tailor in the 
Swan River that is legally available for capture will decrease from the current 15% to 1.8%. 
The data in this study suggests that the Swan population and the nearshore oceanic population 
exchange freely. Therefore, the proposed regulations would also affect availability of 
commercial and recreational tailor in the ocean. Thus, if the increase in legal minimum length 
is implemented and the compliance levels are high, the summer beach and estuarine fishery 
will effectively be closed down. 
 
Stock assessment methods for estuarine fisheries face considerable challenges, since fishing 
practices target multiple species, biological data are often scarce (data poor) and the cost of 
obtaining relevant biological and fisheries data may be expensive. One method advocated to 
assess future catches is the development of a juvenile abundance index which links to future 
adult catches through time series analysis (Magnusson and Johannesson 1997, Shepard 1997, 
Helle et al. 2000). Determining the life history stage which will provide a reliable forecast of 
the year class strength is paramount as environmental and climatic conditions (Conover et al. 
1995, Koslow et al. 1987, Lenanton et al. 1991) and predator and prey availability (Cushing 
1995) may impact recruitment strength (Ulltang 1996).  
 
A dynamic regression model was used to associate recruitment indices of relative year class 
strength for black bream (Acanthopagrus butcheri) in the Gippsland Lakes, Victoria with 
environmental conditions such as river flow and water temperatures (Hobday and Moran 
1983, Walker et al. 2000). Recruitment variability has been assessed for several finfish 
species in estuaries by examining the size, sex and age compositions of commercial catches of 
found in New South Wales (Virgona et al. 1998, Gray et al. 2000). Helle et al. (2000) 
conducted a thorough investigation of five life history stages of the Arcto-Norwegian cod to 
develop a reliable prediction of future stock abundance. Regression analysis indicated that the 
early juvenile stage (approximately 3 months old) represented the best indication of future 
abundance in the fishery. 
 
In Western Australia, research on the age structure, growth rates, movements and commercial 
catches of sea mullet and yellow-eye mullet was undertaken in the Swan-Avon river system 
(Chubb et al. 1981). Sea and yellow-eye mullets were collected from February 1977 to June 
1980 over several sites in the estuary using beach seines and gill nets. The abundance and 
spawning behaviour of the two species of mullets were highly seasonal. The paper advocates 
that the Swan-Avon “provides a system which is particularly conducive to the study of fish 
populations in estuaries.” The tailor species in the Swan is shown to be another example. 
 
Annual reported commercial catches of tailor in the Swan River have recently declined, with 
low catches occurring in 2000 and 2002. Although the number of fishers has declined, annual 
commercial catches are independent of fishing effort measured in boat days. Several novel 
approaches to assess tailor stocks in the Swan River are introduced in this paper. Tailor 
recruitment surveys have focused on the young of the year age class. A recreational angling 
survey has been undertaken weekly at Point Walter from the Swan River from November 
through to April, May or June since 1994/95. More recently, the surveys have commenced in 
February. These surveys rely on the capture of  and  fish (the age at first capture). 
Fishery independent monthly juvenile tailor recruitment surveys have also been conducted at 

+0 +1
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coastal sites north and south of the Swan River. The catch rate indices calculated for both of 
these techniques will be used to monitor tailor stocks in the Swan River. A seasonal 
autoregressive integrated moving average transfer function (SARIMAX) model of the 
monthly Swan River commercial catches from 1995 to 2002 serves as a forecasting tool for 
future catches.  

 
The aims of this paper are to present the results from these assessment techniques, and to 
determine the linkages among the recruitment indices and the commercial landings of tailor in 
the Swan River estuary and nearby oceanic waters.  

 

11.3 Methods 
 

Juvenile angling survey 
 
Tailor were caught by anglers from Point Walter jetty on the Swan River. Approximately 10 
to 18 research staff from the Department of Fisheries and Volunteer Fisheries Liaison Officers 
were supplied with a small gang of three hooks (size 2). Ganged hooks are constructed as a 
series of hooks arranged by threading the barbed tip of the proximal hook through the eye of 
the distal hook. The hook design accommodates small whole fish or strips of fish as bait for 
tailor fishing. The small gangs were baited with whole sandy sprat (Hyperlophus vittatus) 
(Ayvazian et al. 2002). All tailor were caught, measured (total length to the nearest mm) and 
released during a nominated time period in the early evening when fish are potentially most 
catchable. The abundance of tailor was expressed as a catch rate of number per angler hour. 
 
Fishery independent juvenile recruitment survey 
 
Monthly sampling for juvenile tailor was conducted between February 1994 and July 2001, 
inclusive. Samples were collected during the day from five locations along the lower west 
coast, Pinnaroo Point, Warnbro Sound, Mangles Bay, Koombana Bay, Quindalup Bay. The 
foreshore of each beach was divided into two blocks. Within each block one fixed site (F1 and 
F2) and three random sites (R1, 2, 3, and R4, 5, 6, for blocks 1 and 2 respectively) were 
established. At each sampling occasion the fixed site and one of the random sites was sampled 
for a total of four samples at each beach for each month.  
 
Sampling for juvenile tailor was undertaken using a 61 m long beach seine net with 29.1 m 
wings (22 mm mesh) and a 2.4 m bunt (8 mm mesh), which sampled to a depth of 2 metres. 
The seine net was deployed from a small dinghy and, when set in this fashion, swept an area 
of 592.2 2m . All tailor were removed from the net and returned to the laboratory. Tailor were 
counted and each fish measured (total length to the nearest mm) and weighed (to the nearest 
0.01 g). The abundance of tailor from each seine haul was expressed as the number per 
standard haul. 
 
Links between juvenile indices and the commercial landings 
  
The Point Walter juvenile index is calculated by taking the mean of the catch rates of the 
and  tailor fish taken from November to April. The tailor juveniles are aged using a 
nonlinear von Bertalanffy age-length relationship based on juvenile data in several locations 
on the west coast of Australia. A linear relationship is assumed between the mean Point 
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Walter juvenile index  and the mean Swan River commercial tailor catch rates , where 
T is time in years.  

2−TI TC

 
To investigate the possibility of other useful catch rate indices, the mean catch  rate at 
Pinnaroo Point between November and April and the Koombana Bay juvenile catch rate in 
February are correlated against the mean catch rate at Point Walter between November and 
April. The juvenile index for Pinnaroo Point was calculated using the period from November 
through April to closely match the Point Walter juvenile index calculation. The Koombana 
Bay juvenile catches are sparce, with only February showing long-term variation. The indices 
from Pinnaroo Point and Koombana Bay are also correlated against mean commercial catch 
rates from the Swan River two years later. 
 
A Beverton-Holt (1957) specification is assumed for the nonlinear contemporaneous 
relationship between the Swan River commercial CPUE  for each calendar year and the 
Perth metropolitan commercial sea CPUE  lagged from November of the previous year to 
April of the same year, viz. 

TU

TP

 

T
T

T
T bP

aPU ε+
+

=
1

,     (1) 

 
where a and b are parameters to be estimated and ( )2,0~ σε NT . The relationship is nonlinear 
if b significantly differs from zero, representing density dependent mortality effects. (1) 
reverts to a linear regression if b does not significantly differ from zero. 
 
A SARIMA transfer function time series model is used to predict monthly Swan River 
commercial tailor catches. Firstly, a SARIMA model is fitted to the monthly commercial 
catches from the Swan River, viz. 
 

( ) ( ) ( ) ( ) ( ) ( ) t
tDd BB

C
CBBBB εθφ 1212

12
12 1 Θ=⎟

⎠
⎞

⎜
⎝
⎛ −∇∇Φ ,   (2) 

 
where  is the monthly catch data, tC φ  and Φ  are nonseasonal and seasonal autoregressive 
polynomials of order p and P, θ  and Θ  are nonseasonal and seasonal moving average 
polynomials of order q and Q,  and ∇ 12∇  are nonseasonal and seasonal differencing 
polynomials of order d and D, respectively, of the backward difference operator B. The 
SARIMA model is denoted ( ) ( )12,, QDPqd,p,SARIMA × . d and D are chosen to be the 
minimum non-negative integers to obtain stationarity. We chose p and q by Hurvich and 
Tsai’s (1989) bias-corrected version (AICc) of Akaike’s (1978) AIC criterion. The catch 
series is divided and subtracted by its mean to facilitate the use of the AICc, since the AICc 
depends on the magnitude of the data. To make comparisons with AICc upon selecting the 
optimal model, care must be taken to ensure the point used after conditioning on the 
autoregressive parameters is the same for each model. P and Q are chosen by viewing the 
ACF and PACF. Once the optimal model is found, that is, p, d, q, P, D and Q are determined, 
the same model order is used to fit the transfer function model, viz. 
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where  is the annual Point Walter mean catch rate between November and April lagged 
two years, and replicated for each month of the fishing season. 

2−TPW
δ  is the transfer function 

coefficient to be estimated. 
 

11.4 Results 
The juvenile tailor indices are shown in Figure 11.1. While the indices representing juveniles 
caught from Point Walter and Koombana are similar, the juvenile index at Pinnaroo Point 
differs to the other two indices. There is a significant correlation  
between the Koombana catch rates of tailor juveniles in February and the mean Point Walter 
catch rates of tailor between November and April (Figure 11.2). However, only a marginally 
significant relationship exists between the Koombana catch rates in February and the mean 
commercial catch rates in the Swan River 

( )006.0,86.0 == pr

( )081.0,76.0 == pr . The Koombana juvenile 
tailor catch rate in February could potentially be used as an early indicator of the Point Walter 
juvenile index and hence the recruitment of tailor two years later. 
 
A bar plot of commercial Swan River tailor catches for each calendar year and the 
commercial Perth metropolitan region sea catches from November of the preceding year to 
April of the current year showed similar trends, with the exception of a large catch in the 
ocean in 1998/99 (Figure 11.3). The variation explained by the nonlinear regression model (1) 
describing the relationship between the Swan River CPUE for each calendar year and the 
Perth sea CPUE from the previous November to April of the same year is 92% (Figure 11.4). 
The fitted parameters are ( ) ( )45.084.1ˆ,76.025.4ˆ == ba , both of which are significant. Since 

 significantly differs from zero, the relationship is nonlinear. b̂
 
The linear correlation between the mean Point Walter juvenile index lagged two years and the 
mean Swan River commercial tailor catch rates is 0.65 ( )16.0=p  (Figure 11.5). An outlier 
exists for the Point Walter data in 1998/99 and the mean Swan River catch rates for 2001. 
Occurrences of juvenile tailor at Point Walter were well below average during the 1998/99 
survey season. The correlation when the outlier is removed is 0.98 ( )003.0=p . Thus, the 
relationship is considered highly significant. The two-year lag between juvenile sightings and 
commercial catches is consistent with age-length estimates that claim age at minimum size 
(250 mm TL) is 18-22 months (Young et al. 1999). A linear regression was fitted to the data 
after the outlier was removed. The forecasts for annual commercial tailor catches in the Swan 
River for calendar years 2003 and 2004 based on this linear regression and provided fishing 
practices do not change (i.e. the mean of the last three years’ fishing effort is assumed for the 
next two years’ fishing effort) are 275 kg and 263 kg, respectively. 
 
A  model was used for (2) and thus (3). The parameters ( ) ( )120,0,11,0,0 SARIMA × 1φ  and 1Φ  
were estimated to be  and ( 10.061.0 ) ( )12.041.0 , respectively, for (2), and  and 

 for (3). Since these coefficients are less than 1 in magnitude, the fitted models are 
stationary. The transfer function component 

( 11.053.0 )
)( 12.036.0

( )18.035.0=δ  was significant , 
suggesting that the Point Walter juvenile index contributes information to the monthly catch 
model. Using the Point Walter juvenile indices for 2000/01 and 2001/02, the catch forecasts 
for 2003 and 2004 are tending to be lower than any other year (Figure 11.6), although the 
95% confidence intervals are very wide based on the fitted model. 

( )030.0=p
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11.5 Discussion 
There is a significant correlation between the mean of the Point Walter monthly catch rates 
and an annually calculated mean of monthly commercial catch rates of tailor taken from the 
Swan River two years later. Therefore, Point Walter juvenile tailor stock levels can provide an 
indication of fishery recruitment levels in the future. There is a significant annual nonlinear 
relationship for commercial tailor between the Perth metropolitan sea CPUE and the Swan 
River CPUE lagged approximately six months. This relationship shows that tailor stocks vary 
in the Perth metropolitan sea region in a similar way to the stock levels in the Swan River. 
 
A time series analysis of the monthly Swan River commercial catches from 1995 to 2002 
serves as a forecasting tool for tailor catches in the future. A seasonal autoregressive 
integrated moving average transfer function (SARIMAX) model was used. This model 
produced forecasts based on the annual Point Walter juvenile index together with lags of the 
monthly catches and lags of the previous errors. Time series methods are very useful when 
there is limited available biological information. Time series analysis is a very efficient way 
to produce reliable forecasts. Even when there is much biological information, simpler models 
seem to have equal predictive power compared to more complex models (Stillman et al. 
2000). It has also been shown that time series models such as SARIMAX models tend to 
provide better catch or CPUE forecasts than other methods in the fisheries literature (Roff 
1983, Stocker and Noakes 1988, Noakes et al. 1990). 

 
Both annual and seasonal models suggest the catch forecasts for 2003 and 2004 will be lower 
than current levels. This analysis is largely based on the fishery-independent recruitment 
survey located at Point Walter. Juvenile catch rates from Point Walter have been decreasing 
for a number of years. Furthermore, the age proportions of  to  fish caught from Point 
Walter have decreased over time (Figure 11.7). Has there been a behavioural change in the 
Swan estuarine entry pattern of tailor juveniles in the last two years? Or has there been a poor 
overall recruitment along the metropolitan coast? Is the recreational sector having a strong 
bearing on commercial catches in the Swan River in recent times? This drop in juvenile 
numbers may serve as a warning to management of the commercial and recreational tailor 
fishery that stocks of tailor are under pressure. 

+0 +1

 
Environmental-recruitment relationship could not be found. The Southern Oscillation Index 
(SOI) and Fremantle Sea Level (FSL) are used to test environmental effects on the Point 
Walter juvenile tailor index. There seemed a marginally significant negative correlation 
between the SOI ( )055.0,80.0 =−= pr  or FSL ( )10.0,73.0 =−= pr  and the first six years of 
Point Walter juvenile tailor catch rate data, but not once the data from 2001 and 2002 were 
included (Figure 11.8). The theory is that a strong Leeuwin Current (as measured by the FSL 
or as correlates with the SOI) prevents settlement of available juvenile tailor in nearshore 
waters. However, the statistics suggest that the factors influencing tailor recruitment into the 
Swan River from the nearby ocean appear to be more complicated than this hypothesis. 
 

11.6 Further Developments 
Fishing data from the Melville Angling and Aquatic Club (MAAC) indicates that there was a 
recruitment failure in the Swan River for tailor during the 1999 season. While the numbers of 
tailor caught decreased in 2001 and 2002, the average weights of the fish were significantly 
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above the historical average during these two years (Figure 11.9). This indicates that the age 
distributions of fish caught in 2001 and 2002 were similar, but significantly older, on average, 
than for any other year between 1987 and 2003. This result would explain the absence of 
recruits at Point Walter yet normal catches that led to the outlier in Figure 11.5. An improved 
model was proposed for prediction of Swan River commercial catches, namely the addition of 
the Perth metropolitan sea catch rates of tailor from November to April lagged two and a half 
years. This variable is thought to be a representation of mature population size in the 
metropolitan area. As shown in Figure 11.3, the Perth metropolitan sea catch rate (Nov-Apr) 
was above average during the 1998/99 season. The result of the linear regression with this 
added variable is shown in Figure 11.10 (cf. Figure 11.5). The relationship when the two-and-
a-half year lagged Perth metropolitan sea catch index is added to the model is significant 

. ( )029.0,91.0 == pr
 

Inclusion of the MAAC data provides one more piece of evidence towards pressure on tailor 
stocks in the Swan River and neighbouring oceanic areas. Excluding the data from 2001 and 
2002, the average weight of fish caught by the Melville angling club has trended upwards 

 since 1987 to the present day. This observation indicates an older distribution of 
tailor currently residing in the Swan River compared with the past, pointing towards a 
growing change in breeding behaviour or decreasing numbers of recruits in the Swan River. 

( 01.0=p )
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Figure 11.1. Juvenile tailor indices measured at Point Walter, Koombana and Pinnaroo. 
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Figure 11.2. Relationship between Point Walter juvenile index and Koombana juvenile index. 
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Figure 11.3. Commercial catches of tailor taken from the Swan River for each calendar year 
and the Perth ocean from November of the previous year to April of the same year. 
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Figure 11.4. Beverton-Holt mortality annual relationship between Swan River CPUE and 
Perth metropolitan sea CPUE lagged approximately six months. 
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Figure 11.5. Point Walter juvenile catch rate index versus Swan River commercial catch 
rates. Fishing years given are for the actual commercial catches (1997-2002) and the 
forecasted commercial catches (denoted “F”; 2003-2004). 
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Figure 11.6. Transfer function time series model of Swan River commercial tailor catches 
using the Point Walter juvenile tailor index. 
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Figure 11.7. Downward trending proportion of 0+ juveniles comprising the Point Walter 
juvenile tailor index. 
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Figure 11.8. Plot of SOI against Point Walter juvenile tailor catch rates. 
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Figure 11.9. Average numbers of tailor per angler (points) and average weight of tailor (lines) 
caught by the Melville recreational angling club from 1987 to 2003. 
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Figure 11.10. Swan River commercial catch rate versus tailor index using a combination of 
the Point Walter juvenile catch rate lagged two years and the Perth metropolitan sea catch rate 
(Nov-Apr) lagged two and a half years. Fishing years given are for the actual commercial 
catches (1997-2002) and the forecasted commercial catches (denoted “F”; 2003-2004). 
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13.0 Project Summary 

Table 13.1. Table of available data (A=annual, S=seasonal, M=monthly) and appropriate 

models. 

ARIMA, ARIMAX, SARIMA- Statistica Data Scientists/managers 
SARIMA SARIMAX GARCH l control tested involved 

charting

Western RL ✓ ✓ ✓ A,S, Caputi, Chubb 
(Zone A) M 

Western RL ✓ ✓ ✓ A,S, Caputi, Chubb 
(Zone B) M 

Western RL ✓ ✓ ✓ ✓ A,S, Caputi, Chubb 
(Zone C) M 

Southern RL ✓ ✓ ✓ A,M Melville-Smith, Caputi 

Prawns ✓ ✓ A,M Kangas, Sporer 

Sp. Mackerel ✓ ✓ ✓ A,M Lenanton, Mackie 

Pilchards ✓ ✓ A,M Lenanton, Gaughan 

A. Herring ✓ ✓ ✓ A,M Lenanton, Ayvazian 

Salmon ✓ ✓ ✓ A,M Lenanton, Ayvazian 

Dhufish ✓ ✓ ✓ A,M Lenanton, St. John 

Red Emperor ✓ ✓ ✓ A,M Lenanton 

Sea Mullet ✓ ✓ ✓ A,M Lenanton 

Y.-eye Mullet ✓ ✓ ✓ A,M Lenanton 

K.G. Whiting ✓ ✓ A,M Lenanton 

Tailor ✓ ✓ ✓ A,M Lenanton, Ayvazian 

Baldchin ✓ A Lenanton 
Groper 

Pink snapper ✓ A Lenanton, Jackson 
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13.1 Further Developments 
• Derive enhanced statistical quality control methods to improve estimates of the acceptable 

catch ranges for fisheries in the annual State of the Fisheries reports. Exponential 
smoothing and double exponential smoothing methods lead to biased confidence intervals 
for many fisheries in Western Australia. Techniques that account for autocorrelation in the 
data will be examined. 

• Effects and recovery time estimates for the pilchard fishery can be quantified using 
transfer function models. Impulse-response transfer function variables may be added to 
the monthly catch model. The variable would emulate population recovery based on 
biological reproduction properties such as age at maturity. 

• Fit southern rock lobster monthly time series catch model with two levels of variance, 
estimating the increase since 1990. 

• Nonlinear volatility analysis and interpretation required on western rock lobster zone C 
monthly catch series and whites/reds seasonal catch series. There is evidence that 
predictions and 95% confidence intervals may be improved using nonlinear methods such 
as GARCH. 

• Use multivariate adaptive regression splines (MARS) (Friedman 1991) to more accurately 
estimate the parameters of the nonlinear transfer function components for western rock 
lobster (see chapter 4) and other fisheries. 

• Multivariate control charting as an enhanced stock assessment tool may be a viable 
possibility. 

• A closer study of the spatial recruitment effects on the prawn fishery in Exmouth Gulf is 
required. Recruitment survey indices from certain fishing areas prior to the 
commencement of the fishing season significantly correlate with commercial catches, 
while other areas show no significant relationship. A time series model may be 
constructed using the three recruitment survey periods to forecast commercial catches for 
the season. 

• A time series analysis is required on regional subfisheries of those studied in this report, 
particularly for some finfish fisheries. The seasonal dynamics of some subfisheries behave 
differently over several regions for many fisheries, and thus an analysis of aggregated 
catches and fishing effort over the whole of Western Australia may be sub-optimal. Some 
catch rate or environmental relationships may therefore more distinct over the spatial 
regions. A correlation analysis could be considered among the different regions of the 
subfisheries to compare regional behaviours. 

• Time series models with alternative error structure, such as poisson or binomial count data 
may be more appropriate for fisheries with more sparse data. An example of this may be 
an analysis of seasonal effects on monthly tag-recapture data in a commercial fishery such 
as the Shark Bay pink snapper fishery. 

• More analysis on catch rate data for management purposes is needed, including the WA 
red emperor fishery where a catch rate analysis is used as a stock assessment tool. 

• More relevant environmental information may enhance the catch-catch rate-environmental 
relationships for the fisheries studied, especially the finfish fisheries. Global 
environmental data such as the Southern Oscillation Index and Fremantle Sea Level were 
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used since they were readily accessible. However, more localized current, temperature, 
swell, etc. data may be more useful. 

• Economic effects on fisheries need to be studied when sufficiently reliable data becomes 
available. For example, what effects do a downturn in the export industry (e.g. SARS) 
have on the whites and/or reds catches of western rock lobster presently and for future 
seasons? 

 

13.2 Benefits, Adoption and Planned Outcomes 
The results of the project include the development of a set of time series models for better 
prediction of future fisheries dynamics including catch, effort, catch-per-unit-effort (CPUE), 
etc. for several key Western Australian fisheries (e.g. western rock lobster, prawns, herring, 
salmon, tailor). The study has also developed a set of time series models for better 
understanding of some important relationships, for example, catch-effort, catch-recruitment 
and catch-environment for WA fisheries. The Western Australian rock lobster, prawn and 
many finfish fisheries receive the benefits that flow from this project, through improved 
prediction of future catches and/or CPUE. Recreational fishers also benefit as a consequence 
of the improved predictions and improved stock assessment advice to fisheries managers. 
 
Immediate benefits of the time series project are to the management of those Western 
Australian fisheries possessing relatively little biological information. The modelling 
techniques provide rigorous quantifiable ways to predict acceptable catch or CPUE ranges 
through statistical control charting, and forecast future catches or CPUEs using time series 
methods to assist with the management of the fisheries. The project showed that easily 
obtainable data over a sufficiently long timeframe could provide insight into the fishery 
dynamics. For most fisheries, there is sufficient amount of catch and fishing effort data, 
usually at least 10 years. Even when there is less data, for example, the commercial Swan 
River tailor data, the use of seasonal time series methods has allowed a useful analysis to be 
applied to the data. 
 
There are several highly managed commercial fisheries in Western Australia, including the 
western rock lobster industry and the prawn fisheries in Shark Bay and Exmouth Gulf. The 
time series techniques proved to be very useful and tractable for analyzing changes in the 
dynamics of several WA fisheries. For the western rock lobster fishery, the quantitative 
seasonal and in-season outcomes of the 1993/94 management changes to the fishery were 
calculated by using an intervention analysis in the models. Seasonal proportions of “whites” 
to “reds” catches could then be modelled accounting for the management intervention. In 
Shark Bay, the management of the fishery did not have a large impact on the catch dynamics. 
A management strategy was suggested based on the outcome of the time series analyses. This 
was to treat the southwestern areas differently to the remainder of the fishery. Time series 
models did not prove to be particularly helpful for the management of the Exmouth Gulf 
prawn fishery, however, where there have been many management changes each year. For the 
Shark Bay snapper fishery, highly variable age classes prevent the use of time series methods. 
Age-structured models are more reliable in this context. 
 
A further benefit to fisheries such as zone C western rock lobster, yellow-eye mullet, sea 
mullet and red emperor is the recognition of seasonal volatility in the catch data. This 
knowledge may impact on the management of these fisheries in the future. Volatility usually 
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implies risk, possibly to the breeding stock levels, for example. So management may need to 
be more stringent on these types of fisheries if required. 
 
Effects of environmental factors such as the Southern Oscillation Index and Fremantle Sea 
Level on some Western Australian fisheries have been identified or more fully quantified in 
this report. The effects typically appear as lagged interactions between environmental 
conditions and relevant fisheries data such as monthly catch rates. Examples where these 
methods have been successful include the southern rock lobster fishery, herring, salmon, 
Spanish mackerel, pilchards and dhufish. 
 
Statistical control charting presents an alternative method of stock assessment for Western 
Australian fisheries. Improved acceptable catch range estimates and catch forecasts are 
planned to be implemented in the State of the Fisheries report series in the future using 
statistical control charting and time series analysis.  
 
Time series modelling comprises alternative techniques to aid in the assessment of fisheries 
stocks in Western Australia and beyond. The methods of stock assessment contained in this 
report are widely applicable and would benefit fisheries in other states of Australia. The time 
series methodology is especially suited to fisheries with low historical management 
intervention, although it can be adapted to cater for more moderately managed fisheries. Also, 
time series methods provide a tool for those fisheries with a high recreational component (e.g. 
tailor, herring), where difficulties assessing the stock may emerge. Using these methods in 
conjunction with the more traditional methods (aging, tag/recapture experiments, etc.) 
provides management with more confidence of the current and future status of fisheries. 
Therefore, there are clear advantages for time series research to be adopted into the stock 
assessment of Western Australian fisheries. 
 

13.3 Conclusions 
• Phenomenological time series models were very useful as a prediction and forecasting 

tool for annual and seasonal catch and catch-per-unit-effort time series in Western 
Australian fisheries. The results of the project showed that time series models could be 
used as stock assessment tools without intricate knowledge of the fishery. The models 
could be used to reliably forecast catches up to three years in advance for most fisheries. 
Data departing from model predictions are either used as indications to management of 
unforeseen changes in the fishery, or the models are adjusted by interventions variables if 
the causes to the discrepancies are known. 

• Statistical quality control methods assisted with the understanding of the sustainability of 
many of the Western Australian fisheries, and proved an aid to the management of those 
fisheries. Methods taken from mainstream quality control charting literature could easily 
be applied to a variety of WA fisheries. 

• Catch-environment and stock-recruitment-catch relationships were discovered during the 
analyses. These were used as indicators of catch fluctuations. Environmental factors were 
quantified more accurately than in the existing literature for some species. New research 
showed the significance of interactions between environmental variables and relevant data 
such as recruitment indices or catch rate data. A number of years’ forecasts are available 
for fisheries using these models since these variables are generally lagged in time. 
Exogenous variables and management intervention terms were fitted, analyzed and 
successfully interpreted. 
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• Improvements were made in the quantification of spatial effects within the fisheries. 
Examples included the study of the relevance of fishing effort for many finfish species off 
the west coast and south coast of Western Australia, and the effect on the spatial 
management of the Shark Bay prawn fishery. 

• There was insufficient reliability of economic data at this stage to carry out a product 
value effect on fisheries and to analyze product value time series. Economical fisheries 
data analysis is also a sensitive issue. 

 

14.0 Appendices 

Appendix 1: Intellectual property and valuable information 
No saleable items were developed during this project. 
 

Appendix 2: Staff 
Staff who were employed on the project were: 
Dr Monty Craine, Dr (Henry) Yuk Wing Cheng, Dr L Y Cao, Dr Norm Hall, Dr Nic Caputi, 
Dr Chris Chubb, Dr Mike Moran, Dr Suzy Ayvazian.
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