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2002/015 Estimation of mortality rates from tagging data for pelagic 
fisheries: analysis and experimental design 

 
Principle Investigator: Tom Polacheck 
 
Address:   CSIRO Marine and Atmospheric Research 
   P.O. Box 1538 
   Hobart   TAS  7000 
   Tel: 03 6232 5312 Fax: 03 6232 5012 
 
Objectives: 
 
1. To provide a robust estimation framework for estimating mortality rates for 

tuna stocks from conventional tag-recapture data including associated 
confidence intervals. 

2. To apply the estimation framework to tag-recapture data for southern 
bluefin tuna (SBT). 

3. To utilize the estimation framework to provide guidance in the design of 
future tagging experiments – in particular to examine the trade-offs 
between the number of tags released, levels of observer coverage and 
spatial/temporal distribution of tags. 

4. To explore the utility of archival tag data to improve the estimation of 
mortality rates from conventional tagging experiments in terms of 
incomplete mixing. 

 
 
Non-technical Summary 
 
Outcomes Achieved 
 
This project has resulted in a comprehensive modelling framework for estimating 
mortality rates and abundance from tag-recapture and catch-at-age data. This 
framework was used to evaluate trade-offs in resources dedicated to the various 
experimental design components, and the results were considered by the CCSBT 
Scientific Committee in its design, review and recommendations for improving the 
conventional tagging program currently being conducted under the CCSBT Scientific 
Research Program. The modelling framework was applied to southern bluefin tuna 
data from tagging experiments conducted in the 1990s to provide estimates of 
mortality rates (natural and fishing) and abundance that are the most comprehensive 
to date. It is anticipated that the methods developed in this project will continue to be 
used in future analyses conducted for the CCSBT to aid in the evaluation of the SBT 
stock and in the provision of management advice. 
 
Data from conventional tagging experiments have been and are becoming 
increasingly important for providing estimates of mortality rates in stock assessments 
of large pelagic fishery resources as they provide a powerful, and perhaps only, 
alternative to relying on fishery dependent catch rate (CPUE) indices of abundance. 
While there is an extensive scientific literature on tag-recapture experiments, a 
comprehensive framework for the analysis and design of tagging experiments in the 
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pelagic fishery context does not exist.  This has meant that in the design phase of 
tagging experiments, it has not been possible to provide scientifically rigorous advice 
on various design components, such as numbers of tags to release, spatial and 
temporal distribution of tag releases, and necessary levels of observer coverage.  In 
addition, extensive tagging experiments have been conducted on juvenile southern 
bluefin tuna (SBT) during the past several decades, particularly during the early 
1990s, but a comprehensive analysis of the data taking into account all of the major 
potential sources of heterogeneity has not been completed because of the lack of an 
appropriate estimation framework.  As such, development of such a framework is 
essential to ensure that the full value from both past and future experiments is 
realized.  
 
In this project, we succeeded in developing a comprehensive modelling framework 
that integrates tag-recapture data and catch-at-age data that can be used to provide 
rigorous estimates of mortality rates and abundance. The general framework was 
developed in a non-spatial context and was later expanded to include a spatial 
dimension in order to provide unbiased estimates in situations where spatial 
heterogeneity (i.e. systematic incomplete mixing over large spatial scales) is a 
significant issue. We also demonstrated how issues of reporting rates, tag shedding 
and (unsystematic) incomplete mixing can be dealt with in the general framework. 
 
The modelling framework was used to evaluate relative trade-offs in dedicating 
resources to various experimental design components. In particular we focussed on 
evaluating the relative benefits of releasing more tags versus improving the catch-at-
age data and/or increasing the level of observer coverage (and thereby improving the 
reporting rate estimates as well as estimates of the size/age distribution of the 
commercial catches).  Such results can be useful in providing guidance on the 
appropriate distribution of resources among different design components of a tagging 
experiment, and can potentially improve the efficiency and cost effectiveness of 
future experiments. 
 
The modelling framework was applied to SBT tagging data from experiments 
conducted in the 1990s and catch-at-age data from the corresponding time period to 
provide estimates of juvenile mortality rates (natural and fishing) and abundance at 
age 1.  This is the most comprehensive analysis of these data to date, and the results 
suggest that: 

• natural mortality for SBT at age 1 is quite high (~0.4) and decreases to about 
0.2 by age 5;  

• fishing mortality rates in the 1990s were generally close to zero for ages 1 and 
2, were greatest at ages 3 and 4, and declined at age 5; 

• overall fishing mortality decreased in the first couple of years of the 1990s 
then increased fairly steadily from 1994 to 1997 to relatively high levels (~0.4 
at ages 3 and 4);  

•  population abundance at age 1 appears to have decreased by over 50% in 
1993 and 1994 compared to earlier in the 1990s. 

The historic SBT tagging data from experiments conducted prior to the 1990s were 
considered, but we concluded that these data have limited potential to provide 
quantitative mortality rate and abundance estimates, and are not directly amenable to 
the integrated estimation framework developed within this report. This is because of 
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limitations in the timing and location of releases, lack of information for estimating 
reporting rates and systematic non-mixing issues in the 1960s data. 
 
The results of this research have already been of direct benefit to the CCSBT 
Scientific Committee. Several of the appendices in this report have been submitted to 
meetings of the Scientific Committee and these papers have been integral in the 
review of the current conventional tagging program and in developing 
recommendations for improving the program. The methods developed here also 
provide a robust and improved basis for maximizing the information that can be 
derived from tagging experiments – in particular the integration of tag-recapture data 
with observer and catch data provides a comprehensive method for directly estimating 
mortality rates (both natural and fishing) and population sizes. These are the primary 
quantities required to be estimated in stock assessments, and having an approach for 
directly estimating them that does not require catch rate (CPUE) data provides a 
potentially powerful alternative for augmenting traditional stock assessment methods.  
 
Areas where there is potential for further improvements in the modelling framework 
developed here have been identified.  In particular, further work to fully address the 
issue of incomplete mixing, both systematic and unsystematic, is required.  With 
regard to unsystematic incomplete mixing, better models and methods for estimating 
the level of overdispersion in the tag-recapture data are needed.  With regard to 
systematic incomplete mixing, it would be useful to consider a wider range of spatial 
and movement dynamics, with the acknowledgement that the most appropriate spatial 
model will be situation-specific.  In addition, the results in this report point to the 
critical need to improve the data for estimating tag reporting rates and catch-at-age 
data for SBT fisheries if the potential of the current large-scale CCSBT SRP tagging 
experiments is to be fully realized. 
  
 
Keywords: tag-recapture, mortality rates, Brownie model, Petersen estimator, 
southern bluefin tuna, spatial modelling 
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Background 
Reliable indices of abundance and/or fishing mortality rates are a critical component 
of the stock assessment process. In many fisheries, particularly pelagic ones, catch per 
unit effort (CPUE) is often the only, or primary, index of abundance available. The 
problems and dangers of relying on CPUE are well known and documented (e.g., 
northern cod).  The development of reliable non-CPUE indices has long been 
recognized as a high priority both by fishery scientists, in general, and by scientists 
involved in the assessment of international tuna resources (e.g., CCSBT Scientific 
Committee).  However, the development of fishery independent and non-CPUE based 
indices is a difficult problem for a widely dispersed stock such as SBT. Tagging 
experiments have been recognized as offering one (and perhaps the only viable) 
alternative to relying on CPUE for wide ranging pelagic species. 
   
Conventional tagging experiments are a conceptually simple and powerful mechanism 
for providing estimates of critical parameters (e.g., fishing mortality rates) in fishery 
stock assessments.  In theory, all that is required is to release a sufficient number of 
tagged fish and monitor the number of tags that are returned over time, which then 
provides a measure of fishing intensity. However, while conceptually simple, there 
are a number of key requirements and assumptions that must be addressed in the 
experimental design and analysis of the data. Failure to adequately address these can 
result in highly imprecise and inaccurate estimates or, in the worst case, non-
interpretable results. The main issues in design and analysis of tagging experiments 
are concerned with heterogeneity in tag return rates as a result of factors such as tag-
shedding, non-reporting and incomplete mixing (which can include emigration and/or 
immigration in situations involving more than a single population). 
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Extensive conventional SBT tagging experiments have been conducted in the past. In 
particular, the multi-year, multi-cohort tagging in the 1990s has provided a very 
informative data set that has been an important contributor in recent stock 
assessments. However, a comprehensive analysis of these data taking into account all 
of the major potential sources of heterogeneity (e.g., tag shedding, non-reporting and 
non-mixing) has not been undertaken. Extensive additional and on-going conventional 
tagging experiments are being undertaken within the CCSBT as part of its agreed 
Scientific Research Program. 
 
Finally, a major source of uncertainty in any tagging program is the extent of 
incomplete mixing between tagged and untagged fish in the population. Archival tags 
have been identified as one potential source of information in this context because 
these tags provide information on where a fish has been between its time of recapture 
and release. In this regard, the CCSBT Scientific Committee has suggested that 
archival tagging be done to augment the currently agreed-on conventional tagging 
experiments under the CCSBT Scientific Research Program. However, there has been 
no analytical work done to determine how this information might be incorporated into 
the actual analysis of data from conventional tagging experiments, nor on the relative 
sample sizes and cost/benefit trade-offs involved.  
 

Need 
Data from conventional tagging experiments have been and are becoming 
increasingly important for providing estimates of mortality rates in stock assessments 
of large pelagic fishery resources as they provide a powerful, and perhaps only, 
alternative to relying on CPUE indices of abundance. There is an extensive scientific 
literature on tag-recapture experiments; however, a comprehensive framework for the 
analysis and design of tagging experiments in the pelagic fishery context does not 
exist. This has meant that in the design phase of tagging experiments, it has not been 
possible to provide scientifically rigorous advice on matters such as the relative trade-
offs between the number of tags to release, the spatial/temporal distribution of tags 
and the levels of observer coverage (required for estimation of reporting rates and for 
estimating the size/age distribution of the commercial catches). In addition, a 
comprehensive analysis of the extensive data from past SBT tagging experiments 
(particularly those conducted in the 1990s) taking into account all of the major 
potential sources of heterogeneity has not been completed because of the lack of a 
comprehensive estimation framework. Thus, the full benefit of the large research 
investment from these experiments has not been realized. It is also anticipated that 
conventional tagging programs will be a major future source of assessment 
information in both the eastern and western tuna fisheries. As such, an appropriate 
framework for the design and analysis of tagging experiments is needed to ensure that 
the full value from both past and future experiments is realized. Finally, there is 
increasing data accumulating from archival tags. There is a need to understand the 
role, and the relative cost/benefits, that archival tags can contribute to the overall 
estimation of mortality rates to past and future conventional tagging experiments. 
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Objectives 
1. To provide a robust estimation framework for estimating mortality rates for 

tuna stocks from conventional tag-recapture data including associated 
confidence intervals. 

2. To apply the estimation framework to tag-recapture data for southern 
bluefin tuna. 

3. To utilize the estimation framework to provide guidance in the design of 
future tagging experiments – in particular to examine the trade-offs 
between the number of tags released, levels of observer coverage and 
spatial/temporal distribution of tags. 

4. To explore the utility of archival tag data to improve the estimation of 
mortality rates from conventional tagging experiments in terms of 
incomplete mixing. 

 

Methods 

Estimation Framework 

Before determining the estimation framework to use in this study, we first undertook a 
review of different tagging experimental designs and estimators that could potentially 
be used for estimating population parameters in commercial fishery situations. Based 
on this review, we concluded that experimental designs based on multi-year tagging 
of the same cohort provide the most powerful experimental design in terms of the 
resulting ranges of parameters that can be estimated. Such an experimental design 
requires tagging for at least three consecutive years and can provide estimates of 
fishing and natural mortality rates, and potentially population size1 when integrated 
with catch data. Since the experimental design requires tagging of the same cohort in 
multiple years, it is most applicable to juveniles where age can be inferred from size. 
It should be noted that even if tagging is done only on juveniles, the tagging 
experiment can still potentially provide useful information on older ages as fish 
continue to be recaptured, as long as sufficient numbers are tagged and tag retention 
rates are reasonably high. We also note that that if mortality rates (both fishing and 
natural) are not age-dependent, then tagging and tracking of the same cohorts is not 
essential. In such cases, a multi-year tagging experimental design could be used for 
the adult component of a stock where aging may be problematical. 
 
As part of this study, we extended the traditional Brownie estimator for multi-year 
tagging experiments (Brownie et al. 1985) to incorporate estimates of the catch-at-age 
from the commercial catches. The integration of a multi-year tagging experiment with 
catch-at-age data from the commercial fishery can provide robust estimates of stock 
size as well as fishing mortality rates (Appendix 5). This integrated approach was 
used as the basic framework in most of the analyses conducted within this project. 
The estimates of stock size from this integrated approach are not reliant on having 
relative abundance indices. This is particularly important in the context of assessment 
for large pelagic tuna stocks since it provides an approach for estimating stock sizes 
which is independent of CPUE indices. Such experimental designs are particularly 
                                                 
1 Population size in this context and generally throughout this report refers to the size of a cohort or 
group of cohorts (those which are tagged). 

 6



FRDC Project Number 2002/015  Estimation of mortality rates from tagging data 

applicable to tagging experiments for juvenile SBT given their availability to surface 
fisheries over three age classes (i.e., ages 1-3). This means that it is viable to tag large 
numbers of individuals from the same cohort over multiple years.   
 
There are a number of factors that need to be accounted for in order for tagging 
experiments to provide robust and reliable estimates. These include: 
 

1. reporting rates of recaptured tags; 
2. spatial heterogeneity/incomplete mixing; 
3. tag shedding rates; 
4. accuracy of catch-at-age data. 

 
In the initial development of estimators from tagging experiments, these factors are 
frequently ignored (e.g., reporting rates are assumed to be 100%).  While ignoring 
these factors in the initial development provides an indication of what can ideally be 
achieved with a particular experimental design, it is important in any actual 
implementation to ensure that appropriate data are collected to address these issues 
and, where necessary, to have an integrated estimation framework for incorporating 
these data. In particular, in the design phase of a tagging experiment having such a 
framework is critical for being able to assess alternatives with respect to the effort 
devoted to numbers of tag releases, their distribution in space and time, and to the 
estimation of reporting rates. In addition, when catch-at-age data are integrated with 
multi-year tagging data to estimate mortality rates and abundance, it is important to 
consider the uncertainty associated with the estimates of the catch-at-age. Catch-at-
age data are also required for estimating reporting rates (particularly in a multi-fishery 
context).  Therefore, in considering alternative experimental designs, the effort 
devoted to the estimation of catch-at-age is a further dimension that needs to be 
considered. In Appendices 7, 9, 10, 11, 14 and 15, we have developed estimators that 
deal with these issues and that allow potential experimental designs to be evaluated.  

Reporting Rates 

The estimation of reporting rates is a particularly critical component in the design of 
tagging experiments and the precision with which these are estimated can limit the 
overall precision that can be obtained from a tagging experiment. Attempting to 
estimate reporting rates retrospectively is problematical. As such, it is critical that a 
strategy for estimating reporting rates is included within the initial experimental  
design. There are four basic approaches to the estimation of reporting rates. The 
applicability of these different approaches in a fishery context is dependent upon the 
actual nature of the fishery. These approaches are reviewed in Appendix 18. It should 
be noted that reporting rates are likely to differ among fishery components. A 
different method can be used to estimate reporting rates in each component, and all of 
the results incorporated into the final analysis. In terms of tuna longline fisheries, 
Appendix 18 concludes that the use of observers to estimate reporting rates is 
currently the only viable approach, while tag seeding is the most viable approach for 
surface fisheries involving farming or canning.  There are two fundamental 
approaches for incorporating reporting rates into the integrated tagging and catch-at-
age model.  First, the reporting rates can be estimated from an independent analysis, 
and then the estimates and their standard errors can be inputted into the model (e.g., 
Appendices 9 and 15).  Second, the estimation of reporting rates can be integrated 
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directly into the model (e.g., Appendices 7, 10 and 11).  In the case of tag seeding, a 
likelihood estimator for the reporting rates can be developed from the tag seeding data 
independent of the tagging and catch-at-age data. In this case, the tag seeding 
likelihood can simply be multiplied with the tagging and catch likelihoods to provide 
an overall estimator (Appendix 11). However, in situations where observers are used 
to estimate reporting rates, the estimation is more complex since the reporting rate 
estimates use some of the tagging and/or related catch data.  In this case, the 
likelihoods for the tagging and catch data need to be modified.  Appendix 7 expands 
the non-spatial integrated tagging and catch model developed in Appendix 5 to 
incorporate the estimation of reporting rates for the situation in which observers 
monitor a portion of the catches; Appendices 10 and 11 do so in a spatial context. We 
use the expanded model in Appendix 7 to address experimental design issues such as 
the trade-off in the number of releases relative to the level of observer coverage. In 
Appendix 9, we consider a two-fishery situation in which reporting rates are derived 
from observer data in one fishery and from tag seeding data in the other. The 
estimator in Appendix 9 can be used similar to that in Appendix 7 to look at design 
trade-offs. 

Spatial Heterogeneity – Systematic Incomplete Mixing 

The issue of spatial heterogeneity and incomplete mixing is another critical 
component that needs to be considered in the design of tagging experiments. In 
Appendix 10, we expand the integrated multi-year tagging and catch-at-age model to 
allow for abundance and fishing mortality to differ among defined regions, and for 
fish to move among these regions. Within this spatial estimation framework, we have 
also developed the appropriate likelihoods for estimating reporting rates from 
observer data. This allows us to evaluate alternative experimental designs and to 
examine the trade-offs between the number of tags released, the level of observer 
coverage and the spatial/temporal distribution of tags.  
 
The estimation framework developed in Appendix 10 is generic, without any 
restrictions on the movement patterns (i.e., transition probabilities) between areas. As 
long as the underlying spatial structure and time periods in the model are appropriate 
and transition probabilities are allowed to vary with age and year/time-period, this 
framework should be able to reasonably represent most movement dynamics. 
However, the cost is high in terms of the number of parameters to be estimated and 
the demand for adequate tagging in many areas, particularly as the number of areas 
and time periods increases. This can easily lead to intractable estimation and design 
problems. In addition, such a generic structure provides little basis for prediction as it 
assumes no consistency in the movement dynamics with time. Thus, imposing some 
form of spatial and/or temporal structure on the transition probabilities is highly 
desirable.  The structure imposed will depend on the population being modelled, 
however it is not unreasonable or unrealistic to expect that there are some consistent 
underlying biological processes that determine how and when animals move. In 
Appendix 11, we develop two examples of such models. These examples were 
constructed to represent an idealized representation of ‘SBT-like’ spatial dynamics 
and take advantage of known (or assumed) prior information on the movement 
dynamics of juvenile SBT to reduce the parameterization of the transition 
probabilities.  In both models, we define four areas and two seasons per year with 
movement only allowed between certain areas at the end of certain seasons.  
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However, in one of the models movement is represented as a seasonal Markov (i.e., 
memoryless) process, whereas in the second model there is site-fidelity in the 
movement dynamics. As these two models were constructed to represent SBT-like 
fishery situations, the estimation framework incorporates both observer and tagging 
seeding data for estimating reporting rates in different fishery components within the 
model. 

Overdispersion – Unsystematic Incomplete Mixing 

The tag-recapture component in the basic estimation framework assumes a 
multinomial distribution for the tag returns. This assumption is a common feature in 
most tag-recapture estimation models (e.g., Seber 1982). However, this is only valid if 
all fish of a particular age have the same probability of being caught.  If there is 
unsystematic incomplete mixing of tagged and untagged fish2 (e.g., if fish tagged in 
the same school and/or in close proximity on the same day have positively correlated 
recapture probabilities), then the numbers of returns at age will have more variability 
than a multinomial distribution would predict, referred to as overdispersion. 
Differential age/size selectivities among fishing vessels will also contribute to 
overdispersion if tagged fish are not homogeneously mixed within the untagged 
population. We extended the basic non-spatial estimation framework to incorporate 
overdispersion in the tag-return data using a Dirichlet-multinomial distribution 
(Appendix 9). We also expanded the spatially-explicit estimation framework to allow 
for overdispersion within each spatial stratum using the Dirichlet-multinomial 
distribution (Appendix 10).  Essentially, the probabilities of return corresponding to a 
particular set of releases are modelled as Dirichlet random variables with a variance 
parameter that governs the level of overdispersion. Then, the numbers of returns 
conditional on the probabilities of return follow a multinomial distribution, and the 
unconditional numbers of returns follow the compound distribution referred to as the 
Dirichlet-multinomial (see Annex A of Appendix 9). Through simulations, we 
explored the effect of incorporating overdispersion in the tag return data on the 
estimation of the mortality rate and abundance parameters (Appendix 9).  

Tag Shedding 

Double-tagging experiments are the primary approach used for estimating shedding 
rates and extensive work has been done on the problem of modelling and estimating 
shedding rates from such experiments (Kirkwood and Walker 1984; Barrowman and 
Myers 1996; Cadigan and Brattey 2003).  Methods for estimating tag shedding rates 
based on double tagging were reviewed (Appendix 14). Based on that review, models 
that had parameters which allowed for an initial immediate shedding and continuous 
shedding rate were explored for use with the 1990s SBT tagging experiments. We 
also developed an approach that allowed taggers with statistically similar shedding 
                                                 
2 Unsystematic incomplete mixing is meant to refer to situations where there is still large amounts of 
mixing among tagged and untagged fish and the pattern of mixing has a large random component such 
that on average the probability of recapture of tagged and untagged fish are the same (often referred to 
as  ‘patchiness’). This should be distinguished from the situation discussed in the previous section on 
spatial heterogeneity where there is a systematic and repeatable pattern of incomplete-mixing between 
tagged and untagged fish – for example, if all tagging was done late in the season in one location and 
fish in that location and time period tend to remain in one part of the stock’s overall range. Such 
systematic incomplete mixing will induce biases into the population and mortality estimates if it is not 
accounted for within the estimation model, whereas unsystematic incomplete mixing should not bias 
the parameter estimates but will increase the variance of the estimates. 
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rates to be combined (Annex A of Appendix 14) and applied this approach to the 
return data from the 1990s tagging experiment. We reviewed approaches for 
integrating tag shedding rates into the basic estimation framework from multi-year 
tagging programs and developed a maximum likelihood approach for combining 
estimates of tag shedding rates derived from independent analyses of the double 
tagging data into the basic integrated estimation framework (Appendices 14 and 15). 

Archival Tagging 

Archival tags are tags with electronic sensors and memory for storing the data from 
these sensors. These tags provide substantial information on the biology, habitat and 
location of a fish. In terms of the estimation framework developed here, the relevant 
data are those that allow the position of the fish to be determined. Some archival tags 
have the ability to detach themselves after a pre-set period, float to the surface and 
communicate their data via satellite. This has the advantage of providing movement 
and potentially natural mortality rate information that is completely fishery 
independent. However, their size currently limits their use to large fish. In addition, 
attachments for periods exceeding one year are problematical. The more commonly 
used archival tags need to be recaptured for the data stored on them to be retrieved. 
Within the context of the spatially-explicit models, archival tags provide additional 
data for estimating movements to the data provided by conventional tags since they 
provide information on the location of the fish during the intervening period between 
release and recapture. We developed a maximum likelihood approach for combining 
archival tag-recapture data (with its positional information) and tag-recapture data 
from conventional tags from multi-year experiments with spatially-explicit 
components.   
 
We note that because archival tags exploit modern micro-electronics, they are very 
expensive relative to conventional tags. The number of archival tags that can be 
deployed will be small in practice. If archival tags were released separately from 
conventional tags, we would have to estimate fishing mortality and transition 
parameters specifically for the archival tags. This would render them practically 
useless in this regard. Thus, we assumed that the archival tags are released in parallel 
with conventional tags. In developing this approach, we also assumed that the 
positions of the archival tagged fish are known without error. While there can be large 
inaccuracies in the positional information obtained from archival tags, the spatial 
stratum in the spatially-explicit models considered here are large enough (i.e. 1000s of 
km) that the effect of location errors should be small.  
 
Assuming that the probability of recapturing a tagged fish is independent of whether it 
has an archival or conventional tag means that the likelihoods for the two types of 
tags can be multiplied together. Note that initial tagging mortality may be higher for 
archival than conventional tags. If data were available to estimate this, it would be 
straightforward to incorporate such a differential into the estimation procedure. It 
should be further noted that in developing the likelihood for the archival data we 
assumed that reporting rates were similar for archival and conventional tags. In many 
situations this may not be the case, because higher rewards are generally provided for 
the return of archival tags. Again, modifying the likelihood component to allow for 
differential reporting rates would be straightforward if data were available for the 
differential to be estimated. The assumption of equal initial tagging mortality and 
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reporting rates for the two tag types was made as a pragmatic approach for addressing 
the general question of the potential for archival tags to enhance conventional tagging 
experiments. Incorporation of differential tagging mortality and reporting rates would 
only have complicated the analyses and presentation without changing the general 
results and conclusions. 
 
Given the above two assumptions, the likelihood that an archival tag is not returned is 
exactly the same as that of a conventional tag released from the same region at the 
same time.  However, for tags that are returned, the likelihoods differ for archival tags 
than conventional tags because of the additional information on location of the fish 
provided by archival tags. Essentially, the data from archival tags are like having 
multiple recaptures of the fish occurring at every intermediate time period between 
tagging and final capture. Explicit expressions for the likelihoods that take into 
account the multiple recapture nature of the archival tags are provided in 
Appendix 10. 

Catch-at-age Estimation 

The catch-at-age data has two main sources of errors: one that results from fishing 
being a random process (i.e., if we think of catching fish as a random experiment then 
we would not get the same outcome if we were to repeat the experiment); and a 
second that results from the age distribution of the catch being estimated from a 
sample (and generally a sample of lengths from which age must be inferred). We refer 
to the first source as process error and the second as sampling error. If sampling error 
did not exist, then the process error of the catch-at-age data could be modelled as 
multinomial if we assume each fish of a particular age has an equal probability of 
being caught, or, alternatively, as overdispersed multinomial if we assume there is 
overdispersion in the data (see previous discussion of overdispersion for the tag-return 
data). However, in most commercial fishery situations (including SBT), the sampling 
error will be large and we expect the process error to be negligible in comparison.  As 
such, we chose to model all of the error in the catch-at-age as sampling error and 
ignore any process error. Both process and sampling error could be included but this 
would require a substantially more complex estimation approach with considerable 
computational overheads (e.g., a Kalman filter). As long as sampling error dominates 
the error associated with the catch-at-age data, there would be no gain from 
undertaking such an approach (see Appendices 5 and 7 for more detail).   
 
We model the sampling error in the catch-at-age data as Gaussian with a coefficient of 
variation (CV) that depends on the level of sampling. The CV is intended to capture 
variability in the catch-at-age data due to non-homogeneous spatial and temporal 
distribution of fish as well as different size/age selectivities among vessels (i.e., if 
these factors are significant, then the CV of the catch-at-age data would be large 
because the age distributions derived from different samples could vary greatly).    
We note that the actual error structure in any particular application will depend upon 
the details of the sampling and age estimation procedures.  The choice of a Gaussian 
distribution provides a general framework for exploring the effects of sampling error 
in the catch data on the mortality rate and abundance estimates. However, other error 
structures that accommodate a particular sampling regime can easily be incorporated 
as long as an appropriate likelihood function can be developed. We also note that we 
have assumed that the errors in the catch-at-age estimates between years (i.e., ages for 
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a single cohort) are independent.  This is a reasonable assumption for many fisheries 
in which sampling and aging data are collected each year.  However, in some 
situations (particularly where age at length is being estimated from a growth curve), 
covariance in the estimates between years may exist and should be accounted for. 
     
In situations where observers are used to estimate reporting rates, the components of 
the fishery with observers will generally have additional catch sampling for 
estimating the catch-at-age. In such situations, the CV of the catch data will in part be 
determined by the level of observer coverage since this affects the level of sampling.  
The CV of the catch-at-age would be expected to decrease as the level of observer 
coverage increases.  Although the exact relationship will depend on the situation, we 
developed a generic relationship to examine how changes in observer coverage would 
affect the estimation of mortality rates and abundance (see Appendix 7).    

Returns from Only One Fishery Component 

In addition to the basic multi-year tagging framework, we also considered what 
estimation framework could be used for tagging experiments in which tag-return data 
with reliable reporting rates and catch-at-age data are available from only one 
component of a multi-component fishery (Appendix 17). The approach developed 
was to consider the tagging and catch-at-age data in the context of a Petersen-type 
mark and recapture estimator of abundance (Seber 1982). A Petersen estimator is 
based on the ratio of the observed number of tags returned within samples taken from 
the population given the known number of tags released into the population. In a 
fishery context, the catch-at-age data constitute a sample from the population. 
However, unlike most situations in which a Petersen-type estimator is used, the size 
of the sample examined for tags is estimated rather than being known exactly.    

Data 

Extensive data exist from a large number of tagging experiments on SBT conducted 
over the last 40 years. Most of the tagging has been conducted on juvenile fish 
captured by surface gear in coastal waters off Australia.  In this project, the primary 
data used in the analyses were from the SBT tagging experiments conducted in the 
1990s and the associated catch-at-age data. We focused on these tagging experiments 
because they were designed with the intention of ensuring that multiple cohorts were 
each tagged at three different ages. In addition, information, while limited, exists for 
developing estimates of tag reporting rates from these experiments (Appendix 19). 
The lack of information about reporting rates for the pre-1990s tagging experiments is 
a major limitation which hinders the direct application of the estimation framework 
developed here. In the 1990s, tagging was done in every year between 1992 and 1997. 
In most years, tagging was done in both Western Australia (WA) and South Australia 
(SA), with most of the fish tagged being ages 1 to 3. Appendix 4 provides a 
description of the tag-recapture data from the 1990s experiments and the 
corresponding catch-at-age data, as well as details of how the data were compiled. 
 
In addition to the 1990s tag-recapture data, we examined the potential of the data 
from the pre-1990s tagging experiments to provide quantitative mortality rate 
estimates within the context of the generalized estimation framework developed in 
this report (Appendix 16). Extensive tagging was conducted in most years in the 
1960s. Tagging in the 1970s was limited both in the number of years of tagging and 
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the actual number of releases. In the 1980s, there were extensive releases but almost 
all of these occurred in 1983 and 1984. Pre-1980, tagging took place in WA, SA and 
New South Wales (NSW). In the 1980s tagging only took place in WA and SA since 
surface schools of juvenile fish had disappeared from NSW. For the analyses 
involving the pre-1990s tagging data, the compilation of data was the same as that for 
the 1990s data as described in Appendix 4 except that tag releases by fishermen and 
from troll caught releases were also considered3.  

Results 

Estimation Framework 

Extensive exploration was conducted on the performance and statistical properties of 
the integrated multi-year and catch-at-age estimation framework developed in this 
project (Appendices 5, 6, 7, 8, 9, 10, 11 and 12). This was done primarily through 
simulations mincing a range of potential experimental designs and parameter values 
for the underlying population dynamics. These simulations also provided indications 
of the consequences of different potential trade-offs in effort dedicated to the various 
experimental design components (e.g., numbers of releases, distribution of releases, 
levels of observer coverage, etc.).  

Reporting Rates Known 

In Appendix 5, simulations were conducted using the basic estimation framework 
under ideal conditions, namely known reporting rates and complete mixing, to 
demonstrate the value of directly incorporating catch-at-age data into the estimation 
framework and also to illustrate the trade-off between number of releases and 
accuracy of catch data in terms of parameter estimation.  The results of the 
simulations demonstrate that there are substantial benefits in using the integrated 
catch-at-age and tagging model developed here compared to the more common 
tagging-only (Brownie) model for multi-year tagging of a cohort. The integrated 
model can provide maximum likelihood estimates not only of mortality rates (natural 
and fishing) but also of initial population size (at the time of first tagging) with 
reasonable levels of precision. Population size estimates are not obtainable if the 
catch-at-age data are not included. In addition, the simulation results suggest that 
including catch data can improve the precision of fishing mortality rate estimates by 
up to ~40% and natural mortality rate estimates by up to ~10%.  They also show that 
reducing uncertainty in the catch data can lead to significant improvements in the 
precision of the population size estimate and the fishing mortality rate estimates 
(especially at young ages and with low numbers of releases), whereas increasing the 
number of releases can lead to large improvements in the natural mortality rate 
estimates as well as the fishing mortality rate estimates (especially when the 
uncertainty in the catch data is high).  

                                                 
3 These additional tags were included because of the large number of fishermen/troll releases. 
However, the examination in Appendix 20 is largely concerned with differential in the spatial 
distribution of releases and returns and also includes detailed consideration of differences in returns 
from scientest-tagged and fishermen-tagged fish. 
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Reporting Rates Estimated 

We explored the properties of the basic estimation framework for situations where 
reporting rates are unknown (see Appendix 7). We focused on the situation in which 
observer data are used to estimate the unknown reporting rates because observers are 
the only currently viable approach for estimating reporting rates from tuna longliners 
(Appendix 18). Tagging and observer programs can be costly to run and resources 
available for doing so are usually limited.  Thus, in the simulations, we explored the 
effect of releasing more tags versus increasing observer coverage on the precision and 
bias of the parameter estimates.  In particular, we were interested in the estimates of 
natural mortality, fishing mortality and abundance – reporting rate estimates are also 
provided by the model but these are usually of secondary interest.  We found that 
increasing the number of releases improved the precision of all parameters, especially 
the fishing mortality estimates at older ages and the natural mortality estimates. The 
improvement tended to be greatest at low release numbers such that increasing the 
number of releases beyond 1000 resulted in only marginal gains for most parameters 
(natural mortality rates being an exception).  Increasing the level of observer coverage 
also improved the precision of all parameters, especially the fishing mortality 
estimates and the population size estimate.  Although the improvement per unit 
increase in observer coverage was greatest at low levels (i.e., in going from proportion 
coverage of 0.05 to 0.1), substantial gains in precision were still achieved in all 
parameters (except reporting rates) by increasing observer coverage from 0.2 to 0.5.   
The results depended on the reporting rate value assumed. The precision of the 
parameter estimates was greater when the reporting rate was high; however, the above 
general observations held true regardless.   
 
In some situations considered, biases were evident in some of the parameter estimates, 
however these diminished as the number of releases increased and as the level of 
observer coverage increased.  In any case, biases were not generally an issue of 
concern except when both the number of releases was low (500 or less) and the levels 
of observer coverage was low (0.1 or less). Even then, when the reporting rate was 
high, the biases were never more than 12% for any of the parameter estimates.  An 
unexpected observation regarding biases was that some of the parameter estimates 
(the age 1 and 2 fishing mortality estimates and the population size estimate) showed 
almost no signs of biases in the simulations with a low reporting rate (0.25) but did 
show small biases in the simulations with a high reporting rate (0.75); the reason for 
this is unclear4. 
 
We also explored the properties of the basic estimation framework in a two-fishery 
situation where reporting rates are unknown and reporting rates are estimated by two 
different methods (see Appendix 9). The simulations in this case were conducted 
within the general context of the current SBT fishery. Thus, one fishery was 
considered to be a longline fishery in which reporting rates are estimated from 
observer data and the second fishery was a surface fishery in which reporting rates are 
estimated from tag seeding experiments. In this investigation, we also allowed for 
overdispersion in the tag-return data. The results from the model with overdispersion 

                                                 
4 Note that with high reporting rates and low observer coverage some bias may be introduced because 
by chance the proportion of tags returned from the observed catches may be less than those returned 
from the unobserved catches. In such a case, the reporting rate estimate would be truncated to equal 
1.0, and this may be a source of estimation bias. 
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suggest that in order to achieve coefficients of variation of 20% or less for the 
longline fishing mortality rates at ages 1 to 3, observer coverage must be at least 30% 
(and at least 20% for the model without overdispersion).  Estimates of fishing 
mortality in the surface fishery are chiefly unaffected by the level of observer 
coverage in the longline fishery, provided fairly accurate estimates of surface fishery 
reporting rates and catch-at-age by fishery exist.  It is important to note, however, that 
these results depend on the assumption of no systematic incomplete mixing.  If this 
assumption is violated, then the level of observer coverage in the longline fishery 
would become more influential on the accuracy and precision of parameter estimates.  
Without good observer data, and thus good information on differential tag reporting 
and return rates between fishery components, there would be little power to test the 
assumption of non-mixing and, if necessary, develop spatially-explicit tag recovery 
models to account for heterogeneity in recapture probabilities. The results also 
demonstrate the importance of having reliable and precise estimates of the catch-at-
age for each fishery when applying the estimation model presented here.  This 
emphasizes the need to develop appropriate sampling and error models for the catch 
data; having representative and adequate observer coverage can help to accomplish 
this in longline fisheries. 

Overdispersion 

We explored the properties of the basic estimation framework when the recapture data 
were modelled as Dirichlet-multinomial to account for overdispersion in the recapture 
probabilities (Appendix 9). Qualitatively, the results from varying any of the factors 
were very similar in the model with Dirichlet-multinomial returns as the model with 
multinomial tag returns.  As expected, the parameters were almost always estimated 
with less precision (i.e., their CVs were larger) with Dirichlet-multinomial returns, but 
the relative changes in precision and general observations about the trade-offs in 
design components did not change significantly between the models.  However, our 
simulations suggest that the extent of overdispersion is consistently underestimated. 
This means that if overdispersion exists the estimated precision of the parameter 
estimates using a Dirichlet-multinomial model is still likely to be overestimated (i.e., 
variances underestimated).  

Spatially-Explicit Models 

We explored the properties of the basic estimation framework when more than a 
single spatial region is included in the model (Appendices 10, 11, 12 and 13). With 
more than a single region, identifiability problems (i.e., some parameters are not 
estimable) can exist if tagging does not occur in every region and time period. The 
extent of this will depend upon the spatial structure in the model and any constraints 
placed upon the parameters, particularly those that determine the movement among 
areas (see Appendices 12 and 13). Due to the large number of parameters as the 
spatial complexity of the model increases, it is difficult to make general conclusions 
about the estimation properties with complex spatial structures because any 
conclusions will depend on the range and details of the simulations conducted. 
However, the results of the simulations that we conducted suggest that unbiased 
parameter estimates can be obtained with reasonable levels of precision as long as 
‘reasonable’ numbers of tags are released in most, if not all areas, and if ‘reasonable’ 
data are available for estimating reporting rates and the catch-at-age. As the number 
of tags released in some areas becomes small and/or the quality of data for estimating 

 15



FRDC Project Number 2002/015  Estimation of mortality rates from tagging data 

the catch-at-age parameters diminishes, biases can be introduced (Appendix 12).  
Overdispersion, particularly when high, can degrade performance substantially 
compared to simulations with simple multinomial recaptures and can introduce biases 
into some parameter estimates (Appendix 10). In general, estimates of natural 
mortality (particularly for ages 2 and above combined) can be problematical with 
small numbers of releases or poor data for estimating reporting rates and catch-at-age 
(Appendix 12). Simulations using low fishing mortality rates (and therefore low 
numbers of returns) were found to yield biases in some of the parameter estimates.   
The biases appear to decrease or disappear with increased numbers of releases (and 
therefore increased numbers of returns), which indicates that they are primarily small 
sample size effects.  
 
Population wide estimates were generally estimated better than the corresponding 
area-specific ones (Appendices 10, 11 and 12). In fact, unbiased and relatively precise 
population wide estimates were often obtained even when the data were insufficient to 
yield unbiased or reasonably precise area-specific estimates. In contrast, estimates 
based on pooling data across areas and ignoring the spatial structure showed some 
substantial biases when large differences existed in recapture probabilities among 
areas. The degree of bias is roughly related to the extent of non-mixing. Overall, the 
simulation results indicate that if spatial heterogeneity is likely to exist it is important 
to include a spatial dimension within the analysis to achieve unbiased estimates of 
population wide parameters. In terms of the precision of the estimates, there appears 
to be little or no cost for including a spatial dimension even when complete mixing 
does in fact exist (Appendix 12).  
 
The simulations also indicate that the distribution of tag releases is not critical in 
terms of population wide estimates. In fact, for some spatial structures and movement 
dynamics, it is not essential to have releases in all areas to get meaningful estimates at 
the population wide scale. In Appendix 12, unbiased and reasonably efficient 
estimates of population wide parameters were obtained when tagging only took place 
in one region in an ‘SBT-like’ situation. Moreover, tagging in only one area yielded 
no real loss in precision as long as the same total number of tags was released.  
However, we note that with more complex spatial structures and movement dynamics, 
which might be expected in many situations, releasing tags in only one area can result 
in an intractable estimation problem with some parameters becoming unidentifiable 
(Appendix 13). 

Estimates for SBT from Conventional Tagging Experiments 

1990s Experiments – Reporting Rate Estimation 

An essential component for applying the estimation framework developed in this 
report to the data from historical SBT tagging experiments is the estimation of 
reporting rates. Estimating reporting rates for SBT is complicated because of the 
nature of the SBT fishery, which comprises multiple components with varying 
reporting rates. For the 1990s tagging experiments, there are only limited data for 
estimating reporting rates and these data do not permit a rigorous statistical analysis.  
Nevertheless, if assumptions are made about the relationship between reporting rates 
in fishery components with and without data, then the data do provide sufficient 
information to derive estimates of the reporting rates. In previous analyses of the 
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1990s tagging experiments (Polacheck et al. 1996, 1998; Preece et al. 2001), a range 
of reporting rate estimates has been used that correspond to different options for the 
relationship between the reporting rates in components of the Japanese fishery with 
and without observers and for the reporting rates in the Australian surface fishery. The 
most recent reporting rate estimates were produced in 2001; since then there have 
been revisions to the catch-at-age data used in estimating the reporting rates as well as 
new data from tag seeding experiments. As such, we produced updated reporting rates 
for use in this report that reflect these revised catch data and also incorporate the tag 
seeding data.  
 
Appendix 19 documents how the updated reporting rates were calculated and 
discusses the differences among the various (eight) options presented. As discussed in 
Appendix 19, only option 8 among the eight options is actually information based for 
all major non-observed fisheries with non-zero reporting rates. For the other seven 
options, the reporting rate for at least one of the fishery components is based on what 
can be considered the most optimistic assumption for that fishery. In this sense, option 
8 could be considered the most ‘realistic’ or plausible. As such, the reporting rate 
estimates corresponding to option 8 (given in Table 1) were used as the primary 
reporting rate estimates in the analyses conducted for this report.   
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Table 1: Year- and age-specific reporting rate estimates used in the primary analyses 
conducted for this report (taken from Table 5a, option 8, of Appendix 19).  

       
Age 1991 1992 1993 1994 1995 1996 1997 

1 0.933 0.887 0.926 0.522 0.748 0.32 0.805 
2 0.654 0.577 0.75 0.498 0.632 0.387 0.775 
3 0.597 0.543 0.625 0.6 0.632 0.475 0.727 
4 0.196 0.327 0.471 0.559 0.397 0.413 0.639 
5 0.198 0.276 0.402 0.457 0.258 0.25 0.597 
6 0.171 0.278 0.381 0.39 0.192 0.267 0.537 
7 0.18 0.277 0.411 0.405 0.179 0.275 0.568 
8 0.186 0.292 0.423 0.418 0.187 0.254 0.596 

 

1990s Experiments – Tag Shedding Estimation 

Tag shedding is another important component that needs to be accounted for in the 
analysis of tag-return data. Estimates of tag shedding were not included in previous 
analyses of mortality rates from the 1990s tagging experiments (e.g., Polacheck et al. 
1996, 1998); this reflected both a lack of resources for undertaking the analyses 
combined with a perception that tag shedding rates were relatively low. Incorrectly 
assuming that there is no tag shedding will result in biased estimates of mortality rates 
and abundance, although the biases will be relatively small if shedding rates are very 
low. Nevertheless, it is important that tag shedding be included within comprehensive 
analyses of tag-return data both to confirm that the rates are in fact low and to remove 
any potential biases.  
 
Estimating shedding rates and incorporating them into the analysis to estimate 
mortality rates and/or abundance can be statistically and numerically complex because 
of the need to account for differences in tag shedding rates among individual taggers 
(Appendix 14). Estimates of tag shedding rates for the 1990s tagging experiments 
were calculated for individual taggers and six groups of taggers identified as having 
statistically similar shedding rates (see Appendix 14 for more detail). The estimates of 
the shedding rates were generally small, particularly in light of the fact that all tagged 
fish were double tagged. Thus, the probability of a fish losing both tags over the 
primary period of recovery (i.e., over four years of liberty) was generally less than 
10% (Figure 1). However, the shedding rate for tagger group 6 was substantially 
greater than for the other taggers (e.g., over 20% of the fish tagged by group 6 are 
estimated to have lost both tags after four years at liberty). The differences among 
taggers emphasises the importance of allowing for differences among taggers in the 
estimation of mortality rates and population sizes rather than using an average 
shedding rate calculated from pooling the data across all taggers.  Although the 
shedding rates were generally small, excluding them from the model for estimating 
mortality rates and abundance  (i.e., assuming 100% tag retention) did have an effect 
on the parameter estimates. For example, estimates of initial population sizes were 
2-6% greater if 100% tag retention was assumed and the estimates of natural mortality 
were also sensitive. 
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Figure 1: Estimates of the probability of a tagged fish losing both its tags as a function 
of its time at liberty for the 6 tagger groups defined in Appendix 14 (see Appendix 14 
for more details). 

 

1990s Experiments – Integrated Model with No Spatial Structure 

A comprehensive analysis for estimating mortality rates and abundance for southern 
bluefin tuna using tag-return and catch-at-age data from the 1990s was conducted 
with the assumption of no systematic non-mixing after the first year of release (i.e., no 
need for spatial structure) (Appendix 15).  The analysis included two 
parameterizations for fishing mortality rates – one in which the age- and year- specific 
fishing mortality rates were unconstrained (model 1) and one in which they were 
constrained to have separable age and year effects (model 2).  Both models led to 
similar parameter estimates and the same general conclusions. The results suggest that 
natural mortality at age 1 is quite high (~0.4) and decreases to about 0.2 by age 5; 
however, the uncertainty in the age 5 estimate is very high and the estimate is 
sensitive to changes in either the model or the data inputs. Tagging cohorts at age 4 
(in sufficient numbers) in addition to ages 1 to 3 could provide valuable information 
for better estimating natural mortality at older ages.  Fishing mortality estimates were 
generally close to zero for ages 1 and 2, were greatest at ages 3 and 4, and declined at 
age 5 (Figure 2).  The results also suggest that fishing mortality decreased in the first 
couple of years of the 1990s then increased fairly steadily from 1994 to 1997.  
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Population abundance appears to have decreased from about 2.5-3 million age 1 fish 
in 1989 to just over 1 million age 1 fish in 1993 and 1994 (Figure 3). 
 
In the analysis, we have attempted to account for uncertainty in all of the data 
components in the model. However, there is very limited information for estimating 
the uncertainty associated with both the reporting rates and the catch-at-age data. 
Accounting for the potential uncertainty associated with these required relatively 
arbitrary assumptions about effective samples sizes and expected levels of precision. 
If the assumed values are too low, then the variance of the mortality rate and 
abundance estimates would be underestimated. In addition, we assumed a multinomial 
distribution for the tag return data, but the variance in the number of returns is likely 
to be greater than predicted by a multinomial distribution due to incomplete mixing 
and heterogeneity in the capture probabilities of fish. The Dirichlet-multinomial, as 
described in Appendix 9, would be one approach for dealing with this; however, this 
approach requires an assumption about the level of overdispersion, either assuming it 
is known or keeping it constant since it cannot be estimated within the model 
otherwise.  Moreover, the rather arbitrary assumptions about the uncertainty 
associated with the reporting rates and catch-at-age data renders questionable the 
value to be gained from more sophisticated variance estimation. The necessity for and 
potential gain from incorporating overdispersion in the tag-return model for southern 
bluefin tuna is an area for further investigation, particularly for future tagging 
experiments.  
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Figure 2: Estimates (± 1 standard deviation) of the age-specific fishing mortality rate 
effect (upper panel) and the year-specific fishing mortality effect (lower panel) for the 
model with separable fishing mortality rates (model 2).  Note that the latter estimates 
should be interpreted as relative indices, where the age effect at age 5 has been fixed 
at 1.0 (see Appendix 15).  The estimate of the year-specific component for 1991 has 
been omitted because it is based on very little data and has large uncertainty 
associated with it. 
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Figure 3: Comparison of  population size (P) at age 1 estimates and their standard 
deviations (SD) by cohort for the model with unconstrained fishing mortality rates 
(model 1) and the model with fishing mortality rates constrained to have separable 
age and year effects (model 2).  Black circle = model 1 results; blue triangle = 
model 2 results.  For the 1989 cohort, only a direct estimate of P at age 2 is obtained 
from the models, so the age 1 estimates shown are post-calculated (see Appendix 15 
for more details).  

 

1990s Experiments – Integrated Model with Spatial Structure 

The integrated spatially-structured model developed in Appendix 11 was applied to 
the multi-year tag-recapture and catch-at-age data from the 1990 to 1994 cohorts (see 
Appendix 16). It should be noted that the 1990s experiments had not been designed in 
the context of such a spatially-explicit model and almost all tag releases occurred off 
WA or in the GAB. As demonstrated in Appendix 16, the parameters are still 
identifiable, however the power to estimate the spatially-explicit parameters would be 
expected to be low, particularly given the low reporting rates in the longline fishery. 
This was in fact the case and the spatially-explicit parameters were not well 
constrained by the data. Improved performance was obtained by placing some 
‘sensible’ restrictions on the transition probabilities between regions and the 
distribution of age 1 fish by region. 
 
The results provided from fitting the spatially-structured integrated model were 
generally consistent with our basic understanding of the spatial dynamics of the SBT 
fishery and juvenile stock. Thus, selectivity in the GAB/WA surface fishery was 
estimated to be dome-shaped, peaking at age 3 and declining to close to zero at ages 1 
and 5.  Similarly, selectivity in the South-East Indian Ocean (SEIO) longline fishery 
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(which includes most of the Taiwanese longline catches) was also estimated to be 
dome-shaped with a peak at age 3; however, it was lower at age 2 and higher at ages 4 
and 5 than in the GAB. In the South African and Tasman Sea regions, fishing 
mortality rates were estimated to be greatest at ages 4 and 5. The estimates of age-
specific components of the regional and seasonal transition probabilities suggest that 
the majority (75-90%) of fish move from the GAB to the SEIO at the end of season 1 
at all ages, with the exception of age 4 where a large fraction (about 40%) also move 
to the Tasman region. The transition probability estimates back to the GAB at the end 
of season 2 suggest that almost no fish return from South Africa, whereas large 
fractions return from the SEIO and Tasman regions. The age component of these 
transition estimates suggests that a greater proportion of fish return to the GAB as age 
increases. It is difficult to know if the latter finding is real or simply an artefact of the 
limited data (and confounded by the estimates of the initial distribution at age 1 for 
which there is little information). It is also probably due in part to the lack of return 
data from the longline regions and at older ages. Estimation and interpretation of the 
results is confounded by the estimates of reporting rates as well as potential problems 
with the age distribution of the catch data. Temporally-changing sampling biases and 
discarding of small fish have been identified as issues in the SBT fisheries during the 
time covered by this study, and could be distorting the spatially-explicit parameter 
estimates.  
  
Comparison of the results from fitting the spatial and non-spatial models to the 1990s 
tagging and catch-at-age data indicate similar and consistent estimates at the 
population wide level, both for annual fishing mortality rates and for initial (age 1) 
cohort size estimates when similar hypotheses/constraints are used for the natural 
mortality rates (e.g., that M is constant past age 2). In both cases, estimates of fishing 
mortality rates were highest for ages 3 and 4 and increased during the 1990s (compare 
Table 2 and Figure 2). Also, the overall rates were similar in magnitude. The 
estimates and trends in the abundance at age 1 by cohort were also similar (Figure 4), 
as were the actual estimates of natural mortality (i.e., 0.42 compared to 0.46 for age 1 
and 0.40 compared to 0.37 for ages 2+ for the spatial structured and non-structured 
models respectively). The similarity and consistency between the two sets of results 
suggest a high degree of robustness in the results and that unsystematic non-mixing 
issues may not be a substantial concern in these experiments. 
 
 

Table 2: Estimates of the average yearly fishing mortalities by year and age for SBT 
when the tag release/recapture and catch at data were fit to the integrated spatially-
structured estimation model. 

 
 Age 

Year 1 2 3 4 5 
1991 0.041     
1992 0.005 0.037    
1993 0.002 0.018 0.100   
1994 0.003 0.017 0.096 0.100  
1995 0.006 0.039 0.194 0.185 0.107
1996  0.071 0.344 0.270 0.129
1997   0.454 0.445 0.195
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Figure 4: Estimate of the population size (P) at age 1 (millions) for the 1990 to 1994 
cohorts from the integrated model with spatial structure compared to the estimates for 
the non-spatially structured model when similar assumptions are made for changes in 
natural mortality with age (see Appendix 16 for details). 

  

1990s Experiments – Using Only Returns from the Great Australian Bight 

A Petersen-type mark and recapture estimator of abundance was used to examine the 
potential information that can be derived from the 1990s tagging experiments if only 
returns from the Great Australian Bight are considered (Appendix 17). The purpose 
was to determine the type of performance that might be expected from the current 
CCSBT tagging program, given that reliable reporting rates are unlikely to be 
available for the longline component of the fishery. The results suggest that using 
only the SBT tag returns from the surface component of the entire juvenile fishery 
may still allow for information on juvenile abundances and/or trends, but this requires 
relatively consistent mixing patterns of tagged fish with the complete population of 
juvenile fish. It also requires that reliable estimates of reporting rates and of the age 
distribution of the surface catches are available, which emphasizes the need for 
developing appropriate statistical estimators for these quantities.   
 
The results from applying the estimator to the 1990s SBT tagging data lend 
reasonable support to the assumption of consistent and high levels of mixing. They 
also indicate no increase (and possibly a decrease) in the strength of cohorts at age 1 
during the first half of the 1990s, and suggest a declining trend in abundance by ages 
2 and 3 for the surviving members of these cohorts (Figure 5). One advantage of using 
this approach when there is little or no information on the reporting rates from the 
longline fisheries is that it can provide an indicator of trends in juvenile abundances 
over the period of the tagging experiments independent of any assumptions about tag 
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returns and catches in the longline fishery. Such indicators can provide a useful 
independent check on overall complex stock assessment results.  
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Figure 5: Comparison of Petersen-type estimates for the number of 1-, 2- and 3-year-
old SBT (  as defined in Appendix 17) based on age 1 releases (solid squares), 
age 2 releases (triangles) and age 3 releases (diamonds), respectively, from Western 
Australia and the Great Australian Bight combined (note there were no age 3 releases 
in Western Australia). The estimates shown are based on the pooled returns and 
catches for each age of release. Error bars are estimated approximate 90% confidence 
intervals (see Appendix 17 for more detail).   

*
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Pre-1990s Experiments 

The historic (pre-1990s) SBT tagging data were examined with respect to their 
potential for providing quantitative mortality rate and abundance estimates (Appendix 
20). The examination conducted indicated that there are substantial problems with 
using the pre-1990s data in this regard, and we concluded that the data are not directly 
amenable to the integrated estimation framework developed within this report. For the 
1970s and 1980s releases, there was simply not enough multiple tagging of the same 
cohorts at consecutive ages to permit the application of a Brownie-type estimator. For 
the 1960s releases, there was sufficient multiple tagging of some cohorts to possibly 
allow for a Brownie-type estimator to be used; however, the differential return rates 
for tags released in different areas provides strong evidence for substantial incomplete 
mixing among releases from NSW with those from WA and SA (e.g., Table 3). This 
indicates that the non-spatial models of Appendices 7 and 9 would not be appropriate 
and that a spatially-explicit model would be required to obtain reliable estimates. The 
spatially-explicit models developed for use with the 1990s tagging experiments 
(Appendices 10 and 11) cannot be used for the 1960s data because these models make 
no allowance for a NSW juvenile component of the stock since this component 
disappeared in the early 1980s (Caton 1991). The generic spatial model of Appendix 
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10 is also not directly applicable because of the lack of releases and fishing in all 
areas (particularly in the longline areas) and the differing seasonality among the 
fisheries. A spatially-explicit model that incorporates hypotheses with respect to the 
possible movement dynamics along the lines of those in Appendix 11 but tailored for 
the stock and fisheries of the 1960s could be developed. The development of such a 
model was beyond the scope of the current study, particularly given the additional 
complexities of the 1960s data including lack of data for estimating reporting rates, 
high shedding rates and concerns associated with the large number of fishermen 
releases (e.g., the results would be highly dependent upon assumptions about 
reporting rates and whether or not fishermen releases were included) – see Appendix 
20 for more detail. Nevertheless, further analyses of the 1960s tagging experiments 
could be informative, especially with respect to the NSW surface component of the 
stock and its disappearance in the early 1980s.  They would also provide additional 
estimates of juvenile natural mortality that would be useful for comparison with those 
from the 1990s experiments.  
 
Even without a quantitative estimation model, the examination of the tag-return and 
catch data from the 1960s in Appendix 20 suggests that historically a large degree of 
spatial structure and spatial heterogeneity existed among juvenile SBT found within 
Australian waters. The combination of the high proportion of NSW returns from 
releases in NSW combined with the high return rates from releases in NSW (but not 
from other areas) associated with increased catches in NSW in the late 1960s (see 
Appendix 20) suggests the possibility of a substantial degree of separation among 
juvenile SBT between NSW and other areas (WA and SA). This further suggests a 
high degree of vulnerability to over-exploitation and localized depletion for the NSW 
component, which would have implications for the rebuilding of the SBT stock.    
 
 
Table 3:  The number of surface tag returns by recapture location (SA, NSW, TAS) 
and the number of longline tag returns for tags released in WA, SA, NSW and TAS in 
the 1960s, using only recaptures that were at liberty more than 270 days. (SA = South 
Australia, NSW = New South Wales, WA = Western Australia, TAS = Tasmania.) 
 
 

Recapture Location Release  
Location SA NSW TAS Longline 
WA 278 166 1 128 
SA 179 128 0 144 
NSW 47 1622 1 77 
TAS 3 1 0 3 

 
 
 

Designing Tagging Experiments 
The evaluation of experimental design for a tagging experiment can be considered 
from two perspectives: 
 

1. Will the experimental design provide robust and sufficiently reliable estimates 
(or what level of resources is required to achieve acceptable performance)? 
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2. What is the optimal allocation of resources among the competing data needs 
(e.g., number of releases, data for reporting rate estimates, etc.)?   

 
There is clearly strong interaction between these two considerations as the level of 
resources required will depend in part upon their allocation among competing data 
needs. Determining what level of resources is needed and the ‘optimal’ experimental 
design for a given amount of resources is complex because of the large number of 
design parameters and the difficulty in determining realistic costs for achieving 
specific values for them, particularly in international multi-fishery situations (e.g., 
observer costs). Within the estimation framework developed here, there are five basic 
components that potentially compete for the resources and that will determine 
whether the experiment is likely to achieve acceptable performance. These are: 
 

1. the number of tag releases distributed appropriately over time and space; 
2. the number of tags returns (i.e., resources devoted to rewards, promotion and 

recovery activities); 
3. the collection of data for estimating reporting rates; 
4. the collection of data for estimating the catch-at-age data; 
5. the collection of data for estimating tag shedding rates. 

 
In addition, it is essential that well-developed procedures are available for catching, 
tagging and releasing fish that have minimal impact on the survival of tagged fish. 
Where possible effort should be taken to estimate any tagging related mortality and 
incorporate such estimates if not essentially zero into the overall estimates of 
mortality rates. In any case, the condition of all fish that are released should be 
assessed and recorded (e.g. whether bleeding or not). Only fish deemed to be in 
‘good’ condition at the time of release (where ‘good’ is clearly defined in observable 
terms as part of the tagging protocol) should be included in the analyses.   
 
It should be emphasized that if data from any of these components are not available 
then valid estimation is not possible. Thus, the first step in the design evaluation stage 
is to determine whether it is feasible to collect the data for each of these components. 
If it is not possible, serious consideration should be given to whether to proceed 
because any results from the experiments will be dependent upon assumptions for the 
missing components5. For example, there are numerous instances in which tagging 
experiments have been conducted without having built the collection of data for 
estimating reporting rates into the design (e.g., the SBT experiments conducted in the 
1960-1989 period), and the potential value of these experiments with respect to 
estimating population parameters (e.g., mortality rates and abundance) have been 
compromised or limited. In this regard, it is important that data are not only collected 
for estimating all necessary components but also that they are collected using 
appropriate and documented sampling designs so that the variances associated with 
the estimates can be estimated. Otherwise, there is no statistical basis for evaluating 
the overall accuracy and precision of the resulting mortality rate and abundance 

                                                 
5 In some situations the results can still provide useful information and it may be worth proceeding. For 
example, some parameter estimates may be relatively insensitive over the range of reasonable 
assumptions for the missing data components. In particular, if actual fishing mortality and tag return 
rates are high, then the returns themselves provide the basis for estimating a minimal reporting rate 
while the estimates for fishing mortality over the remaining range of possible reporting rates could be 
informative.  
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estimates. In this regard, estimates of catch-at-age data are often problematical in that, 
although they often exist, the way they have been compiled often does not allow for 
proper evaluation of their accuracy and precision.  
 
Among these five components, design considerations for collecting tag shedding data 
are the most straightforward to deal with. This is because the data for estimating 
shedding rates comes from fish that are double-tagged. Thus, the maximum resources 
that can be devoted to improving estimates of tag shedding will be determined by the 
number of releases. In many cases, the marginal resources required to double tag all 
releases (i.e., the cost of the tags and the extra rewards6) will be small relative to the 
overall resources required for implementing a tagging experiment. As such, a robust 
approach is simply to double tag all fish and thus simplify this aspect of the 
experimental design7. In cases where the marginal cost of double tagging all releases 
is substantial, then it is important to ensure that a sufficient number of double-tagged 
fish are released by each tagger to get sufficient returns with which to reliable 
estimates of their shedding rates (see Appendix 14). The number of releases that is 
sufficient will depend in part on the recapture rates and the reporting rates since these 
determine how many of the releases will be returned.  In the results for SBT presented 
in Appendix 14, the shedding estimate for the tagger with the least number of returns 
(39) had a CV of 30%; however, the results also suggest that the correlation between 
number of returns and precision of shedding estimates can be quite weak. Even if 
shedding rates can be estimated accurately, high levels of shedding can compromise 
the entire experimental design (e.g., if shedding rates are sufficiently high such that 
the probability of still retaining a tag after two years is low, the information from the 
multi-year tagging of the same cohort over three years would lost). As such, more 
important than determining resources to devote to double tagging in the design phase 
is to ensure that sufficient resources are devoted to developing robust tagging 
techniques and adequately training taggers so that tag shedding rates are consistently 
low. This development and training should be a prerequisite in the experimental 
design. 
 
Among the other four design components, resource requirements are more difficult to 
specify because the expenses involved with each of them can be high and there can be 
substantial interaction/trade-offs among them8. In addition, the resources available for 
some components may be determined by needs outside of the tagging experiment and 
not amenable to being traded-off against other components.  We would emphasize, 
however, that all four of these components are essential and if the data for any 
component is insufficient then the overall estimates from the tagging program will be 

                                                 
6 Note that if tag shedding is relatively low, most tag returns will involve the return of two tags and 
thus it would be the combined reward for both tags that would be the effective incentive. Thus, double 
tagging all fish should not necessarily be seen as doubling the cost of rewards.  
7 It is important to ensure that in fact both tags are reported when a fish is recaptured with two tags. 
Thus, the rewards should be based on the number of tags returned (and not the number of fish from 
which tags are recaptured). This needs to be clear in promotional material and rewards should be such 
that there is sufficient incentive to return more than one tag. Also, it is important to have direct 
communication, if possible, with tag returners to ensure that both tags are being returned.  
8 It should be noted that in the case where observers can observe each individual fish caught and the 
resulting data are used to estimate reporting rates, increasing resources devoted to observers would 
have the synergetic effect of improving both the actual reporting rates and the catch-at-age estimates, 
and 100% observer coverage could eliminate the need for other forms of tag recovery activities and 
catch sampling.   
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compromised. As such, it is important to ensure that there is a commitment for 
sufficient resources for each component to achieve what would be considered 
minimal levels of reliability. A commitment in this case is not only simply for 
financial resources but must also involve access/availability, such as access to a 
representative sample of vessels in the case of observers or availability of 
representative landings for tag seeding experiments.  
    
It should be noted that there are interactions between the expected results from a 
specific design for a tagging experiment and the underlying dynamics of the 
population and fishery involved. Thus, fundamental design parameters will be 
affected by the underlying dynamics. For example, the number of releases that may be 
adequate to achieve what is considered to be an acceptable level of precision in a 
situation with high fishing mortality rates can be inadequate if fishing mortality rates 
are low (e.g., see Figure 4 in Appendix 5).  In addition, as the basic (ideal) estimation 
framework is expanded to incorporate all factors that need to be accounted for in any 
specific implementation, the number of design parameters increases and the 
evaluation of alternative experimental designs becomes increasingly complex (the 
number of tags to release at each age, location and timing of releases, the level of 
observer coverage in different fisheries, the number of tags seeded in each year, the 
effort devoted to estimating the catch-at-age data, etc.).  
 
The extensive simulations that we conducted under this project (see Appendices 5, 7, 
9, 10, 11 and 12) demonstrate that the trade-off among these various design 
components can be quite complex with substantial interactions among the various 
parameters (e.g., the trade-off between number of releases and observer coverage can 
depend upon the precision of the catch-at-age estimates). As such, it is not meaningful 
or fruitful to attempt to provide specific guidance on values to be used for the design 
parameters or on the trade-off among them without knowing specific conditions of the 
tagging experiment to be implemented.  As such, for any given tagging experiment, 
simulation testing of potential experimental designs conditioned on the prevailing 
situation is the only feasible approach for determining the appropriate design 
parameters and evaluating the trade-offs among them. Simulation testing is important 
to ensure that robust estimates can be achieved. This is particularly the case if 
complex spatial/temporal structure needs to be taken into account in subsequent 
analyses (see Appendix 12). The estimation framework and simulation approaches 
developed in this project provide a general basis for conducting such simulations. 
While it is not possible to provide detailed generic design criteria for tagging 
experiments, the simulation testing that we conducted in this project provides some 
insights into the basic requirements and trade-offs, both in general and in ‘SBT-like’ 
fishery situations. 

Number of Releases 

To a rough first approximation, the variance for many of the parameters of interest 
will be proportional to the number of tags returned.  As such, ideally it is important to 
ensure that sufficient tags are released so that that there are a ‘reasonable’ number of 
expected returns from each of the release/return strata in the model. While in general, 
the mortality rates and population size estimates should be asymptotically unbiased9, 
                                                 
9 Because of the way that we have modelled the variance of the catches in the simulations so that they 
have a constant CV, the estimates of population sizes in the simulations have a small statistical bias. 
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this is not necessarily the case with small sample sizes. Some substantial biases were 
evident in both the non-spatial (Appendices 5 and 7) and spatial (Appendix 12) 
simulation results when the number of releases was small. It is not possible to provide 
generic guidelines on what constitutes sufficient numbers of releases both to avoid 
substantial biases and to achieve reasonable levels of precision in parameter estimates 
because what is sufficient will be highly dependent upon the population/fishery 
dynamics and the reporting and shedding rates. Nevertheless, simulations conducted 
in Appendix 12 for an SBT-like situation with spatial structure (i.e., one in which 
there is seasonal migration between discrete areas) to investigate the effect of 
differing sample sizes provides some indication of what level of releases may be 
required at least within an SBT-like context. The results suggest that with high quality 
data for estimating the catch-at-age and reporting rates, releases on the order of 1000 
tags per year would be sufficient to obtain estimates of the initial population size and 
fishing mortality rates with CVs of ~20% or less. In contrast, for with low data 
quality, not even 2400 releases per year was sufficient to achieve similar levels of 
precision nor were the biases always small.  Estimates of natural mortality rates are 
more poorly estimated and to achieve CVs of less than 40% would entail releases on 
the order of 2400 per year for the high data quality situations and substantially greater 
for the low data quality situations.  

Overdispersion 

Overdispersion in tag-return data (relative to a basic multinomial model) is likely to 
be present for most tagging experiments as a result of incomplete, but unsystematic, 
non-mixing at relatively small to medium scales in relationship to the timing and 
distribution of tags (e.g., schooling). Thus, in trying to assess whether an experimental 
design will provide robust and sufficiently reliable estimates, it is critical to allow for 
overdispersion. Results in Appendices 9 and 10 provide results on how overdispersion 
in the tag-return data can degrade the precision of and, in more extreme cases, induce 
biases into parameter estimates. In Appendix 9, we assumed a factor of three for the 
increase in the variance of the returns at age relative to a multinominal distribution to 
provide an indication of what level of precision might be required for SBT tagging 
experiments. However, the value of three was rather arbitrary. In most cases there 
would be little basis for anticipating in the design phase what level of overdispersion 
would be realistic to expect. The general issue of how best to quantify overdispersion 
in tagging experiments needs further research. Nevertheless, it is important to allow 
for overdispersion in the design phase and to allow for increased sampling effort 
above that determined to achieve acceptable performance under a multinominal 
tagging model. 

Spatial Considerations 

The introduction of a spatial dimension into the experimental design will clearly 
complicate the analysis and, in most instances, the implementation of the tagging 
experiment. As such a critical question in the design of a tagging experiment is 
whether it is necessary to include an explicit spatial component. Clearly, if the 
purpose of the experiment is to get measures of movement rates or area-specific 

                                                                                                                                            
However, in actual applications in which direct estimates of the sampling variances in the catch-at-age 
data are available it would not be necessary to make this assumption and thus the estimation bias would 
not be of concern (see Appendix 6).   
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population sizes and fishing mortality rates, then the spatial component cannot be 
ignored. However, if the primary purpose of the experiment is to provide overall 
estimates of parameters of primary interest for stock assessment purposes (i.e., natural 
mortality, fishing mortality and population size), then whether a non-spatial design 
and analysis will be sufficient is worth considering. In terms of experimental design, 
this is an overarching question. As such, a focus of the simulations we conducted with 
explicit spatial structure was a comparison of the precision and accuracy of population 
wide estimates of abundance and mortality rates when these estimates were derived 
from the spatial estimation model and when they were derived from the non-spatial 
estimation model applied to data pooled spatially (see Appendices 10 and 11 for 
details of the two estimation approaches). 
 
If the spatial component is ignored, the expectation is that the resulting estimates will 
be biased if there is systematic incomplete mixing of tags across the entire spatial 
range. The extent of bias would be expected to depend on the extent of non-mixing 
and the relative differential in abundances and fishing mortality rates by area/seasons.  
Results in Appendix 12 provide comparisons of the estimates derived using the spatial 
estimation model with those obtained from pooling the data spatially for an SBT-like 
situation.  Overall, the simulation results indicate that if systematic spatial 
heterogeneity exists, it is important to include a spatial dimension within the analysis 
phase to achieve unbiased estimates of population sizes. In terms of the precision of 
the estimates, there appears to be little or no cost for including a spatial dimension 
when in fact complete mixing exists (see Appendix 12 for more detail). 

Estimation of Reporting Rates and Catch-at-age 

We would expect that having better data with which to estimate reporting rates and 
catch-at-age will ultimately lead to better estimates of the mortality rate and 
abundance parameters.  To explore this, all of the simulations conducted with explicit 
spatial structure (Appendix 12) were performed using two levels of data quality for 
estimating reporting rates and catch-at-age. The high quality data scenarios, as 
expected, always provided more robust parameter estimates than the low data quality 
scenarios. Somewhat surprising was that the differences in performance were not 
larger than observed. With poor information on reporting rates we had anticipated that 
there might have been much greater confounding between reporting rates and 
mortality rates than was apparent in the results. In general, the parameters in the low 
quality data scenarios remained unbiased. The CVs, while being substantially greater 
than in the high data quality scenarios, were often within what might be considered 
acceptable limits in a stock assessment context (i.e., less than 30%). However, we 
would reiterate that the CVs in the simulations are likely to be over-optimistic to what 
would be realised in practice because of overdispersion in the tag-return data.  
 
Competition may exist between resources devoted to collecting sufficient data for 
reporting rate and catch-at-age estimation and resources directly involved in tag 
releases. Appendices 7 and 9 examine the trade-off between the number of releases 
and the level of observer coverage in a non-spatial context.  Note that the level of 
observer coverage affects the estimation of both the catch-at-age and the reporting 
rates.  Not surprisingly, we found that the marginal gain will be greatest for the 
weakest element in the experimental design. Thus, if observer coverage is low (e.g., 
less than 10%), the potential improvement from increased observer coverage will be 
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substantially greater than if it is 50%. Overall, it is important in the design phase to 
strive for a reasonable balance among the resources devoted to each of the data 
collection components, as it is the component with the poorest quality data that will 
contribute most to the uncertainty in the results. 
 
In design considerations regarding catch-at-age estimation, it is important to ensure 
that the degree of sampling error in the catch-at-age is accurately reflected.  In 
particular, differences in catchability and selectivity among vessels and areas will 
result in more sampling variability in the catch-at-age data than if a simple random 
sample of the catch were available.  In cases where observers perform most or all of 
the catch sampling, the increased variability is likely to be substantive at low levels of 
observer coverage (e.g., observers coverage of 10% of the total catch may result in 
sampling from only a small number of vessels/fishing trips operating in high seas 
longline fleets where a single trip may be several months or more). Thus, when 
considering the level of effort in the design phase to put into the estimation of the age 
distribution of the catch, it is important to represent the actual level of sampling 
variability. This will be fishery specific and further work is needed for almost all 
fisheries on how best to characterize this. In terms of the estimation framework 
developed here, this might best be done by developing a functional relationship 
between the actual observer/sampling coverage and the effective coverage in terms of 
simple random sampling.   

Tagging of Multiple Cohorts 

Most of the simulation results presented in this report are for a tagging experiment 
involving a single cohort.  In practice, it is likely that two or more cohorts would be 
tagged in a given year.  If any parameters are thought to be the same between cohorts, 
then tagging multiple cohorts can improve the information available for estimation 
and inference about not only these parameters, but the other model parameters as 
well.   
 
We conducted simulations in a non-spatial context to explore the effects on the 
mortality rate and abundance estimates if a tagging experiment includes multiple 
cohorts (see Discussions of Appendices 5, 7 and 9). In these simulations, fishing 
mortality rates and reporting rates were allowed to differ by year and age but natural 
mortality rates were constrained to differ only by age, not year.  Having additional 
cohorts resulted in large improvements in the precision of the natural mortality rate 
estimates and also in the fishing mortality rate estimates at older ages. For example, in 
the specific simulations conducted in Appendix 7 (which directly incorporate the 
estimation of reporting rates through observer data), having data from two cohorts 
reduced the CV of the natural mortality rate estimates by up to 20%, and by almost 
30% with three cohorts. There was very little difference in the precision of the 
estimates of the fishing mortality rates for younger ages or for the initial population 
sizes regardless of the number of cohorts. However, if we had considered a situation 
where a separable model is realistic for the fishing mortality rates, then considerable 
improvement in the precision of the estimates of fishing mortality rates could be 
achieved from tagging multiple cohorts. If separable assumptions were found to be 
applicable, this may also improve the overall estimation performance of the remaining 
parameters, particularly given the high correlation among them (see Discussion of 
Appendix 5 with regard to parameter correlations).  
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Multi-cohort tagging would also improve the estimation of area-specific parameters in 
a spatially-explicit model.  Simulation results presented in Appendix 12 found that 
with spatially-explicit models the population wide estimates were generally well 
estimated even through the area-specific estimates of population size, fishing 
mortality rates and transition probabilities often were not. The spatial model for a 
single cohort has a large number of parameters to estimate relative to the number of 
data points (i.e., the number of tag returns by age in each area and time period). In a 
situation where transition probabilities are assumed to be age-dependent but not year-
dependent, having return information from multiple cohort for estimating the 
transition probabilities would reduce the parameterization and may provide a 
powerful approach for gaining insights into the actual spatial dynamic processes 
through the testing of alternative model structures for the movement dynamics. 

Tag Recovery Activities – Promotion and Rewards

Tag recovery promotion and rewards are an essential component of the experimental 
design for a tagging program because achieving high reporting rates can substantially 
improve mortality rate and population size estimates. Resources for this are essential 
unless observers or automatic detection devices are to be the only source of data for 
recaptured tags. However, this is perhaps the most nebulous component of the 
experimental design to evaluate what would constitute appropriate resources. This is 
because it is not possible to specify the relationship between the resources expended 
upon promotion and rewards and the level of reporting that will result. Nevertheless, 
experience gained from past tagging experiments indicates that promotional activities 
and rewards can have a large effect on the actual return rate (e.g., Polacheck et al. 
1995).  
 
We conducted simulations in the non-spatial context to explore the effect of different 
reporting rates on parameter estimation in the case where reporting rates are estimated 
from observer data (Appendix 7). As would be expected, all parameters were 
estimated more precisely when the reporting rate was high (0.75) than when it was 
low (0.25), regardless of the number of releases or the level of observer coverage.  
However, the magnitude of the improvement differed among parameters, being 
greatest for the reporting rate estimates but also substantial for the fishing mortality 
rates at older ages and the initial population size, and it also depended on the number 
of releases and level of observer coverage, generally being greatest at low levels of 
releases and/or low levels of observer coverage. Refer to Appendix 7 for specific 
results.  
 
Roughly speaking, increasing the reporting rate has a similar effect to increasing the 
number of releases because both result in more tag returns. However, the increase in 
tag returns due to increasing the reporting rate depends on the level of observer 
coverage – if the observer coverage is close to zero, then tripling the reporting rate in 
the unobserved component will result in almost triple the total tag returns (i.e., 
effectively a tripling of the number of releases), whereas if the observer coverage is 
close to one, then tripling the reporting rate in the unobserved component will have 
almost no effect on the total tag returns (i.e., effectively no change in the number of 
releases). Of course, it is not quite that simple because increasing the number of 
releases leads to proportional increases in tag returns in both the observed and 
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unobserved components, whereas increasing the reporting rate only leads to increased 
tag returns in the unobserved component.    
 
In terms of experimental design, the critical question is what level and types of 
promotional activities and what type and value of rewards will result in high return 
rates from fishermen. Experience from past tagging experiments indicates that this is 
likely to be fishery specific (e.g., cash rewards can be unacceptable in some cultures, 
while non-cash rewards can quickly lose their incentive for fishermen that recapture 
numerous tags). Experience also suggests that fishermen respond positively to 
personalized contact promoting tag returns (e.g., pre-season discussion explaining the 
tagging program and in-season meeting of vessels returning from fishing trips) and 
that such personalized contact can be highly effective in improving return rates (T. 
Polacheck, personal communications). For example, the tag-return rates from 
Japanese longline vessels in South Africa appear to have been substantially greater 
from vessels that were visited by tag collect liaison officers than from vessels without 
such visits. Thus, personal and direct interaction with fishermen should be an 
important component of any tag recovery strategy. 

Age Estimation Issues 

The multi-year tagging framework investigated in this project assumes that tagged 
fish can be accurately aged and, thus, correctly assigned to their respective cohorts. 
Therefore, an important consideration in the experimental design will be the method 
used to estimate the age of tagged fish. The simplest and most easily implemented 
approach, and the approach used for SBT, is to estimate age based on length using an 
estimated growth curve and cohort slicing. In fact if data are collected on the size at 
release and recapture, the tag-return data from the experiment can be used as the basis 
for estimating or updating the growth curve (although this would entail some delay 
before ages could be assigned to tagged fish).  However, cohort slicing from a length 
curve will result in aging errors when ages are assigned to individual fish or groups of 
fish. Thus, when cohort slicing is used to estimate the age of tagged fish, it is 
important to know whether aging errors, if ignored, would induce substantial errors 
into the population dynamics parameter estimates derived from tagging models. 
Simulations were conducted in Appendix 8 to address this issue. 
 
The results in Appendix 8 indicate that in many situations the effects of aging errors 
from cohort slicing on the mortality rate estimates obtained are minimal. In particular, 
Appendix 8 suggests that using cohort slicing for juvenile SBT tagging experiments is 
unlikely to induce substantial biases.  However, this is not always the case – in 
situations where the number of fish tagged in a given year from the cohort being 
modelled is much smaller than the number tagged from adjacent cohorts and where 
the degree of overlap in lengths among ages is large10, some of the estimates (namely, 
fishing mortality at older ages and natural mortality) have large biases.  Furthermore, 
the true mortality rates affect the results.  We found larger biases in the parameter 
estimates when fishing mortality decreased with age than when it increased.   In 

                                                 
10 Note that the degree of overlap is a function of both the variance around the mean length at age for 
any given age and the actual rate of growth. Thus, a high degree of overlap can be achieved even with 
relatively low variance in the length at age if growth rates are correspondingly high (see discussion in 
Appendix 8). 
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situations where mortality rates (both natural and fishing) are the same at all ages, 
aging errors have no consequences.  
 
In cases where there is potential for aging errors from cohort slicing to introduce 
substantial biases, an alternative to relying on cohort slicing for aging of tagged fish 
should be considered in the experimental design phase. These would include: 
 

1. Collection of a scale from each tagged fish if scales can be used to reliably 
estimate age for the species being tagged; 

2. Collection of otoliths from a sample of fish during tagging operations in order 
to be able to produce an age-length key that could be directly applied to the 
tagged fish; 

3. Incorporation of aging error directly into the estimation framework. 
 
It should be noted that use of an age-length key would still necessitate the 
incorporation of aging errors directly into the estimation framework. This is because 
an age-length key does not provide a unique estimate of the age for each tagged fish 
but only a probability distribution for its age given its length. Incorporation of aging 
errors directly into the estimation framework is conceptually straightforward. It would 
involve specifying a likelihood function for the age of each released fish given its 
length. Then, conditional on its age of release, the other likelihood functions 
developed in this report can be used to estimate the conditional likelihood of 
recapturing a tagged fish. These conditional likelihoods would then need to be 
integrated over the possible ages of releases to provide an overall unconditional 
likelihood. While conceptually straightforward, it would be computationally complex 
and time consuming. Thus, in any specific application it is important to determine 
whether aging errors are likely to be important early in the design phase.   

CCSBT SRP Tagging Program 

As noted above, specific results about experimental designs are dependent upon the 
specific dynamics of the stock and fishery particularly as the conditions under which 
the experiments are conducted departed from the ‘ideal’ situation (i.e., known 
reporting rates and complete mixing). Appendix 9 provides an example of how the 
estimation framework combined with simulation results can be used to provide 
experimental design advice in a specific application intended to represent SBT. The 
CCSBT as part of its international Scientific Research Program (SRP) is currently 
undertaking a large-scale, multi-year conventional tagging program. The analyses in 
Appendix 9 were presented at a technical review of the tagging program conducted by 
the CCSBT Scientific Committee in 2004 and were the basis for a number of the 
conclusions agreed upon at that review (Anon. 2004) 
 
The focus of the simulations conducted in Appendix 9 was to investigate levels of 
observer coverage and tag releases necessary to achieve reasonable precision in 
mortality rate and abundance estimates in a tagging program for juvenile SBT given 
the current fisheries and population abundances. The results suggest that the number 
of tags that have been released or plan to be released as part of the CCSBT SRP 
tagging program are adequate, but that increasing observer coverage in longline 
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fisheries that capture juvenile SBT11 from current levels could potentially lead to 
significant improvements in the precision of the fishing mortality rate estimates for 
the longline fishery, as well as smaller improvements in the estimate of population 
abundance. The results from the model which allowed for overdispersion in the tag 
returns suggest that in order to achieve CVs of 20% or less for fishing mortality rates 
estimates at ages 1 to 3 in the longline fishery, observer coverage must be at least 
30% (and at least 20% for the model without overdispersion). The agreed current 
target observer coverage by CCSBT is 10% and this target is not being achieved in all 
of the major longline fisheries. The results indicate that estimates of fishing mortality 
in the surface fishery are chiefly unaffected by the level of observer coverage in the 
longline fishery, provided fairly accurate estimates of surface fishery reporting rates 
and catch-at-age by fishery exist.  It is important to note, however, that the results 
depend on the assumption of no systematic non-mixing. If this assumption is violated, 
then the level of observer coverage in the longline fishery would become more 
important because without good observer data, and thus good information on 
differential tag reporting and return rates between fishery components, there is little 
power to test the assumption of non-mixing and, if necessary, develop spatially-
explicit tag recovery models to account for heterogeneity in recapture probabilities. 
The simulation results also demonstrate the importance of having reliable and precise 
estimates of the catch-at-age for each fishery when applying the estimation model 
presented here.  This emphasizes the need to develop appropriate sampling and error 
models for the catch data; having representative and adequate observer coverage can 
help to accomplish this in longline fisheries. 

Potential Utility of Archival Tags  
Archival tags have the potential to improve the estimation in models with spatially-
explicit structure and can be combined with data from conventional tags to improve 
estimates of movement rates (Appendix 10). However, if adequate conventional 
tagging can be conducted in all areas and reporting rates are not low, the additional 
information will be of limited direct value in improving the precisions of the estimates 
within the context of the spatial estimation models developed in this report (see   
Appendix 10 for more details). In essence, data from conventional tags are sufficient 
for providing the information required for estimating the parameters of the model, 
while the additional movement information from each archival tag can be 
compensated for by releasing additional conventional tags. Given the current relative 
differences in the cost of archival and conventional tags (i.e., ~$1500 versus $1-2), 
archival tags would not be a cost effective approach for improving tagging 
experiments in which there were no spatial/temporal constraints or problems with 
releases or returns12.   
 
In a wide range of simulations that we conducted, we were unable to find situations in 
which having large percentages of archival tags compared to having similar numbers 
of conventional tags results in markedly improved performance in terms of the 
precision of the estimates except for the estimates of the transition probabilities in 
                                                 
11 Some longline fisheries (most notably those on the SBT spawning grounds) do not catch juvenile 
SBT. Also, observers do not provide a viable approach for estimating reporting rates from the surface 
fishery and other approaches (e.g. tag seeding) are used for this component of the fishery. 
12 Possible exceptions would be where the marginal cost of tagging additional individual fish was high 
(e.g., adult bluefin tuna, which can have a market value of thousands of dollars, or where the cost of 
daily tagging operations are high and catch rates are low in some areas).  
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some cases (Appendix 10). This may seem surprising given the seemingly increased 
information retrieved from archival tags. However, the actual additional information 
relative to the parameters being estimated is small. This is because the main 
information for estimating total mortality rates is whether or not a tag has been 
recaptured and so archival tags provide little or no additional information in this 
respect. While the archival tags do provide some additional information on 
movements, even this is relatively small within the structure of the large-scale area 
models developed here because the fraction of archival tags that are likely to be 
captured with information on movements beyond a single time step will usually be 
small.  As such, even for the estimation of transition parameters, archival tags will 
only provide small amounts of additional data in most cases. 
 
Nevertheless, a relatively small number of archival tags may be highly informative for 
developing the appropriate spatial/temporal structures to use in the estimation model 
as they provide direct information on where fish have spent their time and the type of 
movements that need to be allowed for (e.g., which transition probabilities can 
reasonably be assumed to be equal to zero). Archival tags can also be informative 
with respect to the underlying movement dynamics. For example, with seasonal 
migrations, archival tags provide direct data for estimating the degree of site fidelity 
(i.e., the extent to which the probability of a fish returning to an area depends upon 
whether it has been there previously). In this regard, archival tags can contribute to 
appropriate experimental design as well as estimation model development and 
selection. This is particularly true in fisheries where there is little or no prior 
information on the movement and spatial dynamics of a population.13 As such, we 
think that archival tagging should be considered an important component in the 
overall context of experimental design for a tagging program. However, the 
appropriate balance among conventional and archival tags will be more a matter of 
judgment because of the primary role of archival tags in model development and 
selection in contrast to parameter estimation.  

Discussion 

Analyses of the 1990s SBT Tagging Experiments 
The analyses of the 1990s tagging experiments presented in this report (Appendices 
15, 16 and 17) are the most comprehensive that have been conducted to date. They 
not only include integration of the tag-return and catch-at-age data to produce 
estimates of fishing mortality, natural mortality and population abundance estimates, 
but also include consideration of large-scale spatial heterogeneity. In addition, they 
are the first analyses that have examined and incorporated estimates of tag shedding 
rates. They also use updated estimates of reporting rates that were generated as part of 
this project. The three different analyses are all relatively consistent with respect to 
recruitment/juvenile abundance trends in the 1990s. They suggest that population 
abundance at age 1 (i.e. essentially recruitment) decreased by over 50% for the 1993 
and 1994 cohorts compared to the three preceding cohorts.  The analyses which 
provide direct estimates of mortality rates indicate that natural mortality for SBT at 
age 1 is quite high (~0.4) and decreases with age.  In addition, fishing mortality rates 

                                                 
13 Although in such situations, archival tags still do not contribute substantial additional information for 
estimating mortality rates and abundance.   
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in the 1990s were generally close to zero for ages 1 and 2, were greatest at ages 3 and 
4, and declined at age 5. Further, fishing mortality increased from 1994 to 1997 to 
relatively high levels (~0.4 at ages 3 and 4).  
 
Although we endeavoured to make our analyses as comprehensive as possible, there 
is still scope to further improve the parameter estimates, primarily with respect to 
variances. In particular, exploration and application of a model for the tag-return data, 
such as the Dirichlet-multinomial, that allows for more variability in the returns than a 
multinomial model would provide better representation of the variability.  However, 
the marginal gain of using such a model in terms of providing improved/realistic 
variance estimates for the mortality rate and abundance estimates is likely to be small 
relative to improving other components of the model. Specifically, there are clear 
limitations in the data for estimating reporting rates and the catch-at-age.  In 
particular, data for estimating reporting rates are missing for large components of the 
fishery, and the available information and sampling protocols for the catch data are 
insufficient to derive variances for the catch-at-age estimates.  As such, arbitrary 
assumptions were required about the level of uncertainty in these two data sets, and 
the variance estimates for the mortality rate and abundance estimates are highly 
dependent upon the assumptions made.  
 
In addition to variance estimation issues, the design of and data collection from the 
1990s SBT tagging experiments were inadequate to fully address issues related to 
non-mixing. These inadequacies stem from (1) lack of tagging in regions outside of 
Western and South Australia and (2) lack of data for estimating reporting rates from 
the high seas fisheries that catch juvenile SBT (particularly the Japanese and 
Taiwanese fisheries in the Indian Ocean).  This combination of inadequacies meant 
that reporting rates and movement/spatial dynamics are highly confounded in any 
analysis (i.e., to what extent were the reported number of tags in the longline fisheries 
a function of availability of tagged fish versus reporting rates). While there appears to 
be some robustness in the estimates (particularly with respect to temporal trends), the 
reliability of the results depends to a large extent on the perception that a large 
fraction of SBT juveniles are found in the southern Australian waters and the 
assumption that mixing is reasonably consistent and complete. 
 
The limitations inherent in the design and data available from the 1990s tagging 
experiments have implications for the design and implementation of future 
experiments (including the current SRP tagging program being conducted by the 
CCSBT). It is imperative to ensure that adequate data are collected for estimating 
reporting rates from all major fisheries which catch juvenile SBT. In addition, it is 
important to ensure that the estimation of the catch-at-age is based on a statistically 
valid sampling approach that would ensure the estimates are unbiased and that would 
provide the bias for direct variance estimation. Also, releasing tags in areas other than 
the Great Australian Bight would greatly increase the extent to which issues of large-
scale spatial heterogeneity could be addressed, although these issues can be at least 
partially addressed with releases only in southern Australia if reporting rate estimation 
problems were resolved (see Appendix 12 for further discussion).  
 
Viable solutions for addressing the inadequacies in the 1990s tagging experiments in 
future tagging experiments exist. These have been discussed in the appendices and 
within meetings of the CCSBT. Issues of reporting rate estimation and catch-at-age 
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estimation for longline fleets could be resolved using observer programs that are 
adequately designed and implemented to ensure representative and sufficient 
coverage. The problem of wider geographic distribution of tag releases could also be 
resolved through having observers tag and release juvenile fish14.  For the current 
surface fishery, in which 100% of the catch goes into tuna farms, the problem of 
reporting rates is resolvable by tag seeding (Stanley and Polacheck 2003; Polacheck 
and Stanley 2004) and catch-at-age estimation by improved length frequency 
sampling. However, neither adequate longline observer programs (Anon. 2004) nor 
improved surface fishery length frequency sampling have been implemented in 
conjunction with the current CCSBT SRP tagging program. While recognition of the 
critical importance of observers for the SRP tagging program exists, there has been 
insufficient cooperation, support and resources for adequate observer programs to 
have been implemented. As such, it appears that the data from the current CCSBT 
SRP tagging program for addressing the critical reporting rate, catch-at-age and 
spatial heterogeneity issues may be no better, and perhaps worse, than that available 
from the 1990s. For SBT, tagging experiments have the potential to provide estimates 
of critical parameters in the stock assessment, to decrease uncertainty in these 
parameter estimates, and to reduce reliance on CPUE indices. However, without the 
necessary resources and access to the fishery to address these data collection issues, 
the potential is unlikely to be realized.     

Experimental Design and Estimation Framework 
The estimation framework developed in this report along with the simulation results 
demonstrate the power of tagging experiments to provide robust estimates of fishing 
mortality rates, natural mortality rates and population size, which are the main 
parameters needed for the assessment of fish stocks.  As such, tagging experiments 
have a large potential to reduce uncertainty in many stock assessments, particularly 
those reliant upon CPUE indices of abundance. The estimation framework developed 
here results in a synergy from combining traditional multi-year (i.e., Brownie) tagging 
experiments and catch-at-age data. The catch-at-age data will generally be required in 
any case in order to be able to estimate reporting rates and incorporating it into the 
estimation framework allows for joint maximum likelihood estimates of mortality 
rates and population size. However, both the design and implementation of tagging 
experiments are demanding and complex.  Poorly designed and/or executed 
experiments can yield either uninterpretable data or parameter estimates with 
substantial biases and uncertainty. In particular, it is essential that the issues of 
reporting rates, catch-at-age estimation, tag shedding and incomplete mixing are 
addressed in the design and analysis stage. It is also essential that there is a 
commitment to ensure necessary access and availability to the fishery for the 
collection of data for reporting rates and catch-at-age estimation (e.g., observers, tag 
seeding, etc.). Simply releasing large number of tags without ensuring that these 
prerequisites are met is unlikely to yield informative results.  
 
While resolving issues of reporting rates, catch-at-age estimation, tag shedding and 
incomplete mixing can be challenging, the estimation framework and simulation 

                                                 
14 Pilot tagging projects by observers on longline vessels have demonstrated that this is a feasible 
approach for tagging juvenile SBT in areas where they are caught by commercial longliners. Return 
rates from such tagging suggest that tag-induced mortality is not substantially different from fish 
tagged in the surface fishery. 
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results demonstrate that there are tractable solutions. In particular, the combination of 
observers and tag seeding provides a viable approach for estimating reporting rates for 
most components in large-scale tuna fisheries. Observers can also simultaneously 
provide data for catch-at-age estimation, and for fishery components in which 
observers would not be effective (e.g., in tuna farming operations) well-designed port 
sampling programs can provide this information.  Observer and port sampling 
programs are clearly expensive but need to be evaluated in the overall data collection 
strategy for a fishery; that is, the data provided by such programs will often be an 
essential component of the monitoring strategy for a fishery irrespective of whether 
tagging experiments are being conducted. It should be noted that automatic tag 
detection systems exists but are not currently a feasible alternative for many fisheries 
(see Appendix 18). However, these technologies are developing and may make 
automatic detection systems cost effective and feasible alternatives for reporting rate 
estimation in the future. If tagging is to be used as a long term monitoring and 
assessment strategy in a fishery, the development and implementation of automatic 
detection systems should be undertaken and evaluated.  
 
The issues related to spatial heterogeneity and incomplete mixing are the most 
challenging for the design and analysis of tagging experiments. They may also limit 
the applicability of tagging experiments if there are systematic spatial structure issues 
that cannot be taken into account in the analysis because of design or implementation 
limitations (e.g., lack of access to areas for tagging).  In such cases, the mortality rate 
and abundance parameters may become inestimable or else be estimated with large 
biases and uncertainty. Spatial heterogeneity and incomplete mixing would not be an 
issue if tags were released in proportion to abundance (i.e., random sampling). 
However, the problem of incomplete mixing can occur across a continuum of spatial 
scales.  
 
At the smaller geographic scale, ensuring that tagging effort is spread locally and 
allowing for some period of non-mixing should mediate smaller scale spatial 
heterogeneity/incomplete mixing effects (e.g., those related to schooling) and avoid 
effects that would introduce systematic biases (i.e., a preponderance to tag fish that 
would be more or less vulnerable to recapture in the commercial fisheries). 
Nevertheless, overdispersion in the returns relative to a multinomial distribution 
would be likely (see Discussion in Appendix 5).  If overdispersion exists, it needs to 
be accounted for in order to prevent unrealistically high expectations and levels of 
confidence about the precision of the parameter estimates. The use of the Dirichlet-
multinomial distribution as developed in Appendices 9 and 10 is one approach that 
allows for such overdispersion to be addressed.  In terms of experimental design, in 
most cases there would be little basis for anticipating in the design phase what level of 
overdispersion would be realistic to expect. As such, knowing what would constitute 
sufficient resources (e.g., number of releases, observer coverage) to achieve an 
acceptable level of performance is problematical. Calculations of precision for 
experimental designs based on assumptions of multinomial sampling for the tag 
returns provide an indication of the maximum level of achievable precision. The level 
of additional resources needed to allow for overdispersion would largely be a matter 
of judgment without information on realistic levels of overdispersion to expect; 
however, calculations based on a Dirichlet-multinomial model would provide some 
guidance. We also note that the primary effects of overdispersion appear to be on the 
levels of precision rather than on the relative trade-off in effort devoted to the 
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different design components of the experiment (Appendix 9); therefore, results based 
on a multinomial tag-return model or a Dirichlet-multinomial model with an assumed 
level of overdispersion should provide some guidance on the relative resources to 
devote to the various components.    
 
At the larger scales for widely distributed populations, it is difficult to conceive of 
practical experimental designs that would ensure that releases were distributed in 
proportion to abundance and thus be assured to avoid bias problems associated with 
spatial heterogeneity and incomplete mixing. In such cases, it is important that the 
experimental design anticipates and allows for spatially-explicit modelling of the 
release and recapture data (e.g., Appendices 10 and 11). The best way to ensure that 
spatial heterogeneity issues can be fully addressed in the analysis phases is by 
spreading tagging effort and releases across the geographic range of the population 
being tagged15. In the analysis stage, the range of spatial dynamic models that can be 
tested will depend upon the spatial/temporal pattern of releases, with the range being 
greater as the distribution of tag releases is broader. As such, when designing tagging 
experiments, it is critical to consider what is the appropriate range of spatial 
hypotheses/models and ensure that the release strategy will allow these to be explored 
and tested. In this context, simulation testing of the design is critical to ensure that 
robust estimates can be achieved, particularly for situations with complex spatial 
structure (see Appendix 12 for further discussion). 
 
The simulation results generally suggest that natural mortality rates are particularly 
difficult to estimate accurately and precisely without relatively large numbers of 
releases and high quality supporting data for estimating reporting rates and age 
distribution of the catch.  However, this needs to be considered in relationship to what 
other alternatives are available for estimating natural mortality, because for most fish 
stocks there are no direct alternatives. Most commonly, stock assessments use an 
assumed value for natural mortality (or an assumed range of values to allow for 
uncertainty)16.  In addition, the simulation results were generally based on tagging one 
cohort of fish.  Most tagging experiments would involve tagging multiple cohorts 
over a number of years, and such multi-cohort experiments would provide a more 
robust basis for the estimation of natural mortality rates (as shown in Appendices 5, 7 
and 9). 
  
In summary, tagging experiments can be extremely informative and provide perhaps 
the only alternative to relying on CPUE indices for assessment of many tuna and other 
fish stocks. However, to be successful it is critical that the experiments are well 
designed with sufficient resources for implementation, and that appropriate 
mechanisms and access are available for the collection of the required data. 
 

                                                 
15 In many cases there will be practical limits to covering the boundary areas or “fringe” portion of the 
stock. Such practical limits exist no matter what method is used to monitor a population (e.g. surveys, 
CPUE indices).  Pragmatic approaches are required that attempt to ensure all major components are 
sampled so that any bias would be small. Note one advantage of tagging is that if mixing of tagged fish 
with those in marginal areas occurs it mitigates the effect of not actually having tagged in those areas.  
16 In some cases, natural mortality rate is an estimable parameter within the stock assessment model but 
the information for its estimation is dependent upon input priors and upon structural assumptions 
within the model (e.g., selectivity constraints and stock recruitment relationships). 
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Benefits 
The results of this research have already been of direct benefit to the CCSBT 
Scientific Committee in its design, review and recommendations for improving its 
juvenile conventional tagging program being conducted under the CCSBT Scientific 
Research Program (SRP). Thus, several of the appendices in this report were 
submitted to meetings of the Scientific Committee. These papers have been integral to 
the review of the current program and for developing recommendations for improving 
the program, including those for improving reporting rates and their estimation. 
Hopefully, this will provide a catalyst for actual improvements. The methods 
developed here also provide a robust and improved basis for maximizing the 
information that can be derived from tagging experiments – in particular the 
integration of tag-recapture data with observer and catch data provide a 
comprehensive method for directly estimating mortality rates (both natural and 
fishing) and population sizes, while accounting for reporting rates. These are the 
primary quantities required to be estimated in stock assessments, and having an 
approach for directly estimating them that does not require catch rate (CPUE) data 
provides a potentially powerful alternative for augmenting traditional stock 
assessment methods.  
 
The research has demonstrated both the importance and feasibility of accounting for 
large-scale spatial dynamics within tagging experiments aimed at estimating mortality 
rates. This should lead to both more robust designs, implementation and analyses in 
future experiments. The results also provide the basis for evaluating trade-offs in 
resources that should be devoted to different data collection components of a tagging 
experiment. This should provide the basis for improved efficiency and cost 
effectiveness in future experiments. 
 
The results of this research have also provided comprehensive estimates of mortality 
rates and abundance from the SBT tagging experiments conducted in the 1990s. 
These results are of direct benefit to the SBT stock assessments by (1) suppling direct 
estimates of natural mortality rates for juvenile SBT and (2) providing a basis for 
evaluating the appropriateness of the stock assessment results by directly comparing 
the estimates from the two different analyses. In addition, the methods developed here 
provide the basis for a more robust and statistically appropriate approach for directly 
incorporating the data from these and future tagging experiments (including the 
current CCSBT SRP program) into future SBT stock assessments. This should reduce 
the reliance on CPUE within the SBT assessments. 
 
The results from this research provide the first analytical evaluation of the value of 
archival tags within the context of conventional tagging experiments. The results 
indicate that under most situations archival tags are likely to be of limited direct 
benefit at the estimation stage of a conventional tagging experiment. However, 
archival tagging data are likely to be of critical importance in generating hypotheses 
about the spatial and temporal dynamics of the species and in model selection. The 
results provide the basis for evaluating the relative roles of the two types of tagging 
and their appropriate use within an overall research framework. 
 
Finally, while the results of this research demonstrate the value and potential of 
tagging experiments to improve the information basis for stock assessments and 
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reduce the reliance on CPUE, this is only achievable if these experiments are 
appropriately designed and implemented. Hopefully, the results of this study will 
provide impetus for careful consideration and appropriate implementation of such 
experiments across a number of fisheries and, consequently, result in an improved 
basis for assessing and managing them. 
 
Further Development 
A number of areas where there is scope for improvement in the analytical and 
statistical methods, or for further analysis of the historical SBT tagging data, are 
identified in the appendices of this report. Particular problems that would warrant 
further investigation include: 
 

1. Methods for modelling and estimating overdispersion in tag-recapture 
experiments taking into account the problems of estimating overdispersion 
parameters in a likelihood estimation context; 

2. Methods for estimating variance in complex tagging experiments -  in 
particular bootstrap and Monte-Carlo approaches; 

3. Methods for estimating the uncertainty associated with catch-at-age data; 
4. Applicable spatial models for the 1960s tagging data taking into account the 

NSW surface fishery component; 
5. Development of statistical models for intermediate movement dynamics  

between Markovian (random) transition probabilities and transition 
probabilities with complete memory. 

6. Consideration of alternative spatial models for the SBT tagging data in 
conjunction with analyses of the accumulating archival tag data as a source of 
information for the development/specification of alternative hypotheses and 
model structures.  

 
In addition, the results in this report point to the critical need to improve the data on 
reporting rates and the catch-at-age data from SBT fisheries if the potential for the 
current large-scale CCSBT SRP tagging experiments is to be realized. They further 
suggest the importance of developing and implementing feasible approaches for 
automatic detection of recaptured tagged fish for improving future tagging 
experiments, both for SBT and other species. 
 
Planned Outcomes 
The primary planned outcome from this project was the development and exploration 
of a robust estimation framework for estimating mortality rates for tuna stocks from 
conventional tag-recapture data. Such a framework was developed in the course of 
this project and used to evaluate trade-offs in the design components of tagging 
experiments. This basic framework and several extensions of it were completed in the 
course of this project and have formed the basis of working papers to the CCSBT 
Scientific Committee (Polacheck et al. 2003; Eveson et al. 2004, 2005) and have 
played an important role in the design and review of the CCSBT SRP tagging 
program. In addition, a manuscript based on Appendix 5 has been submitted and 
accepted for publication in the primary scientific literature. We also anticipate 
preparing several additional manuscripts based on results from this research. 
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The other main planned output from this project was the application of the estimation 
framework to tag-recapture data for southern bluefin tuna. This was accomplished in 
Appendices 15 and 16. The results from Appendix 15 were provided to this year’s 
CCSBT Scientific Committee and it is anticipated that the remaining results will be 
provided in subsequent papers to the CCSBT Scientific Committee, as well as written 
up for publication in the primary literature. It should also be noted that the methods 
developed for incorporating tag shedding estimates from double-tagging data 
(Appendix 14) are being incorporated into the chapter of a book near completion on 
the use of multi-year tagging experiments (e.g. Brownie-type models). 
 
In addition, to the above initially planned outcomes, this project was extended without 
any additional FRDC funding to allow work directly related to the project’s objectives 
to be completed. This additional work was specifically requested by the CCSBT 
Scientific Committee as input to a review of the CCSBT SRP conventional tagging 
program conducted in 2004. Three specific outcomes were identified in this 
extension. These were completed (Appendices 9, 17 and 18) and presented as working 
papers to the CCSBT Scientific Committee Meeting in 2004 (Eveson et al. 2004; 
Polacheck et al. 2004a,b). 
   
Conclusions 
All of the primary objectives of this project have been completed. An integrated 
estimation model for the analysis of tag-recapture and catch data was developed for 
estimating natural mortality rates, fishing mortality rates and population size. Trade-
offs among the various design components of a tagging experiment were explored 
using this estimation framework and guidelines were provided that should be 
considered when designing such experiments.  
 
In summary, the results from this project suggest the following general conclusions: 
  

1. The integrated tagging and catch estimation model developed here provides 
substantial benefit for the analysis of multi-year tagging programs, both in 
terms of the parameters that can be estimated and improved precision of the 
estimates, particularly fishing mortality rates.   

2. Based on comprehensive application of the integrated tagging and catch 
model(s) to the 1990s tagging data for SBT: 
• natural mortality for SBT at age 1 is quite high (~0.4) and decreases to 

about 0.2 by age 5;  
• fishing mortality rates in the 1990s were generally close to zero for ages 1 

and 2, were greatest at ages 3 and 4, and declined at age 5; 
• fishing mortality decreased in the first couple of years of the 1990s then 

increased fairly steadily from 1994 to 1997 to relatively high levels (~0.4 
at ages 3 and 4);  

•  population abundance at age 1 appears to have decreased by over 50% in 
1993 and 1994 compared to earlier in the 1990s. 

3. The historic (pre-1990s) SBT tagging data have limited potential to provide 
quantitative mortality rate and abundance and are not directly amenable to the 
integrated estimation framework developed within this report.   
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4.  The tag-return and catch data from the 1960s suggest that, historically, a large 
degree of spatial structure and spatial heterogeneity existed among juvenile 
SBT found within Australian waters. 

5. In the design of tagging experiments, five essential components compete for 
resources:  
• the number of tag releases (distributed appropriately over time and space); 
• the number of tags returns (i.e., resources devoted to rewards, promotion 

and recovery activities); 
• the collection of data for estimating reporting rates; 
• the collection of data for estimating catch-at-age data; 
• the collection of data for estimating tag shedding rates. 
If data from any of these components are not available then valid estimation is 
not possible and serious consideration should be given to whether to proceed.   

6. The trade-offs among these various design components in a tagging 
experiment can be quite complex. For a specific proposed experiment, 
simulation testing provides the best method of evaluating possible 
experimental designs and should be undertaken to ensure that robust estimates 
can be achieved and to evaluate the trade-offs among design parameters. 

7. Issues related to spatial heterogeneity and incomplete mixing are the most 
challenging for the design and analysis of tagging experiments. They may also 
limit the applicability of tagging experiments if there are systematic spatial 
structure issues that cannot be taken into account in the analysis because of 
design or implementation limitations (e.g., lack of access to areas for tagging). 
However, given appropriate design and implementation, the spatial models 
developed in this report provide a feasible approach for dealing with spatial 
heterogeneity. 

8. The estimation of reporting rates is essential for the successful implementation 
of tagging experiments, and the combination of observers and tag seeding 
provides a viable approach for estimating reporting rates for most fishery 
components in large-scale tuna fisheries. 

9. Archival tags do not provide a cost effective approach for improving the direct 
estimates of mortality rates and population sizes compared to conventional 
tags. Nevertheless, relatively small numbers of archival tags can be highly 
informative for developing the appropriate spatial/temporal structures to use in 
both the design and analyses of conventional tagging experiments. 

10. Tagging experiments can be a powerful method to provide robust estimates of 
fishing mortality rates, natural mortality rates and population size, which are 
the main parameters needed for the assessment of fish stocks.  As such, 
tagging experiments have a large potential to reduce uncertainty in many stock 
assessments, particularly those reliant upon CPUE indices of abundance. 
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Introduction 
 

The literature on mark-recapture experiments is enormous, with a variety of different 
experimental designs and estimation models. This reflects the fact that mark-recapture 
experiments are one of the primary tools for studying the dynamics of wild animal 
populations and that differing objectives exist for conducting the experiments. In 
addition, different applications often require developing case-specific variants of a 
general approach to cope with the complexity of individual situations.  The 
parameters that can be estimated with the differing approaches can also depend upon 
the actual experimental design and on what assumptions are made about the 
population dynamic processes.   

 
While there are a number of summaries of the mark-recapture literature that provide 
technical details of one or more general approaches (e.g., Ricker 1975; Seber 1982; 
Quinn and Deriso 1999; Morgan et al. 2002), it can be difficult to grasp an overview 
of the primary features of different approaches and the inter-relationship among them. 
Such an overview is important in the initial consideration and design of tagging 
experiments. Having a guide to what parameters can be estimated from different 
experimental designs and the data requirements associated with them is necessary for 
evaluating whether a tagging experiment is able to fulfil important information needs 
and is logistically feasible in any specific situation.  It is not infrequent for tagging 
experiments to have been conducted without careful consideration of the estimation 
methods that will be applied.  After the fact the analyst is faced with trying to find an 
applicable estimation model. Forethought in the design stage may substantially 
increase the information that can be extracted from such (often expensive) tagging 
experiments. 

 
The current appendix presents an overview of potential basic tagging experimental 
designs for use in commercial fishery situations. We suggest that most mark-recapture 
experiments in a large-scale fishery context can be classified into one of three basic 
types based on where the information for estimating the parameters of interest stems 
from. In this context, we assume that the parameters of primary interest are those 
related to the population dynamics (i.e., either absolute abundance or mortality rates). 
We consider possible integration across these different approaches and the role 
auxiliary data (e.g., fishing effort; abundance surveys) can have in increasing the 
information derived from tagging experiments. 
 
It should be noted that in this appendix, mark-recapture experiments refer only to 
experiments in which a single recapture of a tagged animal is possible (i.e. re-
releasing of a recaptured tagged animal does not occur).   In experiments where 
animals are re-released when recaptured, the history of recaptures for an individual 
provides substantial additional information not available in mark-recapture 
experiments with only single recaptures.  There is extensive literature on tagging 
experiments involving multiple recaptures (e.g., Ricker 1975; Seber 1982).  However, 
such experiments are not generally applicable to tagging experiments involving 
commercial fisheries since recaptured fish are generally killed or injured in the 
commercial harvesting process. Moreover, re-release is generally unfeasible because 
of the commercial value of harvested fish. Further, ensuring the reliability of the re-
released data can be logistically challenging and problematical. As such, we have not 
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attempted to include such experimental designs in the general overview presented 
here.  

 
In addition, we only consider the situation of homogenously mixed populations to 
avoid the complexity of adding a spatial dimension. However, for all approaches, 
extensions exist, or can be developed, that take into account spatial dynamics (e.g., 
incomplete mixing, movements and migrations). These extensions are conceptually 
rather straightforward, using the information on the spatial location of release and 
recaptures to estimate the spatial dynamics parameters, but can be quite complex 
mathematically, statistically and computationally (e.g., see Sibert 1984; Deriso et al. 
1991; Appendices 10 and 11 of the current report). 

  
Finally, we generally limit our discussion to closed populations in terms of 
recruitment. While at first this may seem artificial and overly restrictive, a particular 
cohort or group of cohorts within a population constitutes a “closed” population in 
this context. At least in a fisheries context, animals from individual cohorts are 
frequently the main focus of interest. Moreover, if substantial heterogeneity exists in 
recapture probabilities with age or size, this will likely require stratification of the 
releases and captures into appropriate groupings. The basic approaches discussed here 
can be extended to “open” population situations, but require assumptions about the 
nature of the recruitment process (such as constant recruitment) or that the analysis of 
the tagging experiment be embedded within a more general population model or stock 
assessment framework. Nevertheless, the same basic classification of experimental 
designs would apply in terms of the parameters for which the tagging data would be 
informative and where the information for estimating them is derived. Thus, we 
consider that the basic classification developed here provides a useful guide when 
considering whether tagging experiments should be conducted in particular situations. 
 
A Basic Classification of Mark-Recapture Experiments 

 
While there are a number of alternative ways in which mark-recapture experiments 
can be classified, we consider the fundamental distinction to be whether data are 
collected and available only on the number of tagged animals that are recaptured or 
whether, in addition, data are available on the number of animals examined for 
recaptured tags. This distinction divides mark-recapture experiments into those in 
which the primary object is to estimate mortality rates (either natural, exploitation or 
both) and those that aim to estimate absolute abundance. In the latter case, the 
information for estimation comes from the proportion of recaptured animals that have 
tags. The first published use of this approach dates back to 1917 (see Le Cren 1965) 
and is generally called the Petersen method (e.g. Seber 1982)1. As such, we will refer 
to this general class of experiments that derive their information from the proportion 
of recaptured animals that have tags as the “Petersen” approach.  The first class of 
experiments, which only uses information on the number of recaptured tags over time, 
we will refer to as the “return rate” approach.  This approach requires information 
from multiple recapture events (at least three for statistical estimation of variance). 
                                                 
1 Although this method for estimating abundance is commonly called the Petersen method, it appears 
that Petersen never actually estimated population size using this method and that K. Dahl was the first 
one to develop and apply it in 1917 to trout populations in Norwegian tarns. Dahl, however, does 
acknowledge the role of Petersen’s tagging experiment in 1889 as providing the starting point for his 
work (see Le Cren 1965). 
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Moreover, this class of experiments can be subdivided into two fundamental types: (1) 
those that utilize only a single release event and (2) those that utilize multiple release 
events. In the first case (1), the information for estimation comes principally from the 
rate at which tags are returned over time. We will refer to this class of experiments as 
the “tag-attrition” approach. In the second case (2), the information for estimation 
comes primarily from comparing the return rates over time from the multiple release 
events. Much of the initial development of the theory and estimation methods 
underlying this type of mark-recapture experiment was done by Brownie et al. (1986), 
so we will refer to this approach as the “Brownie” approach. 

 
A somewhat obvious extension to these basic approaches is to combine information 
on both the rate of tag returns and the proportion of recaptured animals with tags 
within a single experimental design and estimation framework. There has been work 
along this line within the context of tag-attrition models (Parker 1955; Ricker 1975), 
although this work has generally not been discussed as an integration of the two 
approaches.  There appears to have been little work and no general framework for 
integrating the Petersen and Brownie approaches. Part of the reason for this is 
probably the very different “experimental” situations for which the Petersen approach 
and the return rate approaches were originally conceived. The Petersen approach has 
primarily been designed for situations in which the researcher not only tags and 
releases the animals, but also conducts the recapture component of the experiment. 
The return rate approaches have primarily been designed for situations in which the 
researcher is only directly responsible for the release component of the experiment 
and is dependent on others for the recaptures (e.g., fishers in commercial fishing 
situations; the general public in bird banding experiments).  

 
Finally, an alternative and related extension is to combine information on the rate of 
tag returns with auxiliary data, such as measures of fishing intensity (e.g., fishing 
effort) or abundance indices (e.g., survey results). Such extensions start to expand the 
analytical problem beyond a mark-recapture context and into a more complex 
integrated modelling framework involving multiple data sets with common 
parameters.   

Common Assumptions 
There are several assumptions common to all of the different mark-recapture 
approaches, at least in their conceptual development. These include: 

1. The animals tagged are a representative sample of the target population2,3; 
2. There is no tag loss; 
3. Survival and recapture rates are not affected by the tagging operation or by an 

animal having a tag attached; 
4. The fate of tagged animals is independent of the fate of other animals; 
5. Times of release and recovery are accurately recorded within the timescales 

required by the estimation model; 
6. Tagged animals are correctly identified with respect population attributes (e.g., 

stock, age-group, sex); 

                                                 
2 The target population may be a sub-component of a larger population; e.g. a particular cohort, sex, 
etc. 
3 Often the fish tagged will not be a random sample but it is assumed that the rapid and complete 
mixing occurs subsequently. 
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7. 100% of the recaptured tags are returned or else tag reporting rates are known 
(note this assumption is not strictly required for the Brownie approach but 
without it the information obtained is substantially limited – see below). 

 
In most applications, one or more of these assumptions is likely to be violated. This 
does not necessarily invalidate the approach as long as appropriate data can be 
collected to estimate the extent of the violation and to provide the basis for accounting 
for such violations in the estimation framework. In fact, a large fraction of the tagging 
literature is devoted to accounting for violations of the above assumptions (e.g., 
estimation and incorporation of shedding rates, reporting rates, incomplete mixing, 
etc.). 

Petersen Approach 
The Petersen approach is designed to provide estimates of absolute abundance at the 
time of tagging. A Petersen estimator is based on the ratio of the observed number of 
tags returned within samples taken from the population given the known number of 
tags released into the population. If the animals tagged are a representative sample of 
the population and thoroughly mixed, then the expected proportion of tags in a 
random sample from the population will be equal to the proportion of the population 
that was tagged. Thus,  
 

                                                  
i

i

R
NCPE 0

0 )( =                                                             (1) 

 
where 

P0 = the population size at the time of tagging 
N0 = the number of tags released 
Ri = the number of tags recovered at time i 
Ci = the number of animals examined for tags at time i (i.e., the catch in a 

commercial fishery situation) 
 
The Petersen approach has been primarily applied in controlled experimental 
situations in which the experimenter both conducts the tagging and the subsequent 
sampling. In such cases, there is no uncertainty about the number of animals sampled 
for returns. In a fisheries context, the catch data can be considered to constitute a 
sample from the population. However, in this case, the size of the sample examined 
for tags is usually not known exactly but is an estimated quantity, and the uncertainty 
associated with it needs to be accounted for (see Appendix 17).  
 
Note that for the Petersen estimator, tag recoveries can be pooled from recaptures and 
samples taken over an extended period of time and no assumptions are required about 
natural or fishing mortality rates (e.g., see Seber 1982; Appendix 17 of the current 
report).  

Population Dynamics Model 
In order to be able to partition estimates of total mortality rates into natural and 
fishing mortality, it is necessary to have a population model specifying how these two 
interact.  The most common practice in fishery models is to assume that they represent 
competing risks and that they are constant over the time step used to model the 
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population (commonly a year). For a group of animals of a given age, this yields the 
following deterministic equations for the number of animals that survive to the next 
age and the number of animals caught (e.g., see Hilborn and Walters 1992): 
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where   

Pi,t = the number of individuals of age i at time t 
Ci,t = the catch of individuals of age i at time t 
Fi,t = the instantaneous fishing mortality rate for individuals of age i at time t  
Mi,t = the instantaneous natural mortality rate for individuals of age i at time t. 

 
Note that Pi,t can be replaced by Ni,t  (the number of tagged animals of age i in the 
population at time t) and Ci,t can be replaced by Ri,t  (the number of tagged animals 
recaptured at age i and time t) in the above equations to give predictions of the 
expected number of recaptures over time from a tagging experiment.  In particular: 
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Equations such as 2 and 3 that can be used to predict numbers of recaptures form the 
basis of the estimators used in both tag-attrition and Brownie approaches. Other 
population dynamics equations can and have been used with either of these 
approaches, in particular those that represent situations where fishing is highly 
seasonal or occurs essentially in a single pulse during a year.  It should be noted that 
the Brownie approach can provide estimates of total mortality for the time between 
tagging events (Zi,t = Fi,t + Mi,t) independent of any population dynamics model. 

Tag-Attrition Approach 
Equations 2 and 3 can be used to predict the number of tag returns over time from a 
single release of tags conditional on natural and fishing mortality rates. This is the 
basis of the tag-attrition approach.  However, for every age/time-step, two parameters 
are required (one for each fishing and natural mortality), while there is only one data 
point (the number of tag returns at that age or time). Even if natural mortality is 
assumed to be constant over age/time, which is common in fishery models, there is 
still one more parameter to be estimated in total (over all ages/times) than data points. 
In order to obtain a model that is not over-parameterized without including additional 
data to the tagging data, either natural mortality needs to be assumed known or both 
fishing and naturally mortality rates need to be assumed constant.  Both assumptions 
have been used (Ricker 1975).  
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If natural mortality is assumed known, then estimates of age/time-specific fishing 
mortality rates can be estimated by iteratively solving equations 2 and 3 for the 
predicted number of tags recaptured over time and the number of tags still remaining 
at liberty. Even though a value for natural mortality needs to be assumed, the results 
can still be informative. For example, the range of values of fishing mortality obtained 
over a “reasonable” (prior) distribution for natural mortality can provide estimates of 
whether overfishing relative to some reference fishing mortality rate has occurred. In 
addition, results from experiments conducted at different times can be used to provide 
estimates of relative changes in fishing mortality rates (assuming natural mortality has 
not effectively changed over time). 
 
If both fishing and natural mortality rates are assumed constant over time and age, 
equations 2 and 3 can be used to estimate both quantities. This can be seen by noting 
that for a deterministic model with constant mortality rates, the ratio of returns in two 
successive years equals the net survival rate; i.e., from equations 2 and 3, the 
logarithm of the ratio of returns is log (Ri+1/ Ri) = −Z = −(F + M). Given the net 
survival rate and the number of releases, equation 3 can be solved for F, and M can 
then be obtained from Z−F.  Although the assumption of time and age independent 
mortality rates would not be very realistic in many situations, the above estimator can 
still provide useful indications about the average levels of mortality, particularly in 
situations where there are little other data and over age/size ranges where size and age 
effects would not be expected to be large.  
 
Finally, there are other potential ways to constrain the parameters so that they are 
estimable. For example, the tag-return data are considered in a VPA (virtual 
population analysis) context by selecting or externally estimating a terminal fishing 
mortality rate (Deriso et al. 2001; Bayliff 1971). Alternatively, it is only necessary to 
assume constant fishing mortality rates for a limited number of years/ages; time 
varying fishing mortality rates could then be estimated for the remaining periods. 
Similarly, instead of assuming constant fishing mortality rates, fishing mortality could 
be assumed to be a separable process4 and an age-specific selectivity function could 
be specified when analysing the releases for a given age. Such an approach would be 
primarily of use in a multi-year tagging experiment where fish of a particular age (say 
age 2) are tagged in each year. 

Brownie Approach 
The Brownie approach uses equations 2 and 3 in an analogous manner to the tag-
attrition approach to predict the expected number of tag returns from each release 
event (Table 1). However, by having multiple release events over time (e.g., releasing 
fish from the same cohort in consecutive years), most of the over-parameterization 
problems inherent in the tag-attrition approach are resolved. For example, for three 
release events and three recapture periods, there are six mortality rate parameters 
(three F’s and three M’s) and there are six data points; however, not all data points 
provide independent information so only five parameters are actually estimable. 
Generally speaking, an experiment with n release years and m recapture years has 
2*m parameters but only m+(n−1) of these are estimable. Normally, constraints on the 
                                                 
4 A separable process in this context means that age and year specific fishing mortality rates can be 
separated into separate, multiplicative year and age components.  
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mortality rates are imposed to reduce the number of parameters; for example, natural 
mortality rates are often assumed to be constant over recapture years n−1 to m, or a 
parametric form can be assumed for natural mortality, such as a linear decrease with 
age (see Appendices 5 and 15).   
 
A potentially useful feature of the Brownie approach is that it can provide estimates of 
total mortality (Z=M+F) for each year of releases even when there is no information 
on reporting rates. Further, if reporting rates are assumed constant over time, then the 
approach, in theory, can provide estimates of F, M and reporting rates without any 
additional data. However, the precision of the estimates is usually unsatisfactory 
(Hoenig et al. 1998). It is possible in some cases to modify the basic Brownie design 
to improve the reporting rate estimates, still under the assumption that these are 
constant over time (e.g., by having multiple releases within a year – Hearn et al. 
1998).  However, in many fishery situations, particularly ones involving multiple 
fisheries, reporting rates are likely to vary with time and age.  In such cases, 
additional data are required to account for non-reporting (see Appendices 7 and 18). 
Alternative parameterisations of fishing or natural mortality rates (such as assuming 
fishing mortality is separable into year and age effects, and that natural mortality is 
constant or a function of age) are straightforward to implement and can potentially 
result in improved performance with tagging of multiple cohorts or if the number of 
release years is extended. 

Integrated Approaches   
While much of the mark-recapture literature has been focused on experimental 
designs in which the primary data collected is either the proportion of tags recovered 
in a sample from the population (i.e., the Petersen approach) or the rate of return over 
time (i.e., the tag-attrition or Brownie approaches), in many situations both types of 
data will be available and there are synergies to be gained by combining them in a 
single estimator. In particular, both types of data will be available in many fishery 
situations – tag-return data will be collected in the commercial fisheries over extended 
time periods (i.e., as long as tags remain in the fish and there is a process for reporting 
the data), and estimates of the catch-at-age will often be available to provide direct 
estimates of the relevant numbers of animals examined for tags.  In many cases, 
estimates of the catch-at-age will also be critical in the estimation of reporting rates, 
and this needs to be considered in the experimental design (e.g., when reporting rates 
are based on observers, or in multi-fleet fisheries with different reporting rates and 
selectivities – see Hearn et al. 1999 and Appendix 7).  

Combining Petersen and Tag-Attrition Approaches 

Combining Petersen and tag-attrition approaches can provide simultaneous estimates 
of the population size and mortality rates, subject to similar assumptions about natural 
and fishing mortality rates as discussed above with respect to tag-attrition models.  
Parker (1963) developed such an integrated method within a tag-attrition context (i.e., 
for an experiment involving a single release) in which mortality rates are assumed 
constant.  In this case, the model developed was for an open population with respect 
to recruitment and can also provide estimates of the recruitment rate. The model is 
equally applicable to a cohort or closed population, in which case the recruitment rate 
is zero. Extension of Parker’s model have been undertaken to accommodate variable 
recruitment rates and/or variable fishing mortality, but the natural mortality must be 
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assumed known to obtain estimates of fishing mortality rates that vary over time (see 
Seber 1982).  In an alternative variant, Kleiber et al. (1987) developed a combined 
tag-attrition and catch model that assumed constant total mortality (Z) but time 
varying fishing mortality rates. While noting that this is a “paradoxical” assumption, 
they suggest that it may not be unreasonable if Z>>F.  This model has been applied to 
provide mortality rate and abundance estimates for skipjack in the western tropical 
Pacific (Kleiber et al. 1987). 
  
Within the applications involving a combined Petersen and tag-attrition approach, we 
are not aware of any analyses that have considered the uncertainty in the number of 
animals examined for tags (i.e., the uncertainty in the catch and catch-at-age data). 
Similarly, we are unaware of any analyses that have investigated whether the 
estimates of the mortality rates are improved (i.e., more precise) by including the 
catch data within a tag-attrition context. However, if the catch data are known 
relatively precisely, substantial improvement would be expected, at least for a closed 
population, because under the assumption of constant mortality rates the decline in the 
catch over time provides an estimate of total mortality, Z (see Ricker 1975; Hilborn 
and Walters 1992). 

Combining Petersen and Brownie Approaches 

Petersen and Brownie approaches can be combined to provide estimates of initial 
population size along with estimates of natural and fishing mortality rates, with no 
constraints or additional assumptions needed beyond those required by the basic 
Brownie approach.  Nevertheless, we are not aware of any previous study that has 
combined these two approaches within a single estimator. The general statistical 
development of this combined approach is presented in Appendix 5 of this report, and 
a large portion of this report is devoted to evaluating the performance of this approach 
in different situations and to extending the approach to include such factors as 
estimation of tag reporting rates, spatial heterogeneity, initial non-mixing, and more 
realistic variance structures for the tag return data. The results demonstrate that there 
are substantial benefits from incorporating catch data directly into a Brownie 
approach; in particular, including catch data not only allows for abundance to be 
estimated but it can also improve the precision of both fishing mortality and natural 
mortality rate estimates (particularly the former – see Appendix 5 for more detail). 

Incorporating Auxiliary Data 
In addition to combining a Petersen approach with either a tag-attrition or Brownie 
approach, it is possible to incorporate auxiliary data which in themselves contain 
information that can be used to directly estimate abundance, mortality rates or trends 
in either of these. If the auxiliary data are independent of the tagging data and can be 
put into a likelihood framework, developing an integrated estimator for shared 
parameters is straightforward. For example, data for estimating abundance from an 
independent survey may be available that can be combined with a Petersen tagging 
abundance estimate to provide a single joint estimate; the benefit of such a combined 
estimate will depend upon the relative precision of the two estimates when calculated 
separately. If one estimate has much greater precision, then the benefit of 
incorporating additional data into the estimator will be small. 

 A3-9



Appendix 3:  An Overview of Different Tagging Experimental Designs 

Effort Data 

The more important situations where auxiliary data can contribute to a tagging 
experiment is when the auxiliary data combined with the tagging data can expand the 
scope of relevant parameters that can be estimated and/or eliminate assumptions or 
constraints on the parameters being estimated. In this context, the potential benefits 
that can be provided by auxiliary data are most relevant to tag-attrition models. The 
incorporation of fishing effort as a direct measure of trends in fishing mortality rates 
has been one approach used to resolve the over-parameterization problem inherent in 
the tag-attrition approach (Lucas 1975; Kleiber et al. 1987). In this case, fishing effort 
is assumed to be directly proportional to abundance:  Fi=qEi, where Ei is the fishing 
effort in time period i and q is the catchability coefficient. With this assumption, it is 
possible from combining effort data with tag-attrition data to estimate time varying 
fishing mortality rates and a constant natural mortality rate (Lucas 1975). The 
integration of effort data and tag-attrition data has been used to estimate mortality 
rates for a number of tuna stocks (e.g., Kleiber et al. 1987; Sibert 1984; Bertignac et 
al. 1998). The further addition of catch data would also allow for the initial abundance 
at the time of tagging to be estimated. 
 
The precision and accuracy of the parameter estimates obtained from an integrated 
tag-attrition and effort approach will depend upon the variance and trends in q.  
Catchability in most commercial fisheries is highly variable due to variability in gear, 
vessels, fish behaviour and availability. If realistic estimates of uncertainty are to be 
provided it is essential that the variability in catchability is addressed; however, this 
has not been the case in most applications that have used effort data. In addition, 
catchability has generally been found to increase over time (e.g., as a result of new 
technologies); such temporal trends in q will induce biases in the parameter estimates 
unless accounted for in the model.   
 
It should be noted that the incorporation of effort data into tagging experiments has 
essentially the same inherent problems as the use of CPUE indices as measures of 
relative abundance. In this context, tagging experiments that depend upon the use of 
effort data do not overcome the problem with fishery-dependent CPUE indices.  In 
fact, concerns about the reliability and interpretation of CPUE data have been a 
primary motivating factor for considering undertaking large scale tagging programs in 
commercial fisheries situations.   
 
Effort data can also be brought into the analysis of tagging data from Brownie-type 
tagging experiments (Hoenig et al. 1998).  As the effort data provide a direct estimate 
of trends in fishing mortality, they can improve the precision of the mortality rate 
estimates, the extent to which will depend largely on the degree of variability in q. 
Inclusion of effort data would also eliminate the need for the constraints on natural 
mortality that are generally needed in a Brownie model – i.e., a separate Mi could be 
estimated for each release age5.  

Independent Abundance Data 

In theory, independent estimates of absolute or relative abundance (e.g., from 
acoustic, line transect or trawl surveys) corresponding to the whole population or a 
                                                 
5 This feature was not recognized by Hoenig et al. (1998) in their consideration of integrating effort 
data into a Brownie model. 
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portion of the population being tagged could be combined with either Brownie or tag-
attrition data to provide a complete set of abundance and mortality rate estimates. 
However, a single independent abundance estimate would not directly contribute to 
the mortality rate parameters being estimated from the tagging data, nor would the 
tagging data contribute to the abundance parameter being estimated from the 
independent survey data. In contrast, if a time series of abundance estimates (either 
absolute or relative) were available, there would be definite benefits from combining 
the two sets of data in a single analysis. The difference between successive abundance 
estimates provides a direct estimate of total mortality (Z) during the time period. Thus, 
a time series of such independent estimates would contribute to the estimation of 
mortality rates in a similar way as the incorporation of effort data (but without the 
problems associated with the interpretation of effort data). Besbeas et al. (2002) have 
examined this issue within a Brownie context for bird banding data. We are unaware 
of any work along this line within a tag-attrition context. Further, we note that in 
many fishery situations, it is unlikely that resources would be available to undertake 
simultaneous large scale tagging and abundance surveys.  In fact, for many fisheries, 
feasible and practical methods for undertaking such large scale abundance surveys do 
not exist (e.g., for fisheries on widely dispersed pelagic stocks), and the lack of such 
methods has been one of the underlying reasons for undertaking tagging experiments. 
 
Discussion 
 
The overview of different tagging experimental designs presented here should not be 
considered to be exhaustive. In particular, there are a large number of variants for 
each of the three basic approaches discussed. However, the overview provides what 
we consider to be fundamental distinctions among different approaches that are 
important to consider in the design and analysis of a tagging experiment. The 
distinctions are both in the types of data that need to be collected, the temporal span of 
the experiment and, perhaps most importantly, the type and range of population 
parameters that can be estimated if the experiment is successfully implemented. 
Tables 2-4 provide a summary of the major distinctions among the different 
approaches.  Note that our tabling of the parameters that can be estimated is not 
exhaustive in that alternative assumptions and/or parameterizations could have been 
chosen. For example, in Table 2 for the tag-attrition model we state that age-specific 
Fs can be estimated if M is assumed known; however, we could equally have stated 
that age-specific Ms can be estimated if F is assumed known.  As another example, in 
Table 3 the integrated models could have been parameterized in terms of the 
population size at each age (Pi) and only one F parameter (as opposed to F at each age 
and only the initial population size P0 ).  The possible variations are numerous, so we 
chose to present the tables using the more conventional model assumptions and 
parameterizations. 
 
There are a number of tag experimental design approaches based on having exact 
times of releases and recaptures over extended periods (e.g., Leigh et al. in press).  
The additional complexity of these approaches may make it difficult to see their 
relationship to the basic overview presented here. However, these exact time 
approaches can be considered as continuous analogues to the grouped time 
approaches described here. Essentially, if releases have been spread out over 
sufficient lengths of time such that there will be sufficient contrast in the expected 
number of returns from early and late releases, the experimental design will be 
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capable of separating natural and fishing mortality rates (i.e., analogous to a Brownie 
model). If the release period is relatively restricted, assumptions similar to those 
involved with a tag-attrition model will be required. 
 
Based on the overview presented here, the integrated Brownie and Petersen approach 
is the most powerful of the approaches in terms of the range of parameters that can be 
estimated without underlying assumptions or constraints on the mortality rate 
parameters. Such an approach can provide direct estimates for the main population 
dynamics parameters that traditional stock assessment attempt to estimate. The extra 
resources required to undertake multiple releases for a Brownie experiment relative to 
a single release tag-attrition experiment would appear to be worth it in terms of 
removing constraints on year/age-specific fishing mortality rates (which can be highly 
variable) or having to rely on effort data to provide independent age-specific 
estimates.  Furthermore, the integrated Petersen/Brownie approach (as well as the 
Petersen/tag-attrition approach) puts extra demands on the data requirements because 
estimates of the catch-at-age and their statistical properties (e.g., variances and 
distributions) are needed. Note that these estimates are also fundamental to many 
fishery stock assessments, and their reliability and precision are important if 
assessments are to provide reliable estimates of uncertainty and risk associated with 
different management options. However, in too many fisheries, little focus has been 
given to rigorous estimation of the statistical properties of the catch estimates. Thus, if 
implementing a combined Petersen/Brownie tagging experiment increases focus on 
improving catch estimation, then this would be considered an added benefit rather 
than a cost – particularly when considered in the broader context of stock assessment 
and management purposes. 
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Table 1.  Expected number of returns at age from each release event in a multi-year 
tagging study involving a single cohort of fish. Note in this table  

and 

( )expi iS F= − − iM
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i
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F
u

F M
=

+
)iS− ; the subscript for time has not been included for clarity.  

 
 

Expected number of returns from age class i Release 
age 

Number 
releases  1  2  3  4  5 

1 1N  1 1N u  
1 1 2N S u  1 1 2 3N S S u  1 1 2 3 4N S S S u  1 1 2 3 4 5N S S S S u  

2 2N   2 2N u  2 2 3N S u  2 2 3 4N S S u  2 2 3 4 5N S S S u  
3 3N    3 3N u  3 3 4N S u  3 3 4 5N S S u  
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Table 2: Summary of three basic approaches for tagging experiments in which only a 
single recapture of any tagged animal is possible1. 
 

Return Rate Approach Petersen 
Tag-Attrition Brownie 

Parameters 
estimated 

P0 F and M if both constant; 
or Fi if M assumed known 

Zi, Fi, Mi 
2  

Data requirements N0, Ri, Ci N0, Ri Ni, Ri  
Required release 
events 

Single Single Multiple (at least 3 
consecutive time 
periods) 

Required recapture 
periods 

Single Multiple (at least 3) Multiple (at least 3) 

Required external 
parameters 

 None None if F and M constant; 
M for time varying F 

None 

Requirements 
regarding tag 
reporting rates 

Known or 
data for 
estimating  

Known or data for 
estimating  

Not needed for Zi, but 
external data required3 
for separating Mi and Fi

1. Variable definition in this and subsequent tables 
P0  = population size at the time of tagging (first tagging event for multiple release events); 
Zi,  = total mortality during time period i; 
Mi, = natural mortality during time period i; 
Fi,  = fishing mortality during time period i; 
N0  = number of tags released for single release event approaches; 
Ni  = number of tags released at start of time period i for Brownie approach; 
Ri,  = number of tags recovered during time period i; 
Ci,  = number of animals examined for tags (e.g. catch) during time period i; 
Ei   = fishing effort during time period i;   
q   = catchability coefficient (assumed constant over time) 

2. Mi can only be estimated for one less time period than release events (i.e., if there are 3 release 
events, then 2 M parameters can be estimated). 
3. If reporting rates are assumed constant then no external data are needed but generally performance is 
poor. 
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Table 3: Summary of the integration of the Petersen approach with either of the two 
tag return approaches (i.e. tag-attrition or Brownie). 
 
Integrated Approach Petersen/Tag-Attrition  Petersen/Brownie 
Parameters estimated P0, and: F and M if both 

constant; or Fi if M 
assumed known 

 P0, Zi, Fi, Mi 1

Data requirements N0, Ri, Ci Ni, Ri, Ci
Required release events Single Multiple (at least 3 

consecutive time periods) 
Required recapture 
periods 

Multiple (at least 3) Multiple (at least 3) 

Required external 
parameters 

None if F and M constant; 
M for time varying F 

None 

Requirements regarding 
tag reporting rates 

Known or data for 
estimating 

Not needed for P0 and Zi but 
external data needed2 for 
separating Mi and Fi

 
1. See note 2 of Table 2. 
2. See note 3 of Table 2.
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Table 4: Summary of the two integrated approaches (Petersen/tag-attrition and Petersen/Brownie) when auxiliary information is incorporated.  
 
Auxiliary information Abundance index (Ai) Effort data (Ei) 
Integrated approach Petersen/Tag-Attrition Petersen/Brownie  Petersen/Tag-Attrition Petersen/Brownie
Parameters estimated P0, Zi, Fi, constant M  P0, Zi, Fi, Mi (for all i, in 

contrast to Tables 2 & 3) 
P0, Zi, Fi, constant M, q P0, Zi, Fi, Mi (for all i, in 

contrast to Tables 2 & 3), q 
Data requirements N0, Ri, Ci, Ai  Ni, Ri, Ci, Ai N0, Ri, Ci, Ei Ni, Ri, Ci, Ei
Required release events Single  Multiple (at least 3 

consecutive time periods) 
Single Multiple (at least 3 

consecutive time periods) 
Required recapture 
periods 

Multiple (at least 3) Multiple (at least 3) Multiple (at least 3)  

Required external 
parameters 

None if M assumed 
constant 

None None if M assumed 
constant 

None 

Requirements regarding 
tag reporting rates 

Known or data for 
estimating 

Not needed for P0 and Zi 
but external data needed1 
for separating Mi and Fi

Known or data for 
estimating 

Not needed for P0 and Zi 
but external data needed1 
for separating Mi and Fi

Additional assumptions 
(associated with the 
auxiliary data) 

None None Relationship between
F

 Relationship between F
i and Ei  (e.g. constant 

catchability q) 

i 
and Ei  (e.g. constant 
catchability q) 

 
1. See note 2 for Table 2. 

 
 
  

 A3-18



Appendix 4:  SBT tag-recapture and catch data: details of data compilation 

 

 

 

 

 

Appendix 4: 

Southern bluefin tuna (Thunnus maccoyii) tag-recapture and 
catch data: details of data compilation   

 
J. Paige Eveson, Tom Polacheck and Geoff M. Laslett 

 
 

FRDC Project 2002/015 

 A4-1



Appendix 4:  SBT tag-recapture and catch data: details of data compilation 

Introduction 
This appendix provides a description of the southern bluefin tuna (SBT) (Thunnus 
maccoyii) tag-recapture and catch data used in the various analyses throughout this 
project, and gives details of how the data were compiled.    
  
SBT are spawned in the northeast Indian Ocean between Indonesia and the northwest 
coast of Australia, generally between the months of September and April.  The newly 
spawned fish migrate southward along the west coast of Australia, and then a large 
(but unknown) percentage of them travel eastward along the south coast of Australia 
to the Great Australian Bight (GAB).  These fish spend the Austral summer in the 
GAB before leaving in the spring, either traveling east towards the Tasman Sea or 
west into the southeast Indian Ocean, with some traveling as far as South Africa.  A 
large number of juveniles return to the GAB every summer, starting to arrive around 
November, with the majority having left again by April.  It is not known what percent 
of juveniles of each age class migrate into the GAB each year or how much the 
percent varies between years, although it is known that the percentage reduces with 
age until almost no fish return after age 5.  Moreover, it is not known whether fish that 
go into the GAB in one summer are more likely than those that did not to go into the 
GAB the next summer, or whether they have any fidelity to a particular winter 
location.  The answers to these questions can be important in analyses of tag-recapture 
data for estimating mortality rates and/or abundance that require assumptions about 
mixing between tagged and untagged fish.  They are also important if one wishes to 
incorporate a spatial component in any analysis of SBT data.   
 
For most of the analyses presented in this report, we are only interested in tag-
recapture and corresponding catch data for years 1991 to 1997. These are the years for 
which tag releases occurred during the 1990s tagging program, and 1997 is the last 
year for which we have reliable reporting rate estimates (which are needed in our 
analyses).  Therefore, only the data for these years will be described. 

 Tag-recapture data 
Extensive tagging experiments were conducted by CSIRO Marine Research from 
1991 to 1997 in which juvenile SBT were caught, tagged, and released in the coastal 
waters off southern Western Australia, South Australia and southeastern Tasmania. 
Most of the tagged fish were initially caught using pole and line gear with a barbless 
hook, although a small number were caught with troll lines. After a fish had been 
hooked, it was hauled aboard the vessel and its nose to caudal fork length was 
measured. The fish was then tagged with two 12 cm plastic spaghetti dart tags, 
generally referred to as “conventional” tags. Tags were inserted into a fish about 4 cm 
to the rear of the second dorsal fin, one on each side of the fin. Tagging operations 
were designed to minimize handling time, and fish were re-released to the water 
within about 30 seconds of being brought on board. The tag numbers and length of 
each fish were recorded, together with the location and date of release.  Additional 
information about the release was also recorded, such as the quality of tagging, the 
health of the fish, and the name of the tagger and the vessel.  This information was 
later transferred to a computer database. 
 
The age of a fish at the time of tagging was estimated based on its length using the 
growth curve currently adopted by the Commission for the Conservation of Southern 
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Bluefin Tuna (CCSBT) (Anon. 2001).  Fortunately, SBT grow rapidly as juveniles so 
there is good separation between length distributions for the ages being tagged, and 
the number of aging errors should be small.  All tagging was done between November 
and April, so the ages were adjusted in order that fish tagged in November or 
December from a given year-class/cohort were placed in the same age grouping as 
those tagged after December. 
 
Recaptures occurred throughout the geographical distribution of SBT, ranging in 
longitude from 0 to 180°E and in latitude from 30 to 50°S.  Not all tagged fish that 
were recaptured will have been reported, and for some fisheries non-reporting rates 
have been estimated to be substantial.  Data used to estimate reporting rates come 
from observers placed in longline fisheries and from tag seeding experiments 
conducted in farms off of South Australia. These data are not sufficient in themselves, 
and various assumptions are also required. The method used to estimate reporting 
rates for SBT, and references where further details can be found, are given in 
Appendix 19.   
 
Upon recapture, the finder measured the caudal fork length of the fish and recorded 
this length along with the tag number, the date and location of recapture, and 
sometimes the weight of the fish.  This information along with the tags (either one or 
two) was sent to CSIRO and entered into the computer database, along with the name 
of the finder and the vessel and a judgment about the quality of the recapture 
information.   
 
The number of tag returns and the return rate of tags over time provide information 
for estimating SBT mortality rates and abundance.  However, some of the tag releases 
and recaptures are either unreliable or unsuitable for these purposes.  Using the 
subsidiary information recorded upon release and recapture, we applied a rigorous 
screening process to the data.   
 
To the release data we applied the following screening criteria: 
 
• Only fish released into the wild were included.  A few hundred fish were tagged 

and released into the South Australian tuna farms in 1997 and 1998 as part of a tag 
seeding program to estimate reporting rates, and these fish were excluded from 
analyses. 

• Only releases where the fish was caught by pole and line were included.  This 
method of catching fish is least likely to cause lasting injury to the fish.  A small 
percentage (~1.5%) of tagged fish were caught by vessels using other gear types, 
mostly longline, and these releases were excluded. 

• Only releases for which both tags were recorded as being inserted correctly were 
included to reduce the chance of tag shedding biasing our analyses.  Only a small 
percentage (~1.8%) of releases had to be excluded on this basis. 

• Only fish for which the injury due to tagging was regarded as slight were included 
to reduce the chance of fish mortality due to tagging biasing our analyses.  Again 
only a small percentage (~1%) of releases had to be excluded on this basis 

• Only fish whose length was recorded at the time of tagging were included. Most 
analyses conducted for this project required releases to be divided into age classes, 
and since release age is estimated based on length, those releases for which release 
length was not recorded had to be excluded.  There were only 18 such releases. 
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To the recapture data we applied the following screening criteria: 
 
• Only recaptures corresponding to releases that met the above release criteria were 

included. 
• Only recapture records from fish caught in the wild were included.  In the 1990s, 

tuna farming commenced and many tagged fish ended up being caught and put 
into farms.  Tags were then returned on subsequent harvesting from the farm. The 
data base has two records for these fish: one corresponding to the original capture 
from the wild and one corresponding to the harvest from the farm.  For the 
purposes of estimating fishing mortality, we are only interested in the information 
(date and location) of the capture from the wild.   

• Only records corresponding to terminal recaptures (i.e. fish that were killed) or 
fish caught and released into the farms were included. A small percent of tagged 
fish were recaptured soon after release by the tagging vessel and re-released, and 
on the rare occasion, a tagged fish was recaptured by a fishermen and re-released; 
these records are omitted (in doing so, we are assuming that the fish’s survival 
was not affected by being caught and re-released). 

• Only tags recaptured by vessels with flags of Japan or Australia (i.e. Japanese or 
Australian quota) were included.  This includes New Zealand and Australian joint 
venture catches (flag=Japan).  For vessels with flags of other countries (i.e. 
catching quota for other countries), the reporting rates are assumed to be zero so 
we do not want to include any tags actually returned by these vessels (only 85 
such tag returns).  

 
The above release and recapture criteria were used in all non-spatial analyses of the 
1990s SBT tagging data for estimating mortality rates and/or abundance (Appendices 
5, 15 and 17) and were also used in the reporting rate analysis (Appendix 19). After 
screening, a total of 65047 releases from 1991 to 1997 were available for inclusion in 
these analyses.  Corresponding to these releases, the total number of returns during the 
same time period that were suitable for our analysis was 6232.  A summary of the 
release and recapture data after screening by year and age of release and year of 
recapture is provided in Table 1. 

Catch data 
There are several commercial fisheries that catch SBT, and these themselves can be 
comprised of several components.  We identify the components as: 
 
1. Australian domestic (includes surface, farm and longline catches) 
2. Japanese longline  
3. Japanese-Australian joint venture  
4. Japanese-New Zealand joint venture  
5. New Zealand domestic  
6. Taiwanese longline and gillnet 
7. Indonesian spawning ground fishery 
8. Other (Korea, Philippines, South Africa, Singapore, and miscellaneous catches) 
 
The level of available catch information differs considerably between components 
(e.g., the spatial and temporal grid at which data are provided; whether catch data are 
provided in weight or numbers; how much, if any, length sampling was done for age 
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estimation).  As such, the method used to determine the number of fish caught and the 
age distribution of the catch differs between components and can be a complicated 
process.  Post-processing of the raw catch data has been carried out by CSIRO to 
provide catch at age numbers by year for each of the above components for use in 
their 2001 and 2004 SBT stock assessments (Preece et al. 2001; Preece et al. 2004).  
The catch data from the 2004 assessments are used in the analyses presented 
throughout this report.  The only differences are: 
• Significant numbers of small SBT were caught and released by Japanese longline 

vessels in 1995 and 1996, and we have chosen to include the estimated non-
surviving portion of the discarded catches in our catch data (Preece et al. 2001), 
whereas the data used in the 2004 assessments did not.  

• The catch at age data for the 2004 assessments were compiled by calendar year 
(starting 1 January), whereas for our analysis we compiled the data by ‘fishing’ 
year, defined as starting 1 November1, to be more consistent with the major 
fishing seasons for SBT.  For all of the major fishery components (1 to 4), the 
catch data are available by month, so breaking them down by fishing year opposed 
to calendar year was straightforward.  For the other components, which 
compromise a relatively small fraction of the total juvenile catch, the catch data 
were not available by month so we needed to use some approximations and 
assumptions. For the New Zealand domestic fishery, very few catches occur in 
November and December so using the data by calendar year was satisfactory. Fish 
caught in the Indonesian spawning ground fishery are essentially all greater than 7 
years old, which is older than we are interested in for our analysis, so we do not 
need to worry about adjusting these catches.  Lastly, catches from all remaining 
fisheries (components 6 and 8) are dominated by the Taiwanese catches, which 
generally occur in the austral winter, so we assume that no adjustments to year and 
age are necessary.   

 
Total catch numbers by year and age are given in Table 2.  Only catches from years 
1991 to 1997 and ages 1 through 7 are provided since these are the only data used in 
the analyses in this report. 

 Compiling data for spatial analysis 
For the spatial analysis of the 1990s SBT data (Appendix 16), we required that the 
tag-return data and the catch data be broken down not only by age and year but also 
by season and region (as defined below).  In order to divide the data into regions, the 
location of release and recapture were required, so an additional condition was added 
to both the release and recapture criteria that the latitude and longitude fields could 
not be blank or recorded as unknown.  Furthermore, the release condition that only 
releases from pole and line vessels should be included was relaxed to include releases 
from all vessels.  All pole and line releases occurred in coastal waters south of 
Western Australia or in the GAB.  For the spatial analysis we wanted releases from as 
diverse locations as possible; therefore, we included the small percent of longline 
releases that occurred mainly in the Tasman Sea but also in the southeast Indian 
Ocean.   
 

                                                 
1 Explicitly, fishing year t is defined as the period from 1 November of calendar year  to 31 
October of calendar year t. 

1t −
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We defined 2 seasons as: 
• Season 1: November – April (corresponding roughly to Australian surface fishery) 
• Season 2: May – October (corresponding roughly to Japanese longline fishery) 
 
We defined 4 regions as:   
• Region 1: GAB (roughly corresponding to ≥120°E, <140°E, ≥25°S, <35°S) 
• Region 2: Tasman (roughly corresponding to ≥120°E, <190°E, ≥25°S, <60°S 

minus the GAB) 
• Region 3: SE Indian Ocean (SEIO) (roughly corresponding to ≥60°E, <120°E, 

≥25°S, <60°S) 
• Region 4: South Africa (SAfrica) (roughly corresponding to ≥−20°E, <60°E, 

≥25°S, <60°S) 
 
The spatial model that we propose and develop for SBT in Appendix 11 and apply in 
Appendix 16 is a simplified version of the truth in which we assume all fishing in the 
GAB occurs in season 1 (corresponding to the Australian surface fishery) and all 
fishing in the other 3 regions occurs in season 2 (corresponding to the major longline 
fisheries).   
 
Note that the coordinates defining the regions are approximate because the regions are 
meant to correspond to fisheries, which do not adhere to strict geographical divisions 
(for example, some longline catches occur within the coordinates designated for the 
GAB but for our purposes should be classified as either Tasman or SEIO 
accordingly). 
 
Releases were initially divided into regions using the above latitude and longitude 
definitions.  These divisions were then modified as follows: 
• all non-longline releases defined as SEIO were changed to GAB (these are 

Western Australia releases of very young, predominantly age 1, SBT) 
• all non-longline releases defined as Tasman that were <140°E and <40°S were 

changed to GAB (there were some releases south of our 35°S boundary for the 
GAB that should clearly be included in the GAB) 

Figure 1 shows the distribution of releases by region. 
 
Similarly, recaptures were initially divided into regions using the above latitude and 
longitude.  These divisions were then modified as follows: 
• any non-longline recaptures defined as SEIO were changed to GAB  
• any non-longline recaptures defined as Tasman that were <140°E and <40°S were 

changed to GAB  
• any longline recaptures defined as GAB were changed to Tasman  
Figure 2 shows the distribution of recaptures by region. 
 
To divide the releases and recaptures into seasons, we initially used the season 
definitions given above. We then modified the season for both the releases and 
recaptures to adhere to our simplified model as follows: 
• any recaptures that occurred in the GAB in May through October were defined as 

season 1 (there were no such releases and <3% such recaptures) 
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• any releases or recaptures that occurred in SAfrica, SEIO or Tasman in November 
through April were defined as season 2 (there were only 7 such releases and <9% 
such recaptures) 

Note that changing the season definition sometimes required a change to the fishing 
year as well.  For example, if a fish was caught in November or December of fishing 
year 1993 (calendar year 1992) in the Tasman, then we changed it from being caught 
in season 1 of fishing year 1993 to being caught in season 2 of fishing year 1992.  
Similarly, if a fish was caught in July through October of 1993 in the GAB, then we 
changed it from being caught in season 2 of fishing year 1993 to being caught in 
season 1 of fishing year 1994. 
 
Dividing the catch data into seasons and regions was slightly more complicated 
because the information available for doing so varied between fishery components.  
Furthermore, the catch data do not correspond as nicely as the tag-recapture data to 
our simplified model.   
 
To divide the catch data into seasons and regions, we used the following procedure for 
each fishery component: 
 
• For the Australian domestic fishery, we do not have latitude and longitude 

information available to us, but instead we have general areas designations, the 
relevant ones being New South Wales, Tasman, South Australia, Western 
Australia, Albany and Esperance.  Catches from New South Wales and Tasman 
were assigned to region Tasman, and catches from the remaining areas were 
assigned to region GAB.  Month information is available so we initially divided 
the catches into seasons according to our season definitions, then modified the 
season (and fishing year when necessary) to adhere to our simplified model in the 
same way we did for the releases and recaptures. This required a fairly large 
percentage of changes (~25%) since, in actuality, a fair number of fish are caught 
in the GAB outside of season 1 and in the Tasman outside of season 2.   

• The Japanese longline catches could be divided into regions based on latitude and 
longitude information (none were in the GAB).  There were a few catches outside 
of our region definitions, and they were classified as SAfrica, SEIO or Tasman 
accordingly (based on proximity and judgment).  Similarly, the catches could be 
divided into seasons based on month information, then we modified the season 
(and fishing year if necessary) to adhere to our simplified model (this required 
~13% changes from season 1 to season 2; no changes were required in the other 
direction since there were no GAB catches).    

• The Australian joint venture catches were divided into regions and seasons in the 
same manner as the Japanese longline catches (again with a few catches outside of 
our region definitions that were classified as SEIO or Tasman accordingly).  No 
catches occurred in region SAfrica.  The modification of the season definitions 
required almost no changes to the GAB catches, but ~19% changes from season 1 
to season 2 for the other regions.   

• The New Zealand joint venture catches were also divided into regions using 
latitude and longitude information.  All catches belonged to the Tasman (no 
modifications were necessary). As such, all catches were defined as belonging to 
season 2 (~12% of the catches would have been classified as season 1 based on 
month).  
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• The New Zealand domestic catches all occurred in the Tasman, therefore we 
assigned all catches to season 2.  Only a very small percent of catches would have 
been assigned to season 1 based on month.  

• For the Taiwanese fishery, we attributed 75% of the catches to SEIO and the 
remaining 25% to SAfrica, all in season 2.  This is based on very limited 
information available from country reports provided to the CCSBT but should be 
reasonable for our purposes.  

• The Indonesian catches are outside the four regions we defined, but this is not of 
concern because fish caught on the spawning ground are older than those we are 
interested in for our study and can simply be omitted. 

• For all other catches, we have limited information available.  We divided the 
catches by age in a particular year into region – either SEIO or SAfrica – in 
proportion to the Japanese longline catch at age in these two regions in the same 
year.  All catches were assumed to belong to season 2. 
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Table 1. Summary of the southern bluefin tuna tag release and return data from 1991 
to 1997 (after data screening). 
 

Release Release Number Number returns by year 
year age releases 1991 1992 1993 1994 1995 1996 1997 

1991 1 3299 20 40 46 23 13 5 4 
1991 2 3127 103 148 59 34 20 7 5 
1991 3 810 63 8 16 7 1 5 1 
1991 4 1 0 0 0 0 0 0 0 
1992 1 2144 1 21 56 37 11 7 
1992 2 4646 88 159 101 33 12 8 
1992 3 1097 57 18 11 9 3 2 
1992 4 1 0 0 0 0 0 0 
1993 1 4898 2 41 201 91 58 
1993 2 2937 60 68 67 21 11 
1993 3 2777 66 78 32 17 15 
1993 4 22 2 0 0 1 0 
1994 1 9003 4 110 401 364 
1994 2 3158 29 167 76 52 
1994 3 3640 77 145 30 40 
1994 4 111 4 2 0 0 
1994 5 4 0 0 0 0 
1995 1 8585 0 87 622 
1995 2 5899 83 395 363 
1995 3 2629 55 103 74 
1995 4 101 1 3 1 
1995 5 3 0 0 0 
1996 1 82 0 3 
1996 2 2518 77 339 
1996 3 1511 115 201 
1996 4 24 1 1 
1996 5 1 0 0 
1997 1 884 1 
1997 2 592 15 
1997 3 526 91 
1997 4 17 7 
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Table 2. Southern bluefin tuna total catch at age data from 1991 to 1997 for ages 1 to 
7. 
 

Year Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 
1991 48450 76744 176057 51693 21726 12332 9491 
1992 7624 33638 150758 77731 32981 16426 8558 
1993 404 38414 120232 65802 48640 31324 17285 
1994 187 10398 119166 72806 32144 24928 16435 
1995 416 30789 133300 61080 39073 27442 20560 
1996 422 26276 171859 76136 38646 24743 18972 
1997 1965 32025 203883 72177 43001 27398 21673 
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Figure 1. SBT releases from 1991 to 1997 by region. 
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Figure 2.  SBT recaptures from 1991 to 1997 by region. 
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Abstract 

A comprehensive framework for modelling data from multi-year tagging experiments 

in a fishery context is presented that incorporates catch data into the traditional 

Brownie tag-recapture model.  Incorporation of catch data not only allows for 

improved estimation of natural and fishing mortality rates (especially fishing) but also 

allows for direct estimation of population size at the time of tagging. These are the 

primary quantities required to be estimated in stock assessments; having an approach 

for directly estimating them that does not require catch rates or data from fishery-

independent surveys (which are often unfeasible and provide insufficient data) 

provides a potentially powerful alternative for augmenting traditional stock 

assessment methods.  Simulations are used to demonstrate the value of directly 

incorporating catch data into the estimation framework and also to illustrate the trade-

off between number of releases and accuracy of catch data in terms of parameter 

estimation.  Results from the simulation scenarios considered suggest that including 

catch data can improve the precision of fishing mortality rate estimates by up to ~40% 

and natural mortality rate estimates by up to ~10%.  They also show that reducing 

uncertainty in the catch data can lead to significant improvements in the precision of 

the population size estimate and the fishing mortality rate estimates (especially at 

young ages and low numbers of releases), whereas increasing the number of releases 

can lead to large improvements in the natural mortality rate estimates as well as the 

fishing mortality rate estimates (especially when the uncertainty in the catch data is 

high).  Finally, the model is applied to southern bluefin tuna (Thunnus maccoyii) tag-

recapture and catch data collected in the 1990s to provide estimates of natural 

mortality, fishing mortality and abundance for five cohorts of fish.   
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Introduction 

Mark-recapture experiments represent one of the primary tools for studying the 

dynamics of wild animal populations, and an extensive literature exists documenting 

the wide variety of experimental designs and estimation models available (e.g. Seber 

1982; Quinn and Deriso 1999; Morgan and Thomson 2002).  The attraction of mark-

recapture studies is that they have the potential to provide estimates of population 

abundance and mortality rates (both natural and exploitation).  These are fundamental 

quantities needed for understanding population biology and providing scientific-based 

management advice, but are extremely difficult to measure directly for most wild 

populations because conducting a direct census and/or tracking a large number of 

individuals is often not feasible. There are two basic types of mark-recapture studies – 

those in which an animal can be captured and released multiple times and those in 

which only a single recapture is possible because the animal dies in the capture 

process.  In most fishery applications, only single recapture studies are feasible, and it 

is this type of study considered here. 

 

In fisheries, natural mortality and fishing mortality rates are critical components of the 

stock assessment process because they form a key component in evaluating stock 

productivity and density dependent responses of a population; thus, uncertainty in 

their estimated values can be a major source of uncertainty in the resulting 

management advice.  Direct estimation of fishing and mortality rates has generally 

been an intractable problem in marine fish populations.  Most assessment methods 

assume that natural mortality is known and is constant with age and time, and values 

used come from  ad hoc approaches (e.g. catch curve, life history characteristics, 

analogy from other stocks).  Similarly, the most common approach for estimating 

fishing mortality rates (e.g. virtual population analysis and related catch-at-age 

approaches) are dependent upon assumptions about selectivity and require extensive 

auxiliary relative abundance indices.  

 

Historically, the most common approaches for analysing mark-recapture data from a 

single release event were based on a Petersen-type model (e.g. Seber 1982).  In this 

case, the primary quantity being estimated is the population size at the beginning of 
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the experiment.  Population size is estimated based on the ratio of the observed 

number of tags returned within samples taken from the population given the known 

number of tags released into the population.  The Petersen method was developed for 

use in closed populations (i.e. populations that have no births, deaths, immigration or 

emigration); however, the method can be applied to give an estimate of abundance at 

the time of tagging even when there are deaths and emigration, provided these factors 

apply equally to tagged and untagged animals.  While the Petersen approach has been 

used extensively in wildlife and controlled experimental situations, it has not been 

widely used in large commercial fisheries because the size of the sample actually 

examined for tags is often difficult to ascertain, and will almost certainly include 

error.  In addition, if all recaptured tags are not reported, then Petersen models require 

that reporting rates are either known or estimable from other sources.  

 

A different approach to the Petersen one is the use of multi-year tag release and 

recovery experiments (Brownie et al. 1985).  Brownie models for multi-year tagging 

data provide estimates of total mortality rates from comparison of the return rates over 

time from the multiple releases.  The power of the approach is that only data on the 

number of releases and returns (usually by cohort) are required to estimate mortality 

rates (i.e. there is no need to know the size of the sample examined for tags).  Brownie 

models can provide estimates of total mortality rates even when reporting rates are 

unknown; however, the separation of natural mortality rates from exploitation rates 

requires that reporting rates are either known or estimable.  In theory, reporting rates 

can be estimated directly from multi-year tag-return data if they are assumed to be 

constant over years, but the precision of the estimates is usually unsatisfactory 

(Hoenig et al. 1998a) and, moreover, reporting rates will vary by year in many 

situations.  Thus additional information is usually required for obtaining reasonable 

reporting rate estimates.   

 

In recent years, the application of multi-year tagging experiments for estimating 

mortality rates using general models (Brownie et al. 1985) has been recognized as a 

powerful approach that can be applied in fishery situations to provide direct estimates 

of both natural and fishing mortality rates (e.g. Pollock et al. 1991; Polacheck et al. 

1996, 1997).  A number of papers have further developed these models for application 
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in particular fishery situations (Hoenig et al. 1998a,b; Hearn et al. 1999; Pollock et al. 

2002).  In addition, estimates of mortality rates from multi-year tagging programs 

using a Brownie framework have been incorporated into stock assessments, and the 

approach underlies the design of a large-scale international tagging program for 

southern bluefin tuna currently in progress (Anon. 2001a, 2001c, 2002).  

  

The Petersen and Brownie approaches rely on different information from mark-

recapture data to estimate fundamentally different quantities (absolute abundance 

versus mortality rates).  In particular, the Petersen method takes advantage of the 

information content in the proportion of recaptured animals that have a tag, while the 

Brownie approach uses the information content on the rate at which tags are returned.  

In the current appendix, we develop a mark-recapture model that combines these two 

approaches by using both sources of information to provide joint estimates of both 

abundance and mortality rates. We do this in a fishery context in which catch data are 

used to provide estimates of the number of animals examined for tags and the 

uncertainty in these catch statistics is incorporated explicitly (the approach is equally 

valid in a more controlled experimental situation where exact information is available 

on the number of animals examined for tags).  We demonstrate that there is a synergy 

in combining the two approaches in that the addition of catch data to the Brownie 

model not only allows for estimation of abundance but also improves estimation of 

mortality rates.  We also explore the relative trade-off between increased tagging 

efforts (through more tag releases) and improved catch information (for example, 

through increased sampling) in terms of accuracy of parameter estimates.  Finally, we 

apply the combined model to southern bluefin tuna tag-recapture and catch data to 

provide mortality rate and abundance estimates for five cohorts of fish from the early 

1990s.  

 

Material and Methods 

Basic Dynamic Model 

The general population dynamics equations commonly used in fisheries form the 

basic model underlying the analysis of multi-year tagging experiments used here.  

These equations involve exponential and competing natural and fishing mortality 
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rates.  The model can be easily translated into alternative formulations for the 

mortality dynamics, such as a net natural survival rate and annual harvest rates from a 

pulse fishery (see Hoenig et al. 1998a).  For a cohort of animals of a given age, the 

deterministic equations for the number of animals that survive to the next age and the 

number caught are (e.g. Hilborn and Walters 1992, p. 378): 
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where   

Pi,t = the number of individuals of age i at time t 

Ci,t = the catch of individuals of age i at time t 

Fi,t = the instantaneous fishing mortality rate for individuals of age i at time t  

Mi,t = the instantaneous natural mortality rate for individuals of age i at time t. 

 

In many contexts, Mi,t is assumed to be constant with time, although multi-year and 

multi-cohort tagging programs can provide year- and age-specific natural mortality 

rates to a limited extent (as discussed later).  In the current appendix we focus on a 

multi-year tagging experiment involving a single cohort, so we can simplify the 

notation by dropping the t subscript and expressing everything in terms of age.  The 

generalization of all equations to more than one cohort is straightforward.  Later we 

will discuss some advantages of extending a tagging experiment to multiple cohorts, 

and we will also apply the integrated tag and catch model to multiple cohorts of 

southern bluefin tuna data. 

 

In the context of a tagging experiment, the above equations provide the basis for 

predicting the expected number of returns, assuming that the tagged fish constitute a 

representative sample of the population.  Let Na be the number of tag releases of age a 

fish from a specific cohort and λi be the tag reporting rate for fish captured at age i.  

Define:  
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where  represents the annual survival rate of age i fish and  represents the annual 

exploitation rate of age i fish.  Then, following Brownie et al. (1985), the expected 

numbers of tags recaptured and returned from a particular cohort at age i from 

releases at age a are given by the expressions in Table 1.  These expressions for the 

expected number of returns assume complete and instantaneous mixing of tagged fish 

with the untagged population and no tagging mortality or tag shedding.  If these 

assumptions are not met, additional parameters and potentially additional data will 

need to be introduced to account for them.  Failing to do so will likely lead to biased 

parameter estimates and overly optimistic estimates of the precision of the parameter 

estimates (see Discussion). 

iS iu

 

Equations (1) and (2) can also be used to provide analogous expressions for the 

expected catches of age i fish from a particular cohort, conditional on the size of the 

cohort at age 1,  (Table 2).  Conceptually, the catch data can be viewed as a tagging 

experiment in which the number of “releases” ( ) is an unknown parameter to be 

estimated.  However, unlike a tagging experiment where the number of returns from a 

particular release event are essentially known quantities, the numbers of fish caught at 

each age will be estimated quantities, usually derived from a multi-stage sampling of 

catches for length combined with age/length keys derived from direct aging of hard 

parts (otoliths in the case of SBT).  Because  is unknown, it is not possible from the 

catch-at-age data alone to derive estimates of the mortality rates

1P

1P

1P
1.   Combining the 

catch-at-age data with the multi-year tagging data allows for  to be estimated and 

for additional information on the F’s and M’s contained in the catch data to be 

extracted. 

1P

                                                 
1 Even if M is assumed known as in many stock assessments, there are still too many parameters unless 

F is assumed constant for a cohort; this is the reason that catch-at-age stock assessment models require 

additional sources of data for “tuning” (see Hilborn and Walters 1992). 
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Estimation Model   

We use a maximum likelihood approach to jointly model the tag-recapture and catch 

data.  We develop independent likelihoods for the tagging data and the catch data that 

can be multiplied together to give an overall likelihood function.  This likelihood 

function can then be maximized to give estimates of the unknown F, M and P 

parameters.  

 

We consider the case in which tag reporting rates are assumed to be known.  While 

this is likely an unrealistic assumption in most situations, it provides a straightforward 

way to examine the potential gain achieved by combining tagging and catch-at-age 

data.  If reporting rates are not known exactly, then they need to be estimated, 

generally using auxiliary data.  This is true for any application of the Petersen model 

for estimating abundance or the Brownie model for estimating natural and fishing 

mortality rates.  We have not attempted to deal explicitly with the estimation of 

reporting rates in the current appendix because there are a number of approaches that 

can be used to obtain such estimates (e.g. tag seeding, high-reward tags, observers 

monitoring a portion of catches, tagging twice per year) and how to account for the 

uncertainty induced by estimating reporting rates depends on the method used.  For 

some methods, the estimates can be considered independent of the tagging and related 

catch data (e.g. tag seeding data).  In such cases, a likelihood can be developed for the 

data used to estimate the reporting rates and simply multiplied by the tagging and 

catch likelihoods developed below.  In other cases, the estimates of reporting rates 

will use some of the tagging and related catch data (e.g. when based on observers) and 

the likelihoods for the tagging and catch data would need to be modified (see 

Appendix 7). 

 

As developed in Brownie et al. (1985), if each tag return is assumed to be 

independent, then the numbers of returns at age (including those not returned) from 

any individual release event (i.e. releases for a particular age) are expected to be 

multinomial, and the likelihood function for the observed numbers of returns from all 

release events is the product of multinomials: 
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where a indexes release age, i indexes recapture age, Ra,i is the number of tags 

returned from an age i fish released at age a, and pa,i is the probability of a tag being 

returned from an age i fish released at age a.  An expression for pa,i can be obtained 

from the expected number of returns in Table 1 by dividing by Ni.  Explicitly,  
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Note that in equation (3) a dot in the subscript denotes summation over the index it 

replaces.  Also,  is a constant that can be omitted from the likelihood.  Κ

 

Similarly, if we assume the numbers of fish caught at each age are known accurately 

(and that each fish has an equal probability of being caught), then the catch-at-age 

data, including those fish from the cohort not caught, are random multinomial, where 

each fish has a probability of being captured at age i or not captured.  Usually, 

however, the catch-at-age data are not known accurately.  For many fisheries, 

including that for southern bluefin tuna, the age distribution of the catch is determined 

by taking a sample, estimating the ages of fish in the sample (either from lengths or 

from direct aging of hard parts), and using the estimated age frequencies of the sample 

to represent the total catch.  We have chosen to model the error in the catch-at-age 

data that results from such a sampling procedure as Gaussian with a coefficient of 

variation (CV) that depends on the level of sampling.  The CV is intended to capture 

variability in the catch-at-age data due to non-homogeneous spatial and temporal 

distribution of fish, as well as different size/age selectivities among vessels (i.e. if 

these factors are significant, then the CV of the catch-at-age data would be large 

because the age distributions derived from different samples could vary greatly).    

 

To fit a model with both multinomial “process” error and Gaussian sampling error 

would require a relatively sophisticated approach, such as a Kalman filter.  In most 
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commercial fishery situations, the number of fish in the cohort from which catches are 

being taken will be very large such that the multinomial error will be negligible 

compared to the Gaussian sampling error, and only the latter source of error needs to 

be considered.  This is the approach taken in the current appendix.   

 

The actual error structure in any particular application will depend upon the details of 

the sampling and age estimation procedures.  The choice of a Gaussian error structure 

provides a general framework for exploring the effects of measurement error in the 

catch estimates, but other error structures for the catch data that accommodate a 

particular sampling regime can easily be incorporated as long as an appropriate 

likelihood function can be developed.  We have also assumed that the errors in the 

catch-at-age estimates between years (i.e. ages for a single cohort) are independent.  

This is a reasonable assumption for many fisheries, in which sampling and aging data 

are collected each year.  However, in some situations (particularly where age at length 

is being estimated from a growth curve), covariance in the estimates between years 

may exist and would need to be accounted for. 

 

Assuming a Gaussian error structure, the likelihood for the catch-at-age data can be 

expressed as: 

 
2

( )1 1exp
22

i i
C

i ii

C E C
L

σπσ

⎛ ⎞⎛ ⎞−⎜= − ⎜⎜ ⎝ ⎠⎝ ⎠
∏ ⎟⎟ ⎟

 (4) 

 

where  is the number of fish caught at age i,  is the expected catch at age i 

(as given in Table 2), and 

iC ( )iE C

2
iσ  is the variance of the catch at age i.  

 

The overall likelihood for the combined recapture and catch data can be obtained by 

multiplying likelihoods (3) and (4) together: 

 

 RL L LC= ×  (5) 

 

It is legitimate to multiply the two likelihoods together provided the tag-recapture data 

and the catch data are independent.  This assumption may not be met if during the 
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process of sampling the catch data, tags are found and returned; however, we assume 

that tags are removed at the time of catch, prior to catch sampling.  Moreover, if the 

catch sample is relatively small, then the expected number of tags in the sample will 

be so small that the independence assumption will not be seriously violated.   

 

Estimates of the unknown model parameters can be obtained by maximizing the 

likelihood in (5); however, not all parameters introduced thus far are estimable.  First, 

the information for estimating Mi comes from the differential between the expected 

returns at age  of fish released at age i and those released at age .  Thus, in an 

experiment with n consecutive release years, estimates can only be obtained for  

of the natural mortality rate parameters (regardless of the number of recapture years).  

We address this issue by assuming that 

1i + 1i +

1n −

1i nM M −=  for i , but other constraints 

could be used, such as imposing a parametric relationship between natural mortality 

and age.  Second, the inclusion of the catch likelihood (4) results in the addition of 

one more parameter than data points.  For example, three years of catch data result in 

four extra parameters (  and three 

n≥

1P iσ ’s) but only three additional data points (three 

’s).  One way to deal with this issue is to assume that the iC iσ ’s are known.  In 

practice, estimates of the catch-at-age are generally derived from a sampling program, 

and therefore independent information should be available for estimating the iσ ’s 

(and could possibly be included in the model through another likelihood component).  

Another way to deal with this issue is to put constraints on the variance parameters; 

however, it transpires that even if iσ  is constrained to be equal at all ages (i.e. iσ σ=  

for all i), there are still difficulties with estimating σ .   On closer inspection, we see 

that when we allow for a separate fishing mortality for each age of recapture, the 

catch likelihood (4) can always be maximized by allowing σ  to approach zero.  This 

is because Fi’s can be found that give a perfect fit to the catch-at-age data (i.e. such 

that  for all i), in which case the exponential term in the catch likelihood 

equals one (provided 

( )iE C C= i

0σ > ) and the catch likelihood approaches infinity as σ  

approaches zero.  Even if the Fi’s that fit the catch data perfectly fit the recapture data 

very poorly, the catch component of the likelihood will still dominate over the tag-

recapture likelihood when σ  is sufficiently close to zero.  In situations where the 

tagging data are relatively influential compared to the catch data (such as when the 
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number of tag releases is large and the variability in the catch data is large), there will 

often be a local maximum away from zero (we see an example of this later when we 

apply the model to southern bluefin tuna data).   In such situations, a reasonable 

estimate of σ  can be obtained by setting a lower bound on σ  sufficiently larger than 

zero.  Note, however, that simulations suggest that even when a local maximum 

exists, the local estimate of σ  tends to have a negative bias.  Generating a likelihood 

profile for σ  is a good way to determine when a local maximum exists.   

 

In the simulations results presented below, we have chosen to model the catches as 

having a constant coefficient of variation υ  (i.e. ( )i E Ciσ υ= ).  This formulation is 

convenient for evaluating the trade-off between devoting resources to tagging 

(through the number of tags released) and devoting resources to catch sampling 

(assuming that υ  will decrease as sampling increases).  We assume that the true value 

of υ  is known in order to avoid problems with estimating it (which are analogous to 

the problems just discussed with estimating a constant σ ). 

 

Results 

In the previous section, the model was presented in terms of an overall likelihood 

(given in (5)) and parameter estimation was referred to in terms of maximizing this 

likelihood.  Conceptually, this seemed simplest to interpret; however, in actually 

fitting the model, we used the standard procedure of obtaining parameter estimates by 

minimizing the negative log of the likelihood.  Therefore, throughout the results 

section we refer to and present results for the negative log-likelihood.    

Simulation Results 

Value of incorporating catch data 

To investigate the value of incorporating catch-at-age data in terms of the accuracy of 

the parameter estimates, we simulated multinomial tag-recapture data and Gaussian 

catch-at-age data.  We then compared the parameter estimates obtained using just the 

tag-recapture data with those obtained using both the tag-recapture data and the catch 

data.   
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We generated tagging data for three consecutive release years (tagging the same 

cohort each year) and three recapture years using the following values: 
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Gaussian catch data were generated corresponding to each recapture age using the 

above F and M values, an initial population size of P1 100000=  and a coefficient of 

variation of υ  = 0.1.   

 

We generated 500 tag-recapture data sets and corresponding catch-at-age data sets.  

Parameter estimates were obtained first using just the tagging data to minimize the 

negative log of likelihood (3), and second using both the tagging and catch data to 

minimize the negative log of likelihood (5).  Although we used constant mortality 

rates across ages to generate the data, we estimate a separate fishing mortality rate for 

each age (F1, F2 and F3) and we estimate a natural mortality rate for age 1 (M1) and 

age 2 and above (M2) – recall this is the most we can estimate with three release years.  

When we use the likelihood that includes catch data, we also get a direct estimate of 

the initial size of the cohort, P1. The mean, standard error (SE) and coefficient of 

variation (CV) of the parameter estimates are summarized in Table 3.   

 

All of the mortality rate estimates were more precise when the catch data were 

incorporated, with a 40% reduction in the SE for the F1 estimates, about a 30% 

reduction for F2, and about a 10% reduction for M1 and M2. Some improvement in 

precision is to be expected because the catch data constitute additional data. However, 

the improvement can be substantial, particularly in light of the fact that catch-at-age 

data are often available without any additional expense (improvements would be 

expected with more tagging data as well but would come at more cost).  Integrating 

catch data into the model not only improves the precision of the mortality rate 

estimates, it also provides a direct estimate of the initial population size, P1, which 
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cannot be obtained from the tag-recapture data alone.  In our simulations, P1 was 

estimated quite accurately, with a CV of about 10% (Table 3).  

 

We note that all of the mean parameter estimates obtained using the model with only 

tagging data are slightly greater than two SE’s above their true value, suggesting they 

have a small positive bias.  When the model with both tagging and catch data is used, 

all of these biases, except that for F3, disappear.  It is important to keep in mind that 

all simulations results are random realizations and that repeating the simulations will 

lead to slightly different results.  For example, small biases that appear to be 

significant in one set of simulations can become insignificant in a different set of 

simulations, and vice versa (e.g. compare results in Table 3 with Figure 2a).  

Increasing the number of runs will reduce the amount of variation between two sets of 

simulations, but 500 runs were adequate to give consistent results with respect to key 

features, including these small bias effects. 

Trade-off between number of releases and accuracy of catch data 

We have established that incorporating catch data can improve the precision of the 

parameter estimates.  The degree of improvement will depend on the amount of 

variability in the catch data as well as the number of tags released.  For designing a 

tagging experiment, it would be very useful to know whether resources would be 

better spent on tagging large numbers of fish or on reducing the uncertainty in the 

catch-at-age data (through more port sampling, more on-board observers, collection of 

otoliths for aging, et cetera).   

 

To address this question, we carried out simulations in which we varied the number of 

releases (N) from 250 to 2000 and the catch CV (υ ) from 0.05 to 0.50.  For each 

value of N we generated 500 tag-recapture data sets, and corresponding to each tag-

recapture data set, we generated a catch data set for each value of υ .  We assumed 

three consecutive release years with an equal number of releases in each year, three 

recapture years, and the same values for the F’s, M’s  and P1 as in our previous 

simulations.  We estimated the mortality rate and initial population size parameters by 

minimizing the negative log of the joint tagging and catch likelihood (5), and we also 

estimated the mortality rate parameters by minimizing the negative log of the tagging 

likelihood (3) only.   
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We chose to evaluate the parameter estimates using the root mean squared error 

(RMSE) because this statistic is a combined measure of both the bias and the 

precision of the estimates.  As the name suggests, RMSE is calculated by computing 

the mean of the squared differences between the parameter estimates and the true  

value (which is equivalent to computing the variance plus the average bias squared), 

and taking the square root of this value.  The results are summarized in Figure 1a-f.  

 

First concentrate on the estimates of the fishing mortality rates (Figure 1a-c).  

Increasing the number of releases resulted in decreases in the RMSE of all the fishing 

mortality rate estimates (F1 to F3), with the rate of decrease slowing considerably after 

about 1000 releases.  Reducing the variability in the catch data (i.e. decreasing υ ) 

also reduced the RMSE of the fishing mortality rate estimates; however, the response 

lessened as the age of the fish increased such that by age 3, the RMSE of the F3 

estimates was essentially unaffected by the variability in the catch data.  There was 

also a clear interaction between the number of releases and the variability of the catch 

in the estimation of F1 and, to a lesser extent, F2.  In particular, for these two 

parameters, the gain from increasing the number of releases became greater as the 

catch CV (υ ) increased; i.e., releasing more tags improved the parameter estimates a 

lot more when the catch data were not very informative than when the catch data were 

known precisely.    

 

Similar to the fishing mortality estimates, increasing the number of releases resulted 

in decreases in the RMSE of the natural mortality rate estimates (M1 and M2), with the 

rate of decrease slowing as the number of releases increased (Figure 1d-e).  However, 

the natural morality rate estimates showed much less response to changes in the CV of 

the catch data.    

 

For the initial population size (P1), the variability in the catch data had a large 

influence on the precision of the P1 estimate (Figure 1f).  Decreasing the CV of the 

catch data resulted in an almost linear decrease in the RMSE of P1 over the range of 

catch CV values considered.  On the contrary, the number of releases had relatively 

little effect on the estimation of P1 (especially at higher catch CV’s).  At first this 
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seems counter-intuitive because fishing and natural mortality rates were estimated 

quite poorly at low release numbers.  However, it is the probability of catching a fish 

that is important for estimating P1, not the fishing and natural mortality rates per se, 

and this probability can be estimated well even if fishing and natural mortality are not.  

For example, if natural mortality is overestimated then the probability of catching a 

fish will be underestimated, but if fishing mortality is also overestimated then the 

probability of catching a fish will be overestimated; the two counteract each other 

such that the probability of catching a fish is estimated without bias.  A similar 

argument holds if natural and fishing mortality are both underestimated.  We can 

expect natural and fishing mortality to both be overestimated or both be 

underestimated in many cases because positive correlations exist between these 

parameters (see Discussion).     

 

When designing an actual tagging experiment and considering the trade-offs between 

tagging more fish and improving the catch data, the relative cost of the two data 

sources would need to be taken into account.  These costs will be fishery specific and 

we have not attempted to incorporate them in our model, but the results presented here 

should still provide guidance on determining a reasonable balance. 

 

We note that in our simulations there were only a few cases in which small biases 

were present in some of the parameter estimates, and even in these cases, the 

contribution of the bias to the RMSE was negligible compared to the variance.  

Nevertheless, the fact that biases were present at all was somewhat surprising and led 

us to investigate further.   

Biases in parameter estimates 

In the section on the value of incorporating catch data, we saw evidence of some 

small biases in the parameter estimates obtained using only tagging data.  We also 

saw that incorporating the catch data reduced these biases.  These results were 

obtained using 250 tag releases in each year.  The biases disappeared when the 

number of releases each year was increased to 500 or more, even for the model with 

just tagging data (Figure 2a).  Thus, in terms of biases of the mortality rate estimates, 

the number of tag releases was much more influential than the incorporation of catch 
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data.  In any case, the biases were relatively small, even with small numbers of 

releases.  

 

Although the biases in the fishing mortality estimates were small, they appeared to 

increase with age (Table 3; Figure 2a).  Thus, we ran simulations with two additional 

recapture years, keeping the number of release years at three, and we found that the 

pattern persisted.  Namely, the bias in the fishing mortality rates increased 

exponentially with age, and was non-trivial by age 5; for example, with only 250 

releases in each year, the bias in the mean age 5 fishing mortality rate estimate was 

over 20% (Figure 2b).  The biases again decreased as the number of releases 

increased; however, the biases in the age 4 and especially age 5 fishing mortality rate 

estimates did not disappear as quickly.  In fact, there was still evidence of a small 

positive bias in the age 5 estimate with 5000 releases per year.  The bias results were 

similar when the model with both tagging and catch data was used.  

 

Although the reason for these biases is not completely understood, they stem from the 

fact that the natural mortality and fishing mortality rate estimates at close ages are 

highly correlated combined with the fact that the natural mortality rates are 

constrained to be the same for ages 2 and above.  Recall that this constraint was 

required because with three release years, the model can only provide estimates of 

two natural mortality rate estimates, regardless of the number of recapture years.  If 

we fix the natural mortality rates for ages 3 and above at their true values and re-run 

the simulations, then the biases in the fishing mortality rate estimates generally 

disappear (for any number of recapture years).   

 

In the model with both tagging and catch data, the initial population size tended to be 

estimated with a small negative bias.  This bias increased as the CV of the catch data 

increased, but unlike the biases in the mortality rate estimates, did not diminish as the 

number of releases increased (Figure 3).  It can be shown theoretically that this bias is 

expected, and that it is caused by modelling the variance of the catch data in terms of 

a known CV and thus as a function of the mean (Appendix 6).  In any case, the bias 

was always small enough that it is not of concern (~5% for a catch CV of 0.5, and less 

than 2% for catch CV’s of 0.2 and below). 
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Effect of mortality rate values on simulation results 

To investigate how the values chosen for M and F affect the results, we ran additional 

simulations using the model with both tagging and catch data in which we varied 

these values, keeping all other parameters constant. We assumed the same 

experimental design and parameter values as in the section on the value of 

incorporating catch data, except the levels of natural mortality and fishing mortality 

were varied (i.e. 3 release years, 3 recapture years, 250aN = , 1.0iλ = , , 1 100000P =

0.1iυ = ,  and iF F= iM M=  for constants F and M).  For each scenario, we ran 500 

simulations.  First, we fixed M at 0.2 and varied F from 0.05 to 0.15 to 0.25.  As 

fishing mortality increased, the CV of all the parameter estimates decreased, with the 

largest decrease for the natural mortality rate estimates (the increased precision 

presumably resulting from more tags being recovered) (Figure 4a).  Second, we fixed 

F at 0.15 at all ages and varied M from 0.1 to 0.2 to 0.3.  As natural mortality 

increased, the CV of the fishing mortality rate estimates and the initial population size 

parameter increased, although only very slightly (the reduced precision presumably 

resulting from less tags being recovered), whereas the CV of the natural mortality rate 

estimates decreased (the increased precision resulting from there being more contrast 

in the data with which to separate the sources of mortality) (Figure 4b).  To check for 

interaction effects between fishing and natural mortality, we ran simulations for the 

remaining combinations of the above F and M values.  The results behaved 

predictably, with no signs of any significant interactions (i.e. when we fixed F at 0.05 

instead of 0.1 and varied M, the results looked the same as Figure 4b except shifted 

vertically upwards by an approximately equal amount for all parameters).     

 

Note that we chose to evaluate the results using the CV of the parameter estimates 

rather than the RMSE.  This is because as the true value of a parameter increases, we 

expect the absolute variance and bias of the parameter estimates to also increase.  We 

are more interested in the relative error of the parameter estimates than the absolute 

error, and the CV provides such a measure.  Alternatively, we could have used the 

RMSE relative to the true parameter value.  In our case, these options are almost 

equivalent because the bias is a negligible component of the RMSE.   
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Effect of assuming an incorrect coefficient of variation for the catch data 

Throughout our simulations, we assumed that we knew the catch CV correctly for 

inputting into the model.  We ran additional simulations to investigate the 

consequences of inputting the wrong catch CV on the estimates of the mortality and 

abundance parameters.  We generated tag-recapture and catch data sets using the same 

experimental design and parameter values as in the section on the value of 

incorporating catch data (i.e. 3 release years, 3 recapture years, 250aN = , , 

, 

0.15iF =

0.2iM = 1.0iλ =  and ), with the only difference being we let the true 

catch CV equal 0.2.  We then fit the joint tagging and catch model assuming that the 

catch CV was equal to a range of values from 0.05 to 0.5.  For each CV value 

considered, we ran 500 simulations. The RMSE of the parameter estimates tended to 

be smallest when the true value of the catch CV was used, but the effect of using the 

wrong value was negligible (Figure 5).  Although these results are specific to the 

situation being considered, we would expect even less effect if the tagging component 

of the likelihood was more influential (i.e. if there were more tag releases or if the 

catch data had more variability).  

1 100000P =

Application to southern bluefin tuna   

Southern bluefin tuna (SBT) are a long-lived pelagic species found throughout much 

of the southern oceans.  Adults of about 8 years and older spawn in the northeast 

Indian Ocean between Indonesia and the northwest coast of Australia, generally 

between the months of September and April.  Juveniles (ages 1 to 4) tend to spend 

their austral summers in southern coastal waters, with age 0 to 2 fish commonly found 

south of Western Australia (WA) and age 1 to 4 fish commonly found off South 

Australia in the Great Australian Bight (GAB).  During the winter juveniles tend to be 

found in deep oceanic waters, particularly after age 1. The proportion of the global 

stock of each age class found off WA and in the GAB during the summer months is 

not known; however, it is thought to be relatively high but diminishing with age.  SBT 

are harvested by a number of different fishing fleets and countries.  In particular, 

juveniles are harvested primarily by Australian purse seiners operating within the 

GAB during the summer, and to a lesser extent by various Japanese, Korean and 

Taiwanese longline fleets operating on the high seas (i.e. the Tasman Sea, southeast 

Indian Ocean and waters off South Africa) mainly during the winter. 
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Extensive tagging operations were carried out on SBT in the 1990s in which juvenile 

fish were caught, tagged, and released primarily in the coastal waters south of WA 

and in the GAB2.  All fish were double-tagged.  The tag numbers and length of each 

fish were recorded, together with the location and date of release.  Multiple age 

classes, generally ages 1 to 3, were tagged in each year.  A fish’s age at tagging was 

estimated based on its length using the method currently adopted by the Commission 

for the Conservation of Southern Bluefin Tuna (CCSBT) for its stock assessments 

(Anon. 2001b).  Fortunately, SBT grow rapidly as juveniles so there is good 

separation between length distributions of the ages being tagged, and therefore the 

number of aging errors should be small.  All tagging was done between November 

and April, so the ages were adjusted in order that fish caught in November or 

December from a given year-class/cohort were placed in the same age grouping as 

those tagged after December.  This adjusted age is used throughout the appendix, for 

releases as well as recaptures.  Recaptures occurred in the commercial fisheries 

throughout the geographical distribution of SBT, ranging in longitude from 0 to 

180°E and in latitude from 30 to 50°S.  Upon recapture, the finder measured the 

caudal fork length of the fish and recorded this length as well as the tag number, the 

date and location of recapture, and sometimes the weight of the fish.  This information 

along with one or both of the tags was sent to CSIRO.  Recapture age was determined 

using the estimated release age and the time between release and recapture.  Further 

details regarding the tagging operations and the data compilation procedures used for 

our analysis can be found in Appendix 4. 

 

Not all tagged fish that were recaptured will have been reported. Before we can apply 

the joint tagging and catch model to the SBT data we need to know, or have estimates 

of, reporting rates. Estimating reporting rates for SBT is complicated because of the 

nature of the SBT fishery, which comprises multiple components with varying 

reporting rates.  Data collected by observers, which were present on a portion of the 

vessels in some components of the fishery from 1991 to 1997, can be used to provide 

information about reporting rates, but observer coverage varied between components 
                                                 
2 Relatively small numbers of fish were tagged in other areas, primarily in waters off eastern Tasmania 

and from longline vessels. These releases have been excluded from the analyses presented here.  
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and years.  Because different fishery components catch different age-compositions of 

SBT (due to different gear types and different fishing locations), observer data from 

one component are not very informative about reporting rates in other components.  

Nevertheless, the available observer data have been used, along with a number of 

alternative assumptions, to provide year- and age-specific estimates of reporting rates 

for SBT from 1991 to 1997 (see Preece et al. 2001 for details).  The reporting rate 

estimates that we use in our current analysis come from Table 4, option 1, of Preece et 

al. (2001).  We treat these values as being known without error.  By doing so, we are 

able to illustrate the application of the estimation model described above to real data.  

In a more rigorous analysis for the purpose of evaluating the SBT stock, we would 

incorporate uncertainty in the reporting rate estimates and also consider various 

alternatives. 

 

Table 4 summarizes the SBT tagging data (releases, recaptures and reporting rates) 

and corresponding catch data used in our analysis. The catch data were compiled from 

the data used in CSIRO’s 2001 stock assessment for SBT (see Preece et al. 2001).  

Although recapture and catch information exist beyond 1997, reporting rate estimates 

are not available beyond this year so we cannot include more years in our analysis.  It 

should be noted that release year and recapture year refer to the period from 1 

November of the previous year to 31 October of the given year, as opposed to usual 

calendar year.  This year definition is preferred because it is consistent with the age 

definition being used, so that year and age give equivalent information when referring 

to fish from a given cohort.  Moreover, this year definition corresponds with the 

Australian purse seine fishing season (which generally operates from November to 

April).  Because the purse seine fishery catches the majority of juvenile SBT, which 

are the fish of primary interest in our analysis, it made sense that our fishing mortality 

estimates correspond to fishing seasons rather than to calendar years.3

                                                 
3 The numbers in Table 4 are not the same as those used in many previous analyses for SBT (e.g. 

Polacheck et al. 1997; Pollock et al. 2002). There are two main reasons for the differences.  First, 

previous analyses have almost always used the adjusted (Nov to Oct) year and age definitions for 

tallying releases but the usual calendar year and age definitions for tallying recaptures and catches.  

Second, the method used by the CCSBT to estimate age from length was updated in 2001 to 

incorporate a new growth curve, which changed the age estimate of many young fish.  
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Tag-recapture data exist for multiple cohorts of SBT, therefore we can apply the joint 

tagging and catch model to each cohort separately (using the model equations directly 

as they were presented), or we can apply the model to all cohorts simultaneously (by 

modifying the equations to have an additional subscript for year).  These two options 

are equivalent if each cohort has a unique set of parameters (i.e. fishing mortality rates 

and natural mortality rates are allowed to differ between cohorts). However, for SBT 

(and for most species), natural mortality rates are assumed constant over time when 

conducting stock assessments.  We have made this assumption in the analysis 

presented here.  Thus, we still allow for natural mortality to differ between age 1 and 

older fish, but not between cohorts.  To implement this restriction requires all cohorts 

to be modelled simultaneously, and this was the approach taken in the analysis 

presented here.   

 

As in our simulations, we assume the catch-at-age is Gaussian distributed with a 

constant CV across ages and also years (since we have multiple cohorts).  We expect 

the uncertainty in the catch-at-age data for SBT to be fairly large due to errors in the 

age distribution (from sampling variability and errors in the age estimates) and due to 

errors in the total catch numbers (from under-reporting as well as difficulties in 

compiling catch data in a fishery comprising multiple nations and fleets).  In the 

results presented we assumed a CV of 0.3. 

 

In applying the model to SBT data, we modified the tag-recapture component to allow 

for fishing mortality to differ between tagged fish in the year of tagging and untagged 

fish in that same year (following the model presented in Hoenig et al. 1998b).  This is 

to allow for the fact that newly tagged fish will not be fully mixed with the untagged 

population immediately after tagging, and for the fact that tagging generally occurs 

during the fishing season so tagged fish are only vulnerable for part of the season.  We 

assume that tagged and untagged fish are fully mixed by the year following release 

(recall all tagging of SBT occurred between November and April so this allows 

several months for mixing to occur).  The modified return probabilities are given by: 
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All other parameters are defined as before. Here  and  represent the annual 
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The maximum likelihood parameter estimates and their estimated standard errors are 

presented in Table 5.  Standard error estimates were obtained from the inverse 

negative Hessian matrix (evaluated at the maximum likelihood estimates) by taking 

the square root of the diagonal entries.  The estimates of M1 and M2 are essentially 

equal and suggest that these two parameters could be combined into a single non-age-

specific natural mortality rate.  However, the estimate of M2 seems too high and may 

reflect not only natural mortality but also underestimation of reporting rates for some 

ages as well as emigration of some age 2 fish out of the main fishing area (and thus 

not available for recapture at age 3).  The estimates of cohort size decrease over time, 

but the CV’s of the estimates are large (28-56%) and likely underestimated (see 

Discussion).  Also, not fully accounting for changes in reporting rates may be a 

confounding factor.  Before drawing any conclusions, a detailed consideration of 

alternative reporting rate models as well as residual patterns would need to be 

undertaken. 
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A profile of the negative log-likelihood for the catch CV revealed that, as expected 

from previous discussions, the global minimum in the negative log-likelihood occurs 

near zero, but that a local minimum also occurs around 0.26 (Figure 6).   This, 

combined with our previous simulation-based observation that the variance parameter 

tends to be underestimated even when a local minimum in the negative log-likelihood 

(i.e. maximum in the likelihood) exists, suggests that our initial choice of 0.3 for the 

catch CV was reasonable. 

 

In the model presented for SBT, there are a large number of parameters being 

estimated (47) in relation to the number of data points (85).  This brings up the issue 

of model selection and whether or not the parameter set could be reduced.  For 

example, are the fifteen additional parameters to allow for an initial period of non-

mixing necessary?  Is it necessary to have age-specific natural mortality rates?  

Instead of having year- and age-specific fishing mortality rates, can fishing mortality 

be modelled as a separable function with independent year and age factors (i.e. 

)?  Alternatively, can fishing mortality be modelled using a selectivity 

function?  Model selection can be performed using likelihood ratio tests or, more 

commonly in wildlife applications, using the Akaike information criterion (AIC) 

(Akaike 1974).  While we stress that performing model selection to find the most 

parsimonious model is an important part of any analysis, it is not the focus of this 

appendix and so we did not carry out an exhaustive model selection procedure for the 

SBT data.  We did, however, test the necessity of including separate F’s in the year of 

tagging.  The AIC value for the model including separate F’s was 47784.6 compared 

to 47988.6 for the model without separate F’s.  These results suggest that an initial 

period of non-mixing does in fact exist and should be allowed for in the model.  The 

residuals (not shown) were much improved in the model with separate F’s as well.  

We also confirmed that M

*F

,a y a yF F= F

1 and M2 can, at least statistically speaking, be replaced with 

a single M parameter – fitting the model with a single M resulted in no change to the 

negative log-likelihood value to the first decimal place, and thus a reduction in the 

AIC of approximately 2.  However, our suspicion that the M2 estimate may 

encompass more than just natural mortality should be investigated before reaching 

any conclusions.  Alternative parameterizations for the fishing mortality rates would 

also be worthwhile exploring. 
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Discussion 

In the current appendix, we have developed a comprehensive framework for 

modelling data from multi-year tagging experiments in a fishery context that 

incorporates catch data.  Integrating multi-year tagging data and catch data results in a 

synergy between the two data sets in that it provides an estimate of the initial 

population size, which cannot be obtained from the multi-year tagging data alone (i.e. 

from a Brownie-type experiment), and it provides estimates of mortality rates, which 

cannot be obtained from single release tagging data and catch data alone (i.e. from a 

Petersen-type experiment).  Additionally, incorporating catch data into the tagging 

model improves the mortality rate estimates (especially fishing mortality rates).  Our 

simulation results suggest that including catch data can improve the accuracy of 

fishing mortality rate estimates by up to ~40% and natural mortality rate estimates by 

up to ~10%.  Of course, the degree of improvement depends on the situation and is 

greatest when the catch data are known precisely and the number of tag releases is 

relatively small.  Our results also show that improving the precision of the catch data 

can lead to significant improvements in the accuracy of both the population size 

estimate and the fishing mortality rate estimates (especially at young ages and low 

numbers of releases), whereas increasing the number of releases can lead to large 

improvements in the natural mortality rate estimates as well as the fishing mortality 

rate estimates (especially when the accuracy of the catch data is low).   

  

The simulation results presented were for a tagging experiment involving a single 

cohort.  In practice, it is likely that two or more cohorts would be tagged in a given 

year, as was done in the case of southern bluefin tuna tagging experiments.  If any 

parameters are thought to be the same between cohorts, then tagging multiple cohorts 

can improve the information available for estimation and inference about not only 

these parameters, but the other model parameters as well.  For example, we ran some 

multi-year, multi-cohort simulations allowing for the fishing mortalities to differ by 

year and age but for natural mortalities to differ only by age (and still differ only 

between age 1 and age 2 plus).  For each cohort, we assumed the same experimental 

design and parameter values as in the section on the value of incorporating catch data 
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except we assumed a true catch CV of 0.2.  We found that having data from two 

cohorts reduced the RMSE on the estimates of M1 and M2 by about 25%, and having 

three cohorts reduced the RMSE on these estimates by 30-40%.  The improvement in 

the fishing mortality estimates increased at older ages.  In particular, for the F1 

estimates there was almost no difference in the precision from having more cohorts, 

but for the F3 estimates having two cohorts reduced the RMSE by 25-30% and having 

three cohorts resulted in a further reduction of about 5%.  Having either one or two 

additional cohorts led to about a 10% improvement in the RMSE of the P1 estimates. 

Having additional cohorts may also allow for more reliable estimation of the catch CV 

if constraints are put on the fishing mortality rates between cohorts.  

 

Another advantage of a multi-cohort, multi-year tagging experiment is that it allows 

for testing of assumptions that are frequently assumed to be true in fishery stock 

assessments because of lack of data to do otherwise.  For example, in our application 

to southern bluefin tuna data, we could have tested for significant differences in the 

age-specific natural mortality rates between cohorts to see if our assumption that they 

were constant over time was reasonable.  Similarly, we could have tested whether 

fishing mortality could have been modelled as a separable process (e.g. a 

multiplicative combination of a year and age effect).  Constant age-specific natural 

mortality rates and separable fishery mortality rates (at least for a restricted period of 

years) are frequently assumed in stock assessments.  If these assumptions are found to 

be reasonable, then the number of parameters to be estimated can be greatly reduced, 

with resulting gains in precision.  

 

High correlations were present between many parameter estimates, and are expected 

with the model formulation being used.  In particular, positive correlations between 

the natural mortality and fishing mortality estimates, especially at older ages, are 

expected because an increase in natural mortality means that less fish are still alive in 

the population; thus, in order to achieve a particular level of catch, fishing mortality 

must increase (i.e. the percentage of the population caught must increase) as natural 

mortality increases.  For the same reason, the fishing mortality rates between ages and 

fisheries are often highly positively correlated.  For example, if fishing mortality at a 

given age increases, then there are less fish alive at subsequent ages; thus, in order to 
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achieve a particular level of catch, fishing mortality must increase at subsequent ages 

in response to an increase in fishing mortality at a younger age.  Finally, negative 

correlations between the initial population size and the fishing mortality estimates are 

often present because in order to have achieved a particular level of catch, the 

population size must have been larger if the fishing mortality had been low than if it 

had been high. 

 

The estimates presented on the precision of the parameter estimates (in both the 

simulations and the application to southern bluefin tuna data) are likely to be 

optimistic for a number of reasons.  First, we assumed that the reporting rates were 

known without error and this assumption is unlikely to be true.  Second, if tagging 

mortality or tag shedding exist then there would be additional variance introduced in 

the parameter estimates, as well as bias if they are not accounted for.  Third, the 

variance in the number of recaptures is likely to be overdispersed relative to a 

multinomial distribution due to incomplete mixing and heterogeneity in the capture 

probabilities of fish.  All of these factors need to be addressed in the design and 

analysis of any tagging experiment.  

 

With regard to the first issue, making the assumption that reporting rates were known 

without error provided the most straightforward way of evaluating the potential gain 

achieved by incorporating catch data in the tag-recapture model.  However, in 

rigorous applications of the model, uncertainty in the reporting rates should be 

accounted for. A Bayesian approach could be used in cases where one has reporting 

rate estimates and associated uncertainties, but not the raw data used to obtain these 

estimates.  However, if the raw data are available, it would be preferable to 

incorporate these data directly in the model, either as a multiplicative likelihood 

component if the data are independent of the tag-recapture and catch data or through 

modifications to the tagging and catch likelihoods presented if they are not.  The use 

of observer data to estimate reporting rates is clearly a case where the data are not 

independent of the tagging and catch data.  In Appendix 7 we have extended the 

model presented in this appendix to incorporate the estimation of reporting rates 

through observer data.     
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With regard to the second issue, if tag mortality and tag shedding cannot be assumed 

to be essentially zero, then auxiliary information needs to be collected to allow for 

their estimation.  There has been extensive work on approaches for estimating these 

quantities, especially tag shedding from double-tagging experiments (e.g. Beverton 

and Holt 1957; Kirkwood and Walker 1984; Barrowman and Myers 1996).  Once 

estimated, immediate (often referred to as Type I) tag shedding and tagging mortality 

are essentially treated as a reduction in the number of releases, whereas subsequent 

(Type II) tag shedding and tagging mortality are generally assumed to occur at a 

constant rate over time and treated the same way as natural and fishing mortality.  As 

such, if these quantities are not estimated with a reasonably high level of precision, 

they will introduce substantial uncertainty into the abundance and mortality rate 

estimates.  We also note that if heterogeneity exists among taggers, then using a 

simple average rate for tag shedding and tagging mortality over all taggers can induce 

substantial biases to the parameter estimates of interest (Hearn et al. 1991).    

 

The third issue of incomplete mixing of tagged animals within the full population and 

heterogeneity in the capture probabilities is the most challenging problem confronting 

the use of tagging experiments. These factors can introduce increased variance as well 

as biases and are probably the biggest limitation in the application of tagging 

experiments in fisheries.  Strategies can and should be used to avoid and minimize the 

effect of incomplete mixing both in the design of the releases and in the analysis of 

the return data.  For example, to the greatest extent possible, it is important to spread 

tagging effort throughout the area where fish are found.  In cases where tagging 

occurs around the same time as peak catches (which is likely since that is usually the 

time when fish are most available), it is important to allow for a period of non-mixing.  

A method for incorporating non-mixing in the first year has been developed for 

Brownie-type models (Hoenig et al. 1998b) and, as we illustrated in our application to 

southern bluefin tuna data, can easily be extended to the Brownie model with catch 

data developed here.  If the period of non-mixing is less than a year, then precision in 

the parameter estimates can be gained by modifying to model to only allow for non-

mixing in part of the first year.  When incomplete mixing results from a high degree 

of site fidelity within the geographic range of the population, it may be necessary to 

include a spatial component within the analysis. In such cases, there is no universal 
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solution and the most appropriate estimation approach will depend upon the specifics 

of the population. We are currently in the process of developing a spatial version of 

the joint tagging and catch model for southern bluefin tuna.  A special case of 

incomplete mixing occurs if fish have a high degree of school fidelity, in which case 

the probabilities of recapturing fish tagged from the same school are not independent.  

When school fidelity exists, more realistic variance estimates could perhaps be 

obtained using a bootstrap approach and resampling the data using schools as the 

basic sampling unit.  A more general approach would be to directly incorporate the 

overdispersion into the model using, say, a Dirichlet-multinomial distribution as 

opposed to a multinomial distribution (see Appendix 9).  

 

Overall the results from this appendix demonstrate the potential for combining multi-

year tagging data with catch-at-age data to provide reliable estimates of the population 

parameters of interest for stock assessments.  Reasonable levels of precision can be 

obtained for all parameter estimates as long as there is an appropriate level and 

balance of effort devoted to tag releases and estimation of the catch-at-age data.  

 

Similarities exist between the methods and likelihood function developed here and 

those developed for use in integrated statistical catch at age/size stock assessment 

models involving tagging data (e.g. Fournier et al. 1998; Kolody and Polacheck 2001; 

Butterworth et al. 2003).  However, we are not aware of any integrated stock 

assessment models that have incorporated a Brownie-type estimator for the tagging 

data (although it would be relatively straightforward to do so).  Even so, there are 

important distinctions between these integrated stock assessment models and the 

combined tagging and catch model presented here.  Integrated stock assessment 

models attempt to estimate the entire age structure and history of a population since 

the beginning of exploitation.  The models are over-parameterized and various 

assumptions (particularly with respect to catchability and selectivity) are required to 

yield an identifiable set of parameters.  These can involve various “penalty” terms, 

and the results are frequently sensitive to alternative assumptions and to relative 

weights given to the penalty terms and data components of the objective function.  

Simply improving the precision of the data will not necessarily improve the reliability 

of the estimates or the structural features (e.g. penalty functions) of the model.  On the 
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other hand, the integrated tagging and catch model allows for all parameters to be 

estimated (with the exception of natural mortality at the older ages) without requiring 

any assumptions about selectivity and catchability.  As a result, the model can be used 

to test a suite of assumptions with regard to the parameters, such as whether fishing 

mortality can adequately be described using a selectivity function or whether certain 

parameters are common between ages or years.   Furthermore, the integrated tagging 

and catch model can be used to directly evaluate the trade-off in the amount of 

resources placed into the different data collection components.  Of course, a 

disadvantage is that estimates are only possible for cohorts and ages for which tagging 

data are available.  In this context, we see the integrated tagging and catch model as 

complementary to stock assessment models.   

 

Another feature of the integrated tagging and catch model is that it does not rely on 

the use of catch rate (CPUE) or standard effort data.  These data form an essential 

component of many stock assessments (i.e. those without fishery-independent surveys 

or tagging), but are also one of the more uncertain and unreliable components. 

Tagging can provide a useful alternative to catch rate and effort data, and are perhaps 

the only viable alternative in a number of fisheries where fishery-independent surveys 

are not possible.  Admittedly, tagging experiments involve a number of complications 

and assumptions of their own.  Ensuring that the tagging experiment (both the release 

and recovery components) are well designed and executed is critical in order to avoid 

situations that would render the data as uncertain and unreliable as catch rate data.  

However, unlike catch rate data, many of the uncertainties associated with tag-

recapture data can be minimized through well-designed and implemented tagging 

experiments and comprehensive analysis methods.  Moreover, the data themselves 

can be used to test for violations of the critical assumptions.  

 

Ultimately the tagging and catch likelihood components developed here may be 

incorporated into an integrated statistical stock assessment. However, an independent 

analysis of only the tagging and catch data is important because it provides estimates 

of critical parameters that are not confounded by the structural assumptions of the 

stock assessment models and also allows for testing of these assumptions.  

Furthermore, it provides a means to check for consistency between the tagging and 
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catch data themselves as well as between these data sets and other data sets used in 

the assessment.  To this end, it is desirable to carry out a variety of independent 

analyses using different data components in order to cross check model assumptions 

and consistency of data sets.  Such checks should be done as a standard part of any 

assessment in order to ensure the robustness of the conclusions.  If inconsistencies are 

found it is important to develop and incorporate a range of hypotheses and not simply 

“average” out the discrepancies.   

 

In summary, tagging experiments provide critical independent estimates of key 

population parameters that can be compared with estimates from other sources.  

Without being a panacea to the estimation problems facing stock assessments, tagging 

experiments are a potentially powerful tool that we think deserve more consideration 

within research programs for improving and augmenting traditional stock assessment 

approaches. 
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Appendix 5: An integrated Brownie and Petersen model with known reporting rates 

 

Table 1.  Expected number of returns at age from each release event in a multi-year 

tagging study involving a single cohort of fish. 

 

Expected number of returns from age class i Release 

age 

Number 

releases  1  2  3  4  5 

1 1N  1 1 1N u λ  
1 1 2 2N S u λ  1 1 2 3 3N S S u λ  1 1 2 3 4 4N S S S u λ  1 1 2 3 4 5 5N S S S S u λ  

2 2N   2 2 2N u λ  
2 2 3 3N S u λ  2 2 3 4 4N S S u λ  2 2 3 4 5 5N S S S u λ  

3 3N    3 3 3N u λ  3 3 4 4N S u λ  3 3 4 5 5N S S u λ  

 

 

 

 

Table 2.  Expected number of fish caught at age from a cohort of fish with age 1 

abundance of . 1P

 

Expected catch from age class i Size of 

cohort  1  2  3  4  5 

1P 1 1Pu  
1 1 2PS u  1 1 2 3PS S u  1 1 2 3 4PS S S u  1 1 2 3 4 5PS S S S u  
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Appendix 5: An integrated Brownie and Petersen model with known reporting rates 

 

Table 3.  Summary of parameter estimates obtained from 500 simulations using the 

model with tag data only and using the model with both tag and catch data.  Results 

obtained using 250 tag releases per year and, in the model including catch data, a 

coefficient of variation for the catch data of 0.1. 

 

 Parameter 1F  2F  3F  1M  2M  5
1 /10P  

Model True value 0.15 0.15 0.15 0.20 0.20 1.0 

Tag only Mean  0.1536 0.1533 0.1562 0.2242 0.2173 --  

 SE 0.0013 0.0012 0.0018 0.0073 0.0084 -- 

 CV  0.1919 0.1763 0.2572 0.7284 0.8630 -- 

Tag & catch Mean 0.1501 0.1512 0.1556 0.2121 0.2099 1.0092 
 SE 0.0008 0.0008 0.0018 0.0065 0.0077 0.0052 

 CV 0.1132 0.1241 0.2527 0.6806 0.8232 0.1147 
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Appendix 5: An integrated Brownie and Petersen model with known reporting rates 

 

Table 4.  Southern bluefin tuna tag-recapture, catch and reporting rate data used in the 

joint tagging and catch model. 

   

Number tagged fish recaptured Cohort Release 

year 

Release 

age 

Number 

releases 1991 1992 1993 1994 1995 1996 1997 

1990 1991 1 3299 20 40 46 23 13 5 4 

 1992 2 4646  88 159 101 33 12 8 

 1993 3 2777   66 78 32 17 15 

1991 1992 1 2144  1 21 56 37 11 7 

 1993 2 2937   60 68 67 21 11 

 1994 3 3640    77 145 30 40 

1992 1993 1 4898   2 41 201 91 58 

 1994 2 3158    29 167 76 52 

 1995 3 2629     55 103 74 

1993 1994 1 9003    4 110 401 364 

 1995 2 5899     83 395 363 

 1996 3 1511      115 201 

1994 1995 1 8585     0 87 622 

 1996 2 2518      77 339 

 1997 3 526       91 

 

Number fish caught Cohort 

1991 1992 1993 1994 1995 1996 1997 

1990 48111 34651 121008 72260 37713 24143 21962 

1991  7500 37418 117982 60187 38009 27739 

1992   403 9672 131524 79619 44177 

1993    164 29677 168672 72505 

1994     408 25129 203016 

 

Reporting rate Cohort 

1991 1992 1993 1994 1995 1996 1997 

1990 0.985 0.504 0.664 0.601 0.265 0.335 0.546 

1991  0.956 0.774 0.706 0.426 0.354 0.553 

1992   0.739 0.779 0.735 0.495 0.656 

1993    0.962 0.820 0.539 0.767 

1994     0.957 0.628 0.867 
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Appendix 5: An integrated Brownie and Petersen model with known reporting rates 

 

Table 5.  Parameter estimates obtained by applying the integrated model to southern 

bluefin tuna tagging and catch data from several cohorts. Standard error estimates are 

given in parentheses below the point estimates.  Note that the figures for the initial 

population size, , are in millions. Results were obtained using a coefficient of 

variation for the catch data of 0.3. 

1P

 

 1M  2M   

0.455 0.463   

(0.031) (0.039)   

Cohort 1F 2F  3F 4F 5F 6F 7F  1P

1990 0.014 0.046 0.100 0.111 0.169 0.113 0.129 4.013

 (0.004) (0.008) (0.009) (0.012) (0.032) (0.029) (0.040) (0.561)

1991 0.003 0.023 0.089 0.213 0.122 0.137  3.412

 (0.001) (0.004) (0.009) (0.023) (0.023) (0.033)  (0.472)

1992 0.000 0.019 0.173 0.205 0.207  2.259

 (0.000) (0.003) (0.013) (0.023) (0.036)  (0.327)

1993 0.000 0.030 0.300 0.448  1.714

 (0.000) (0.003) (0.021) (0.058)  (0.276)

1994 0.000 0.032 0.336  1.830

 (0.000) (0.004) (0.024)  (0.356)

Cohort *
1F *

2F  *
3F  

1990 0.008 0.047 0.046  

 (0.002) (0.005) (0.006)  

1991 0.001 0.034 0.038  

 (0.001) (0.004) (0.004)  

1992 0.001 0.015 0.036  

 (0.000) (0.003) (0.005)  

1993 0.001 0.022 0.187  

 (0.000) (0.002) (0.019)  

1994 0.000 0.061 0.283  

 (0.000) (0.007) (0.031)  
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Appendix 5: An integrated Brownie and Petersen model with known reporting rates 

 

Figure 1.  Effect of changing the number of tag releases and coefficient of variation 

(CV) of the catch data on the root mean squared error (RMSE) of the fishing mortality 

rate estimates (a-c), the mortality rate estimates (d-e), and the initial population size 

estimate (f).  Catch CV=NA refers to results obtained using tagging data only.  

Results obtained using true parameter values 1 2 3 0.15F F F= = = , , 

and ; 500 simulations for each scenario. 
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Appendix 5: An integrated Brownie and Petersen model with known reporting rates 

 

c) F3 
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Appendix 5: An integrated Brownie and Petersen model with known reporting rates 

 

e) M2 

Number of releases

R
M

S
E

500 1000 1500 2000

0.
0

0.
05

0.
10

0.
15

0.
20

Catch CV=NA
Catch CV=0.5
Catch CV=0.2
Catch CV=0.1
Catch CV=0.05

 
f) P1 (No estimate available for model with tagging data only.) 
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Appendix 5: An integrated Brownie and Petersen model with known reporting rates 

 

Figure 2.  Effect of changing the number of tag releases (N) on the biases of the 

parameter estimates: a)  using 3 release years and 3 recapture years; b) using 3 release 

years and 5 recapture years.  Results shown were obtained using the model with 

tagging data only using parameter values 1 2 3 0.15F F F= = = , 1 2 0.2M M= = , and 

; 500 simulations for each scenario. 1 100000P =
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Appendix 5: An integrated Brownie and Petersen model with known reporting rates 

 

Figure 3.  Effect of changing the number of tag releases and the coefficient of 

variation (CV) of the catch data on the bias of the initial population size ( ) estimate. 

Results obtained using the integrated tagging and catch model with parameter values 

, , and 

1P

1 2 3 0.15F F F= = = 1 2 0.2M M= = 1 100000P = ; 500 simulations for each 

scenario. 
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Appendix 5: An integrated Brownie and Petersen model with known reporting rates 

 

Figure 4.  Effect of varying a) the level of fishing mortality (F), and b) the level of 

natural mortality (M), on the coefficient of variation (CV) of the parameter estimates 

in the model with both tagging and catch data. Results obtained using 250 tag releases 

per year,  and 1 100000P = 0.1υ = ; 500 simulations for each scenario. 
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Appendix 5: An integrated Brownie and Petersen model with known reporting rates 

 

Figure 5.  Effect of assuming various values for the coefficient of variation (CV) of 

the catch data on the root mean squared error (RMSE) of the parameter estimates 

when the true CV value is 0.2.  Results obtained using integrated tagging and catch 

model with 250 tag releases per year and parameter values 1 2 3 0.15F F F= = = , 

, and ; 500 simulations for each scenario. 1 2 0.2M M= = 1 100000P =
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Appendix 5: An integrated Brownie and Petersen model with known reporting rates 

 

Figure 6.  Negative log-likelihood profile for the coefficient of variation (CV) of the 

catch data for southern bluefin tuna. 
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Appendix 7:  An integrated Brownie and Petersen model with unknown reporting rates 

Introduction 
In Appendix 5 we developed a maximum likelihood tag-recapture model that 
combines a traditional Brownie approach with a Petersen-type approach to provide 
joint estimates of both abundance and mortality rates. This was done in a fisheries 
context in which catch data were used to provide estimates of the number of animals 
examined for tags and the uncertainty in the catch data was incorporated explicitly. 
We demonstrated that the addition of catch data to the Brownie tagging model not 
only allows for estimation of abundance but also improves estimation of mortality 
rates.   

 
The integrated tagging and catch model developed in Appendix 5 assumes that all 
recaptured tags are reported.  When recapture information comes from commercial 
fisheries, we do not expect the reporting rates to be 100% nor do we expect them to be 
known; thus, they must be estimated.  Although tag-recapture data by themselves 
contain some information about reporting rates, the information is generally weak and 
insufficient to distinguish non-reporting from natural mortality and fishing mortality 
without making some fairly restrictive assumptions (see Hoenig et al. 1998).  
Auxiliary data for estimating reporting rates can be obtained through a variety of 
methods (Pollock et al. 2001 gives a brief review of the possible methods).  The data 
then needs to be incorporated into the tagging model.  For some methods, such as tag 
seeding experiments, the data for estimating reporting rate estimates can be 
considered independent of the tagging and related catch data.  In such cases, a 
likelihood can be developed for the data and simply multiplied to the tagging and 
catch likelihoods developed in Appendix 5  (we illustrate a model using tag seeding 
data in Appendix 12).  For other methods, such as placing observers on vessels, the 
reporting rate estimates use some of the tagging and/or related catch data.  In such 
cases, the likelihoods for the tagging and catch data need to be modified.   

 
In the current appendix, we expand the integrated tagging and catch model developed 
in Appendix 5 to incorporate the estimation of reporting rates for the situation in 
which observers monitor a portion of the catches.  We first describe the expanded 
model, detailing the modifications to the tag-recapture and catch likelihoods that are 
necessary to incorporate observer data.  We then apply the model to simulated data to 
investigate experimental design issues; in particular, we explore the effect of releasing 
more tags and increasing observer coverage on the precision and bias of parameter 
estimates.  Resources are usually limited so the question of whether to devote more 
resources to tagging fish or observing catches is important to address.  Finally, we 
conclude with some general discussions. 
 

Methods 

 Basic dynamic model 
Underlying the analysis of multi-year tagging experiments used here are the general 
population dynamic equations commonly used in fisheries.  The equations were 
presented in Appendix 5 but are repeated here for readability. For a cohort of animals 
of a given age, the number that survives to the next age and the number caught are 
given by: 
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 ( )1, 1 , , ,expi t i t i t i tP P F M+ + = − −  (1) 
 

 ((,
, , ,

, ,

1 expi t
i t i t i t i t

i t i t

F
C P F

F M
= − − −

+
)),M  (2) 

 
where  

Pi,t = the number of individuals of age i at time t 
Ci,t = the catch of individuals of age i at time t 
Fi,t = the instantaneous fishing mortality rate for individuals of age i at time t  
Mi,t = the instantaneous natural mortality rate for individuals of age i at time t. 

 
These equations are expressed in terms of instantaneous and competing fishing and 
natural mortality rates, and assume that deaths due to fishing and natural causes occur 
coincidently at constant rates throughout the year.  The model can easily be expressed 
in terms of alternative formulations, such as annual harvest rates from a pulse fishery 
(see Hoenig et al. 1998).   
 
In the context of a tagging experiment, the above equations provide the basis for 
predicting the expected number of tagged fish in the population and tag returns by age 
and year, assuming that the tagged fish constitute a representative sample of the 
population.  Analogous to equations (1) and (2), we have: 
  
 ( )1, 1 , , ,expi t i t i t i tN N F M+ + = − −  (3) 
 

 ((,
, , ,

, ,

1 expi t
i t i t i t i t

i t i t

F
R N F

F M
= − −

+
)),M−  (4) 

where  
Ni,t = the expected number of tagged individuals of age i at time t 
Ri,t = the expected number of tag returns from fish captured at age i at time t 
λ i,t = the tag reporting rate for fish captured at age i at time t 

 
As in Appendix 5, we will focus on a multi-year tagging experiment involving a 
single cohort.  For a given cohort, year and age provide equivalent information so we 
can simplify the notation by dropping the t subscript and expressing everything in 
terms of age i.  The generalization of the model to more than one cohort is 
straightforward. 

 Estimation Model with Reporting Rates Estimated From Observer Data 
We develop an estimation model for a multi-year tagging experiment in which fish 
from a single cohort have been tagged in consecutive years.  Fish are subsequently 
caught in a fishery and a percentage of the tags that are recaptured are returned.  
Observers monitor catches on a portion of the fishing vessels, and we assume that 
100% of recaptured tags are returned from the observed component of the fishery.  
We also assume that, on average, fishing mortality is the same for all vessels 
(observed and unobserved), so the relative return rate between observed catches and 
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unobserved catches provides an estimate of the reporting rate in the unobserved 
component.  Data required for the model are the numbers of fish caught by age in the 
observed and unobserved components and the number of tags returned by age in the 
observed and unobserved components. We develop a joint likelihood model for the 
tag-return and catch data that is analogous to the model in Appendix 5 except we 
modify the likelihoods to incorporate observer information for estimating reporting 
rates. 

 
Before proceeding we introduce the following notation: 
 
Table 1.  Data (to be inputted into the model). 

aN = the number of tag releases of age a fish from a particular cohort 

,
o
a iR = the number of tag returns of age i fish that were tagged at age a from the 

observed component of the fishery 
,

u
a iR = the number of tag returns of age i fish that were tagged at age a from the 

unobserved component of the fishery 
o
iC = the number of age i fish from the cohort of interest caught in the observed 

component of the fishery 
u
iC = the number of age i fish from the cohort of interest caught in the unobserved 

component of the fishery 
iδ = the proportion of age i fish from the cohort of interest in the observed component 

of the fishery 
iυ = the coefficient of variation of age i catch data 

 
Table 2.  Parameters (to be estimated in the model). 

iM = the instantaneous natural mortality rate for age i fish  

iF = the instantaneous fishing mortality rate for age i fish 

1P  = the population size at age 1 of the tagged cohort  

iλ = the tag reporting rate for fish captured at age i  
 
 
Now define: 
 

( )expi iS F= − − iM  

( )1i
i i

i i

F
u S

F M
= −

+
 

 
iS  represents the annual survival rate of age i fish and represents the annual 

exploitation rate of age i fish. 
iu

 
First consider the tag-recapture component of the model.  The probability of a tag 
being returned from the observed component of the fishery from an age i fish released 
at age a is: 
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 ,
1

i io
a i

i a i i

u i
p

S S u i
δ

δ −

a
a

=⎧
= ⎨ >⎩ L

 (5) 

 
 

 Similarly, the probability of a tag being returned from the unobserved component of 
the fishery from an age i fish released at age a is: 
 

 ( )
( ),

1

1
1

i i iu
a i

i a i i i

u i
p

S S u i
aδ λ

δ λ− a
− =⎧⎪= ⎨ − >⎪⎩ L

 (6) 

 
For tags released at a particular age, the numbers of returns at age from the observed 
component and from the unobserved component (as well as those not returned from 
either component) are expected to be multinomial with probabilities given in (5) and 
(6).  Thus, the likelihood equation for all the returns is:  

 

 ( ) ( ), , , ,
, , , ,1

o u o ua a ao u ua i a i
R a a a i

a i a

oN R R R RL p p p pγ • •
• •

≥

− −⎛ ⎞
= × − −⎜ ⎟

⎝ ⎠
∏ ∏ a i

)

 (7) 

 
where 

 ( ) (, , , ,

!
! !

a
o u o u

a a a a a i a i
i a

N
N R R R R

γ
• •

≥

=
− −

∏ ∏ !
 

 
Note that γ  is a constant that can be left out when maximizing the likelihood. 
 
Next consider the catch component of the model.  We assume that all fish caught in 
the observed component of the fishery are sampled for length and/or age, but that no 
fish from the unobserved component are sampled.  Thus, no age information is 
available for the unobserved catches, and only catch-at-age data from the observed 
component can be included in the model.  The probability of an age 1 fish from the 
cohort of interest subsequently being caught at age i in the observed component of the 
fishery is: 

 

 
1 1

1
1

i io
i

i i i

u i
S S u i
δ

π
δ −

=⎧
= ⎨ >⎩ L

 (8) 

 
If each fish has an equal probability of being caught and the numbers of fish caught at 
each age in the observed component of the fishery are known accurately, then the 
observer catch-at-age data would be random multinomial with each fish in the cohort 
having a probability of being captured at age i (given by equation (8)) or else not 
captured.  Usually, however, all fish do not have an equal probability of being caught 
because of non-homogeneous spatial and temporal distributions, as well as different 
size/age selectivities among vessels.  Furthermore, the numbers of fish caught at each 
age are usually not known precisely because the ages are estimated either from 
lengths or from direct aging of hard parts.  Following the approach in Appendix 5, we 
have chosen to model the error in the catch-at-age data as Gaussian; however, another 
distribution could be have been used if it was considered more appropriate.  
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Specifically, we assume that the observed catch of age i fish, , has a Gaussian 
distribution with coefficient of variation (CV) 

o
iC

iυ .  Thus, the likelihood for the 
observed catch data is: 

 

 
( )

*
2

( )1 1exp
2 ( )2 ( )

o o
i i

C oo
i i ii i

C E C
L

E CE C υπ υ

⎛ ⎞⎛ ⎞−⎜= − ⎜⎜ ⎟⎝ ⎠⎝ ⎠
∏ ⎟⎟  (9) 

 
where 1( )o o

i iE C Pπ= .   
 
The CV of the catch data will in part be determined by the level of observer coverage 
since this determines the level of sampling.  We would expect the CV to decrease as 
the level of observer coverage increases but the exact relationship will depend on the 
situation.    
 
The overall likelihood for the combined recapture and catch data can be obtained by 
multiplying likelihoods (7) and (9) together: 
 
 * *

RL L L*
C= ×  (10) 

 
In the current formulation with just one cohort, there is not enough information to 
estimate the proportion of fish of each age in the observed component of the fishery 
(i.e. the δ’s).  To do so we would need to know the total observer catch in each year as 
well as the total overall catch in each year.  Rather than bringing these data into the 
model, we assume that the total catches are known well enough that the δ’s can be 
treated as known without error.   
 
The reporting rates (λ’s) as well as the F, M and P parameters are all estimated by 
maximizing (10).  As explained in Appendix 5 for the model without reporting rates, 
in a tagging experiment with n consecutive release years, estimates can only be 
obtained for  of the natural mortality rate parameters (regardless of the number of 
recapture years).  Thus we assume that 

1n−
1i nM M −=  for i .  Furthermore, the catch 

CV parameter 
n≥

υ  is not estimated reliably so we assume that it is known without error.    
 

Simulation Results 

 Trade-off between number of releases and observer coverage  
When reporting rates are estimated from observer information, we can look at the 
trade-off between increasing the number of releases and increasing the level of 
observer coverage on the precision of the parameter estimates.  Increasing observer 
coverage will improve the parameter estimates by improving the reporting rate 
estimates and also by improving the precision of the catch-at-age data.  To best 
evaluate the trade-off between tag releases and observer coverage,  we assumed that 
the number of releases was the same for all release ages/years (i.e.  for all a) 
and that the level of observer coverage was the same over all recapture ages/years (i.e. 

aN N=

iδ δ=  for all i). 
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We carried out simulations in which we varied the number of releases ( ) from 250 
to 2000 and the level of observer coverage (

N
δ ) from 0.05 to 0.5.  For each 

combination of N and δ , we generated 500 simulated tag-recapture and 
corresponding catch data sets.  To generate the data, we assumed three consecutive 
release years and three recapture years.  We set the fishing mortality rate to be 0.15 
and the natural mortality rate to be 0.2 for all ages (i.e. Fi = 0.15 and Mi = 0.2 for all 
i), we set the reporting rate in the unobserved component to be 0.25 for all ages (i.e. λi 
= 0.25 for all i), and we set the population size at age 1 to be 100000 (i.e. P1 
=100000).  The coefficient of variation used to generate the catch data was 
determined by the level of observer coverage according to the hypothetical 
relationship 0.75* (0.05) δυ =  (illustrated in Figure 1).  Note that even with 100% 
observer coverage, the CV does not to go to zero because there will still be variability 
in the catch process and errors in the estimated ages.   Assuming this relationship, the 
levels of observer coverage that we considered of 0.05, 0.1, 0.2 and 0.5 correspond to 
catch CV’s of 0.38, 0.29, 0.20 and  0.09 respectively.  Although this relationship is 
rather arbitrary, it seemed reasonable for our investigative purposes.   
 
For each of the 500 simulated data sets, we obtained parameter estimates of F1, F2, F3, 
M1, M2, λ1, λ2, λ3 and P1 by maximizing the joint tagging and catch likelihood given 
in (10).  Recall that we are assuming υ  is known without error and that we constrain 
natural mortality to be the same for ages 2 and above (by necessity since we have only 
three release years).  We then looked at how the precision of the parameter estimates 
(as measured by the CV of the estimates) changed as the number of releases and level 
of observer coverage changed (Figure 2). 
 
First concentrate on the fishing mortality rate results (Figure 2a-c).  Increasing the 
number of releases increased the precision (i.e. decreased the CV) of the fishing 
mortality rate estimates; the improvement was greater at low release numbers and also 
for older ages (i.e. for F3 than F1).  This makes sense because if the number of tag 
releases is quite small then there would be relatively few tag returns from older fish, 
as many of the tagged fish would have died earlier due to natural mortality or fishing.  
Increasing the level of observer coverage also improved the precision of the fishing 
mortality rate estimates; the gain in improvement was largest at low levels of observer 
coverage (i.e. the F estimates improved more when observer coverage increased from 
0.05 to 0.1 than when it increased from 0.2 to 0.5).  There was also an interaction 
between the two variables in which the improvement in the F estimates that resulted 
from increasing the level of observer coverage diminished as the number of releases 
increased, and vice versa.  In general, larger gains in the precision of the F estimates 
could be achieved by increasing the level observer coverage from 0.05 to 0.5 than 
from increasing the number of releases from 250 to 2000, especially for the age 1 and 
2 estimates. 

 
Next consider the natural mortality rate estimates (Figure 2d-e).  The precision of the 
M1 and M2 estimates was significantly improved both by increasing the number of 
releases and by increasing the level of observer coverage. There was little interaction 
between the two variables, as indicated by the almost parallel lines in the figures.  
Contrary to the F estimates, larger gains in the precision of the M estimates could 
generally be achieved by increasing the number of releases from 250 to 2000 than 
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from increasing the level of observer coverage from 0.05 to 0.5.  Relative to the other 
parameters, M1 and M2 were estimated quite poorly – even in the best case scenario 
with 2000 releases and observer coverage of 0.5, the CV of both M estimates is over 
0.5, and in the worst case scenario with 250 releases and observer coverage of 0.05, 
the CV’s are over 1.0.  
 
For the population size parameter, P1, increasing the level of observer coverage 
resulted in fairly large increases in the precision of the parameter estimate (Figure 2f).  
Increasing the number of releases also improved the estimates of P1, especially at low 
release numbers, but the improvement was generally not as large as could be achieved 
by increasing the level of observer coverage.  There was also a small interaction 
between the two variables in which increasing the level of observer coverage 
improved the precision of the P1 estimate less as the number of releases increased, 
and vice versa.   
 
While the reporting rate estimates are not of primary interest, these results are still 
shown for completeness (Figure 2g-i).  The precision of the reporting rate estimates 
improved significantly as the number of releases increased, and the improvement was 
similar for all ages (i.e. for λ1 to λ3).   Increasing the level of observer coverage from 
0.05 to 0.2 also led to large improvements in the λ estimates, but the precision of the 
estimates actually started to degrade with further increases (from 0.2 to 0.5).  This is 
because the reporting rate is estimated not only from the number of tags returned from 
the observed component but also from the unobserved component.  When the level of 
observer coverage is high, the number of returns from the unobserved component will 
be small (especially if the reporting rate is low) and therefore more uncertain.   

 Effect of reporting rate on parameter estimates  
Throughout the trade-off simulations we assumed a constant reporting rate of 0.25.  
To explore the effect of changing the reporting rate on the results, we re-ran the full 
set of simulations using a constant reporting rate value of 0.75 (Figure 3).  As we 
would expect, all parameters were estimated more precisely when the reporting rate 
was high (0.75) than when it was low (0.25); this was true for any number of releases 
and level of observer coverage.  However, the magnitude of the improvement 
depended on the parameter, as well as the number of releases and level of observer 
coverage.  In particular: 
 
1) The precision of the F estimates improved more at lower release numbers and, as 

a result, became less affected by the number of releases, especially for ages 1 and 
2.  Also, the interaction between the number of releases and the level of observer 
coverage lessened.   

2) The precision of the M estimates improved more at lower levels of observer 
coverage and, as a result, became less affected by the level of observer coverage. 

3) The precision of the P1 estimate became almost unaffected by the number of 
releases due to large improvements at low release numbers. 

4) The largest improvements in precision were for the reporting rate estimates, and 
the improvements were greatest at low release numbers.   

5) The precision of all parameter estimates improved more at lower levels of 
observer coverage (as observer coverage decreases, the number of tagged fish 
caught in the unobserved component increases and the reporting rate has a larger 
effect).    
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Roughly speaking, increasing the reporting rate has a similar effect to increasing the 
number of releases because it results in more tag returns.  The number of extra tag 
returns (and thus the effective increase in the number of releases) depends on the level 
of observer coverage – if the observer coverage is close to zero, then tripling the 
reporting rate in the unobserved component will result in almost triple the total tag 
returns (i.e. effectively a tripling of the number of releases), whereas if the observer 
coverage is close to one, then tripling the reporting rate in the unobserved component 
will have almost no effect on the total tag returns (i.e. effectively no change in the 
number of releases).  Of course, it is not quite that simple because increasing the 
number of releases and increasing the reporting rate can lead to equivalent increases 
in the total number of returns, but the proportion of returns coming from the 
unobserved and observed components will not be affected the same (increasing the 
number of releases leads to proportional increases in tag returns in both components, 
whereas increasing the reporting rate only leads to increases in tag returns in the 
unobserved component).     

 Biases in parameter estimates 
Until now we have only considered the precision of the parameter estimates and how 
it can be affected by the number of releases and level of observer coverage.  In 
Appendix 5 we saw that biases were sometimes present in the parameter estimates 
obtained using the integrated tagging and catch model with known reporting rates; 
generally these biases were small and diminished as the number of releases increased.  
In the current appendix, the parameter estimates obtained using the integrated tagging 
and catch model extended to incorporate the estimation of reporting rates through 
observer data also contained biases in some situations.  As in Appendix 5, the biases 
decreased as the number of releases increased, but the results are more complex 
because the biases also depend on the level of observer coverage.  Furthermore, the 
nature and magnitude of the biases depended on the true reporting rate value 
(compare Figures 4 and 5).   
 
For a constant reporting rate of 0.25 (Figure 4), the estimates of F1 and F2 were 
unbiased, and so were the estimates of P1 (except with 250 releases).  For all other 
parameters (i.e. F3, M1, M2, λ1, λ2 and λ3), the estimates showed some significant 
biases when both the number of releases the level of observer coverage were low, but 
these biases diminished as either variable increased.  In particular, when the observer 
coverage was 0.5, the biases were less than 5% for all parameters with any number of 
releases over 500.  Conversely, when the number of releases was 1500 or more, the 
biases were less than 5% for all parameters regardless of the level of observer 
coverage (except for λ1 with observer coverage of 0.05).   
 
When the true reporting rate was increased from 0.25 to 0.75, the bias results changed 
in somewhat unpredictable ways (Figure 5).  We would expect the biases to decrease, 
and for some parameters this was true.  Namely, the λ estimates became unbiased, 
plus the biases in the M estimates mostly disappeared (note that these were the 
parameters that had the largest biases with a reporting rate of 0.25).  On the contrary, 
biases were introduced in the F1 and F2 estimates.  Although the biases were small 
(generally <10%) and diminished as either the number of releases or the level of 
observer coverage increased, they are not intuitive.  In addition, the P1 estimates 
became negatively biased at low levels of observer coverage.  In our simulations for 
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the model with known reporting rates in Appendix 5, we also obtained negative biases 
in the P1 estimates when the CV of the catch data was high (which corresponds to low 
levels of observer coverage in the current model).  A theoretical explanation for 
negative bias in P1 is outlined in Appendix 6 for a simpler model that uses only total 
releases, recaptures and catches; the bias stems from the fact that the variance of the 
Gaussian catch data is being modelled in terms of a CV, and therefore as a function of 
the mean.  It would seem reasonable that the arguments made in Appendix 6 could be 
extended to explain the negative biases in the P1 estimates obtained using the more 
complex multi-year tagging and catch model, both with known reporting rates 
(Appendix 5) and with estimated reporting rates (current appendix).  However, it is 
unclear why in the model with estimated reporting rates the biases were only seen 
when the true reporting rate was 0.75 and not when the true reporting rate was 0.25. 
 
In Appendix 5 we saw that the biases in the F estimates increased with age for the 
model with known reporting rates.  The same holds true for the model with reporting 
rates estimated from observer data.  We re-ran the tradeoff simulations using five 
recapture years instead of three, and again found that the biases in the F estimates 
increased exponentially with age and were non-trivial by age 5.  For example, using a 
true reporting rate of 0.25, the bias in F5 was over 60% when the number of releases 
was 250 and the observer coverage was 0.1 or less.  Although the bias diminished as 
the number of releases and level of observer coverage increased, it only became less 
than 5% when the number of releases was at least 1750 and the observer coverage 
was 0.5.   As discussed in Appendix 5, the biases appear to stem from the fact that 
natural mortality and fishing mortality are highly correlated and we are constraining 
natural mortality to be the same for ages 2 and above.  Recall that this constraint was 
required because with three release years, the model can only provide estimates of 
two natural mortality rate parameters, regardless of the number of recapture years.      
 
 

Discussion 
In the current appendix we have extended the integrated tagging and catch model 
developed in Appendix 5 to incorporate the estimation of reporting rates through 
observer data.  When tag returns come from a commercial fishery it is almost certain 
that reporting rates will not be 100% and unlikely that they will be known; therefore, 
it is important to have a method of estimating them and incorporating the estimates 
into the broader tag-recapture model.  Although several methods can be used for 
estimating reporting rates, the one we focussed on in this appendix is the use of 
observers in a portion of the fishery to monitor catches and ensure tag returns.     
 
Tagging and observer programs can be costly to run and resources available for doing 
so are usually limited.  Thus, we applied our model to simulated data to explore the 
effect of releasing more tags versus increasing observer coverage on the precision and 
bias of the parameter estimates.  In particular, we were interested in the estimates of 
natural mortality, fishing mortality, and abundance; reporting rate estimates are also 
provided by the model but these are usually of secondary interest.  We found that 
increasing the number of releases improved the precision of all parameters, especially 
the fishing mortality estimates at older ages and the natural mortality estimates.  The 
improvement tended to be greatest at low release numbers such that increasing the 
number of releases beyond 1000 resulted in only marginal gains for most parameters 
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(natural mortality rates being a bit of an exception).  Increasing the level of observer 
coverage also improved the precision of all parameters, especially the fishing 
mortality estimates and the population size estimate.  Although the improvement per 
unit increase in observer coverage was greatest at low levels (i.e. in going from 0.05 
to 0.1), substantial gains in precision were still achieved in all parameters (except 
reporting rates) by increasing observer coverage from 0.2 to 0.5.   The results 
depended on the reporting rate value assumed, with the precision of the parameter 
estimates being greater when the reporting rate was high; however, the above general 
observations held true regardless.  With regard to biases, any biases in the parameter 
estimates diminished as the number of releases increased and as the level of observer 
coverage increased.  However, biases were not generally an issue of concern except 
when both the number of releases was very low (500 or less) and the levels of 
observer coverage was low (0.1 or less).  Even then, in the case where the reporting 
rate was high, the biases with 250 releases and observer coverage of 0.05 were never 
more than 12% for any of the parameter estimates.  An unexpected observation 
regarding biases was that the age 1 and 2 fishing mortality estimates and the 
population size estimate showed almost no signs of biases in the simulations with a 
reporting rate of 0.25 but did show small biases in the simulations with a reporting 
rate of 0.75; the reason for this is unclear. 
   
Although we would expect our general observations to remain the same, the results 
will depend on the relationship assumed between the level of observer coverage and 
coefficient of variation of the catch data.  For example, if we had assumed a flatter 
relationship where increasing observer coverage did not reduce the variability in the 
catch data as much, then the level of observer coverage would have had less effect on 
the precision and bias of the parameter estimates.  As an extreme case, we could 
assume that the CV of the catch data is independent of the level of observer coverage, 
in which case increasing the level of observer coverage would only improve the 
parameter estimates through improving the reporting rate estimates; however, it is 
difficult to envisage a situation where this would be plausible.  A point to consider in 
determining an appropriate relationship is that it will depend on the nature of the 
species and the fishery.  If fish are not distributed homogeneously in space or time, or 
if there is large variability in the size/age selectivities of vessels, then the reduction in 
the catch variability from increasing the observer coverage will depend on how the 
increased coverage is achieved.  If all of the additional observer data comes from only 
a few vessels or cruises, then the gain will be much less than if it comes from a large 
number of vessels or cruises operating over a wide geographic and temporal range.   
 
The model we presented assumes complete mixing of tagged and untagged fish and 
that the fate of each tagged fish is independent of the fate of other tagged fish (i.e. 
every fish has an equal probability of being caught).  It also assumes no mortality due 
to tagging (either immediate or subsequent) and no tag shedding.  These assumptions 
are common to most tag-recapture models and the consequences of violating them as 
well as ways of testing for violations have been discussed at length in the literature 
(see Pollock et al. 2001 and references given therein).  As such, a full discussion will 
not be repeated here; however, we do note that if any of the assumptions are violated, 
then the estimates presented on the precision and bias of the parameter estimates 
would be overly optimistic.  Furthermore, increasing the number of releases may have 
more benefit than the results presented suggest.  For example, if substantial tag 
shedding or tagging mortality exists, then having larger numbers of tag releases would 
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be necessary to obtain reasonable return numbers.  Also, if incomplete mixing or non-
independence between fish due to, say, high school fidelity is an issue, then tagging 
more fish throughout a wider geographic and temporal range could be very beneficial.   
 
The simulation results presented were for a tagging experiment involving a single 
cohort.  In practice, it is likely that two or more cohorts would be tagged in a given 
year.  If any parameters are thought to be the same between cohorts, then tagging 
multiple cohorts can improve the information available for estimation and inference 
about not only these parameters, but the other model parameters as well.  We ran 
some multi-year, multi-cohort simulations allowing for the fishing mortality rates and 
reporting rates to differ by year and age but constraining the natural mortality rates to 
differ only by age, not year (and still differ only between age 1 and age 2 plus).  
Having additional cohorts resulted in large improvements in the precision of the 
natural mortality rate estimates and also in the fishing mortality rate estimates at older 
ages.  For example, we ran simulations using two and three cohorts, and for each 
cohort we assumed the same experimental design and parameter values as in our 
trade-off simulations for one cohort (i.e. 3 release years and 3 recapture years, Fi = 
0.15, Mi = 0.2, and λi = 0.25 for all ages i, and P1 =100000).  With 1000 releases for 
each age and cohort and with observer coverage of 0.1 in all years, we found that 
having data from two cohorts reduced the CV of the M1 and M2 estimates by 0.18 and 
0.20 respectively, and having data from three cohorts reduced the CV of both the M1 
and M2 estimates by 0.28.   For the F3 estimates, having either two or three cohorts 
reduced the CV by about 0.07-0.09.  There was very little difference in the precision 
of the F1, F2 and P1 estimates regardless of the number of cohorts.   
 
In summary, the simulation results presented may provide useful insight into design 
issues for those starting up new or modifying current tagging and observer programs 
for the purposes of estimating mortality and abundance.   
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Figure 1.  The assumed relationship between level of observer coverage and the 
coefficient of variation (CV) of the catch-at-age data for the longline fishery. 
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Figure 2.  Effect of changing the number of releases and level of observer coverage on 
the coefficient of variation (CV) of the fishing mortality rate estimates (a-c), 
mortality rate estimates (d-e), initial population size estimate (f), and reporting rate 
estimates (g-i). All results obtained using 500 simulations and a constant true 
reporting rate of 0.25. 
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Figure 3.  Effect of changing the number of releases and level of observer coverage on 
the coefficient of variation (CV) of the fishing mortality rate estimates (a-c), 
mortality rate estimates (d-e), initial population size estimate (f), and reporting rate 
estimates (g-i). All results obtained using 500 simulations and a constant true 
reporting rate of 0.75. 
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Figure 4.  Effect of changing the number of releases and level of observer coverage on 
the percent bias of the fishing mortality rate estimates (a-c), mortality rate estimates 
(d-e), initial population size estimate (f), and reporting rate estimates (g-i). All results 
obtained using 500 simulations and a constant true reporting rate of 0.25. 
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Figure 5.  Effect of changing the number of releases and level of observer coverage on 
the percent bias of the fishing mortality rate estimates (a-c), mortality rate estimates 
(d-e), initial population size estimate (f), and reporting rate estimates (g-i). All results 
obtained using 500 simulations and a constant true reporting rate of 0.75. 
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Introduction 

Brownie et al. (1985) developed a range of models for estimating survival rates for 

data from multi-year tagging studies. Among these are models that can provide year- 

and age-specific estimates of survival and exploitation rates.  One of the assumptions 

of Brownie models that allow for age-specific parameter estimates is that the age of 

individuals at the time of tagging is correctly determined, and therefore the number of 

individuals tagged at each age is known accurately.  Here age refers to age class, and 

thus errors in the age at release will be integers.  Brownie et al. (1985) did not 

concentrate on age-specific models because their models were developed for bird 

banding experiments, and age determination for most bird species is not possible.  

However, applications of Brownie models that allow for year- and age-specific 

estimates in a fishery context have been develop and applied  (e.g., Pollock et al. 

1991; Hoenig et al. 1998a, b; Polacheck et al. 1996, 1998).   

 

A number of approaches exist for estimating the age of fish. The most accurate and 

reliable are those based on counts of annuli in hard parts (e.g., scales, otoliths, 

vertebrae). However, not all species produce reliable annuli for aging, and validated 

methods for age estimation using hard parts do not exist for many species.  Moreover, 

age determination using hard parts whose collection requires injury or death to the 

fish, such as otoliths or vertebrae, can obviously not be directly used to estimate the 

age of fish to be tagged and released. The simplest and most easily implemented 

approach for estimating the age at release for tagged fish is to estimate age based on 

length and an estimated growth curve (which we refer to as “cohort slicing”). In fact, 

the tag-return data from the experiment can be used as the basis for estimating or 

updating the growth curve (although this would entail some delay before ages could 

be assigned to tagged fish). Cohort slicing has been the method used to age released 

fish in applications of the Brownie model to data from southern bluefin tuna (SBT) 

tagging experiments. However, aging errors will occur when cohort slicing from a 

length curve is used to assign ages to tagged fish.  

 

In all of the analyses presented in this report, and in most published analyses of multi-

year tagging data using Brownie-type models, the numbers of fish released at each 

age are treated as exact.  As such, when cohort slicing is used to estimate the age of 
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tagged fish, it is important to know whether aging errors, if ignored, would induce 

substantial errors into the population dynamics parameter estimates derived from 

tagging models.  

 

The goal of this appendix is to see how the accuracy of the mortality rate estimates 

obtained using a traditional Brownie model is affected when the ages at release 

contain errors that are not accounted for.  To do so, we simulated “true” release and 

recapture data with correct release ages and corresponding “estimated” release and 

recapture data using length-based release age estimates.  Note that the age of an 

animal at recapture is determined from the dates of release and recapture and the age 

at release; thus, an error in the age at release will be propagated through to the age at 

recapture (we assume the dates of release and recaptures are known quite accurately 

so that if the age at release is correct then the age at recapture is also correct).  We fit 

a Brownie model to both data sets to obtain age-specific estimates of natural and 

fishing mortality, repeated this multiple times and compared the parameter estimates.   

 

The results will depend on the number of fish whose ages are misclassified, which 

will depend on the shape and variability of the age-length relationship and the relative 

numbers of fish at each age being tagged.  The results will also depend on the true 

parameter values – if mortality rates are very similar across ages, then age 

misclassifications will not have serious consequences.  As such, we looked at results 

over a range of scenarios, including a scenario that is representative of the situation 

for SBT in order to get an idea of how much errors in aging are likely to have affected 

the parameter estimates for SBT presented in this report (Appendix 15 in particular, as 

well as the applications to SBT in Appendices 5 and 7). 

Methods 

 The model 

We present the model in terms of multi-year tag and recapture data for a single cohort 

of fish.  This is how the Brownie model is generally formulated, and in our 

simulations to investigate the consequences of aging errors we will apply the model to 

data from a single cohort.  Extension of the model to more cohorts is straightforward.  

Hoenig et al. (1998a) re-parameterized the traditional Brownie models in terms of 
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instantaneous rates of natural mortality and exploitation (i.e. fishing mortality in a 

fishery context) instead of rates of survival and tag recovery, and this is the 

parameterization used here, as well as throughout the report.  For simplicity, we 

assume that all recaptured tags are reported.  This assumption should not influence 

our general findings about how aging errors affect the mortality rate parameter 

estimates.   

 

For a single cohort of fish tagged at ages 1, 2 and 3, the expected numbers of returns 

at age corresponding to each release age are given by: 

 

Expected number of recaptures  Release 

year 

Release 

age 

Number 

releases Age 1 Age 2 Age 3 

1 1 1N
 1 1N u  

1 1 2N S u  1 1 2 3N S S u  
2 2 2N

 
 2 2N u  

2 2 3N S u  
3 3 3N

 
  3 3N u  

 

where 

Na = the number of tag releases of age a fish from a specific cohort 

( )expi iS F= − − iM  

( )1i
i i

i i

F
u S

F M
= −

+
 

Fi = the instantaneous fishing mortality rate for fish of age i 

Mi = the instantaneous natural mortality rate for fish of age i. 

 

Note that Si represents the annual survival rate of age i fish and ui represents the 

annual exploitation rate of age i fish.  These equations are the same as those presented 

in Appendix 5 except they do not include a multiplicative term for reporting rates, 

since we are assuming reporting rates to be one.  

 

If each tag recapture is assumed to be independent, then the numbers of recaptures at 

age (including those not recaptured) from releases at a particular age are expected to 

 A8-4



Appendix 8:  Consequences of aging errors in Brownie tag-recapture models 

be multinomial.  The likelihood function for the observed numbers of recaptures from 

all release ages is then the product of multinomials given by: 

 

  (1) ( ) ,,
, ,1 a aa i

R a i a
a i a

N RRL p p •

•
≥

−⎛ ⎞⎛ ⎞
= Κ × −⎜⎜ ⎟

⎝ ⎠⎝ ⎠
∏ ∏ ⎟

 
, ,

!
! ( )!

a

a a i a a
i a

N
R N R •

≥

Κ =
−∏∏

 

 

where a indexes release age, i indexes recapture age, Ra,i is the number of tags 

recaptured from age i fish released at age a, and pa,i is the probability of a tag being 

recaptured from an age i fish released at age a.  An expression for pa,i can be obtained 

from the expected number of returns in the above table divided by Ni.  Explicitly,  

 

 ,
1

i
a i

a i i

u i
p

S S u i−

a
a

=⎧
= ⎨ >⎩ L

 (2) 

 

Estimates of the fishing and natural mortality rate parameters (F’s and M’s ) can be 

obtained by maximizing the likelihood given in equation (1).  An estimate of fishing 

mortality is obtained for each age of recapture, but the information for estimating 

natural mortality comes from the differential between the expected returns at age  

of fish released at age i and those released at age 

1i +

1i + .  Thus, in an experiment with n 

consecutive release years, estimates can only be obtained for 1n−  of the natural 

mortality rate parameters (regardless of the number of recapture years).  We address 

this issue by assuming that 1i nM M −=  for , but other constraints could be used, 

such as imposing a parametric relationship between natural mortality and age. 

i n≥

Simulation steps 

We simulated data from a tagging experiment with 3 consecutive years of releases and 

recaptures.  We assumed that fish of true ages 1, 2 and 3 are tagged in each year, and 

that the number of fish tagged at each age in a given year is proportional to the age 
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distribution of the population in that year.1  Therefore, to determine the numbers of 

fish tagged at each age in each year we need to know the numbers of fish of ages 1, 2 

and 3 in the population in each of years 1, 2 and 3.  This involves a total of 5 cohorts, 

namely fish born in years , , 0, 1 and 2, which we will refer to as cohorts , 

, 0, 1 and 2.  Note that only cohort 0 is tagged at all 3 ages; this is the cohort 

assumed to be targeted for the tagging experiment and the one that we will 

concentrate on for modelling purposes. However, to keep track of the number of 

tagged fish incorrectly classified as belonging to, or not belonging to, this cohort 

based on their age estimates, we needed to generate release data for all fish tagged in 

each year. 

2− 1− 2−

1−

 

To generate numbers of age 1, 2 and 3 fish in the population for 3 consecutive years 

we used the basic population dynamics equation 

 

( )1, 1 , , ,expa t a t a t a tP P F M+ + = − −  

 

where   

Pa,t = the number of individuals of age i in year t; 

Fa,t = the instantaneous fishing mortality rate for individuals of age a in year t;  

Ma,t = the instantaneous natural mortality rate for individuals of age a in year t. 

 

Given the size of each of the 5 cohorts at age 1 (i.e., P1,t for years t = , 0, 1, 2, 3) 

and the age- and year-specific fishing and natural mortality rates for ages 1 to 3 and 

years  to 2 (i.e., F

1−

1− a,t  and Ma,t for a = 1, 2, 3 and t = 1− , 0, 1, 2) we can calculate the 

population size for the subsequent ages and years of interest; that is, we can calculate 

Pa,t  for ages 1, 2 and 3 in years 1, 2 and 3. 

 

                                                 
1 Assuming that only fish of true ages 1, 2 and 3 are tagged is a somewhat artificial example because it 
assumes that only these age-classes are available for tagging (which would contradict the complete 
mixing assumption of most tag-recapture models).  A more realistic approach may have been to assume 
that fish of all ages are tagged in proportion to abundance.  We took the former approach because we 
found it more straightforward to simulate the true and estimated data sets.  If the latter approach had 
been taken, we would expect the biases due to aging errors to be slightly smaller than those presented; 
however, we would not expect the general results and conclusions to be greatly affected. 
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In each year of tagging (t = 1, 2, 3), we assumed that a total of NT fish belonging to 

ages 1, 2 and 3 were tagged.  For a given year t, the numbers of fish tagged at each 

age (denoted by N1,t, N2,t, and N3,t) were determined using a random multinomial 

distribution with probabilities equal to the proportions of each age in the population.  

That is,  

 

(N1,t, N2,t, N3,t) ~ Multinomial( NT,  p=(p1, p2, p3)) 

 

where pa = Pa,t /( P1,t + P2,t + P3,t).  Thus, we generated Na,t  for ages 1, 2 and 3  in 

years 1, 2 and 3. 

 

Next we generated age and length data for all fish released in each year because we 

wanted to keep track of how many were incorrectly classified as belonging to, or not 

belonging to, the cohort of interest based on their length-based age estimates.  To 

generate a length, l, for a fish of age a, we assumed that fish growth can be described 

by a von Bertalanffy (VB) equation with asymptotic length parameter , growth rate 

parameter k, and age at length 0 of . We allowed for individual variability in 

growth by allowing the asymptotic length parameter to vary between fish; in 

particular, we modelled  as a random normal variate with mean 

L∞

0a

L∞ µ∞  and variance 

2σ∞ .  We also allowed for additional model error and/or measurement error by 

including an additive random normal error component with mean 0 and variance 2
εσ .  

Specifically, we assumed  

 

( ) ( )( )( )01 expl a L k a a ε∞= − − − +  

 

where ~ N(L∞ µ∞ , 2σ∞ ) and ε ~ N( ,0 2
εσ ).   

 

Thus, we generated a length for a fish of age a using a normal distribution with mean 

( ) ( )( )( )0| 1 expE l a k a aµ∞= − − −  

and variance 
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 ( ) ( )( )( )2 2 2
0| 1 expV l a k a a εσ σ∞= − − − + . 

 

In a tagging experiment, we would not know the true age of a fish at the time of 

tagging.  Instead, we would estimate the fish’s age based on its length and a given 

age-length relationship.  If the mean age-length relationship for the animals being 

tagged is known reasonably accurately (i.e., in our case, if we know fish grow 

according to a VB curve and we know the true parameter values for µ∞ , k and ), 

then we can use this relationship to calculate length cut-offs for fish of a particular 

age.  For example, we can calculate the mean length at ages 

0a

0.5a −  and , and 

any fish whose measured length falls within this range will be estimated to be age a.   

0.5a +

 

Using this method, we estimated an age for each fish in our simulations based on its 

length.  We then tallied the number of fish tagged in year t of true age a that were 

estimated to be age ; we denote these by .  Note that the true number of age a 

releases in year t is , and that the estimated number of age a releases 

in year t is 

â ˆ, ,a a tN

ˆ, ˆa t a a taN N= ∑ , ,

,ˆ, ,
ˆ

a t a a ta
N N= ∑  

 

The probability of a fish that was released at age a in year t being recaptured in year y 

(at age i a ) is given by:  y t= + −

 

,
, ,

, 1, 1 1, 1 ,

i t
a t y

a t a t i y i y

u y
p

S S S u y t+ + − −

t=⎧
= ⎨ >⎩ L

 

 

where 

( ), ,expr s r s r sS F= − − ,M  

( ),
, ,

, ,

1r s
r s r s

r s r s

F
u S

F M
= −

+
. 

 

Consider the releases in year t at true age a, .  The numbers of recaptures at age 

(including those not recaptured) corresponding to these releases are assumed to be 

multinomial with probabilities given by the expression above.  Furthermore, if we 

,a tN
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assume that the probability of recapture (i.e. fishing mortality and natural mortality) 

depends on the fish’s true age and not on its estimated age, then the recaptures 

corresponding to releases in year t at true age a and estimated age , , will also 

be multinomial with the same probabilities.  Thus, for our simulations, we generated 

multinomial recaptures corresponding to each set of releases .  Let  

denote the number of recaptures in year y of fish released at true age a but estimated 

release age  in year t.  For our simulations, we are only interested in recaptures from 

the same years we have releases.  Thus, for each set of releases in year 1 we need to 

generate recapture data for years 1, 2 and 3 (i.e., , , ); for each set of 

releases in year 2 we need to generate recapture numbers for years 2 and 3 

(i.e., , ); and for each set of releases in year 3 we only need to generate 

recapture numbers for year 3 (i.e., .  For example, for year 1 we generated 

recaptures corresponding to releases  according to:    

â ˆ, ,a a tN

ˆ, ,a a tN ˆ, , ,a a t yR

â

ˆ, ,1,1a aR ˆ, ,1,2a aR ˆ, ,1,3a aR

ˆ, ,2,2a aR ˆ, ,2,3a aR

ˆ, ,3,3 )a aR

ˆ, ,1a aN

( , , ,ˆ, ,1,1a aR ˆ, ,1,2a aR ˆ, ,1,3a aR
2

ˆ ˆ, ,1 , ,1,1
0

a a a a j
j

N R +
=

−∑ ) ~ Multinomial( , p ) ˆ, ,1a aN

where p = ( , , ,,1,1ap ,1,2ap ,1,3ap 2
,1,10

1 a jj
p +=

−∑ ).   

 

Note that to generate all of the necessary recapture numbers for our simulations we 

needed to know natural and fishing mortality rates for ages 1 to 3 in year 1, for ages 1 

to 4 in year 2, and for ages 1 to 5 in year 3 (i.e., ,1aF  and ,1aM  for a = 1,...,3; ,2aF  and 

,2aM  for a = 1,...,4; ,3aF  and ,3aM  for a = 1,...,5). 

 

Using these recapture numbers, we calculated the number of recaptures in year y of 

fish released at true age a in year t as ˆ, , , , ,ˆa t y a a t yaR R= ∑ (i.e., the “true” recapture 

data), and we calculated the number of recaptures in year y from fish released at 

estimated age a in year t is ˆ, , , , ,
ˆ

a t y a a t yaR R= ∑  (i.e., the “estimated” recapture data).  

 

For input into the Brownie model, we are only interested in the “true” and “estimated” 

data for cohort 0.   In particular, we are interested in the releases at true ages 1, 2 and 
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3  in years 1, 2 and 3, respectively, and the recaptures in years 1, 2 and 3 

corresponding to these releases.   These data can be summarized as follows:  

 

True number of recaptures Release 

year 

True release 

age 

True number 

of releases Age 1 Age 2 Age 3 

1 1 1,1N  1,1,1R  1,1,2R  1,1,3R  

2 2 2,2N   2,2,2R  2,2,3R  

3 3 3,3N    3,3,3R  

 

Similarly, we are interested in the releases at estimated ages 1, 2 and 3 in years 1, 2 

and 3, respectively, and the recaptures in years 1, 2 and 3 corresponding to these 

releases.   These data can be summarized as follows: 

 

Estimated number of 

recaptures 

Release  

Year 

Estimated  

release  

age 

Estimated  

number of  

releases Age 1 Age 2 Age 3 

1 1 
1,1N̂  1,1,1R̂  1,1,2R̂  1,1,3R̂  

2 2 
2,2N̂   

2,2,2R̂  2,2,3R̂  

3 3 
3,3N̂    

3,3,3R̂  

 

Note that age and year are redundant for a single cohort, so we can drop the year 

subscript on  and  and refer only to  and ; similarly, we can drop the 

year subscript on  and 

,a tN , ,a t yR aN ,a yR

,
ˆ

a tN , ,
ˆ

a t yR .  The data then appears analogous to the way it was 

presented in the previous section describing the Brownie model.    

 

We applied the Brownie model to each of the above data sets to obtain estimates of 

fishing and natural mortality for both the true and the estimated data sets.  In 

particular, by maximizing the likelihood given in equation (1), we obtained estimates 

of 1,1F , 2,2F , 3,3F , 1,1M  and 2,2M  for each data set.  Again, year and age are redundant 
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for a single cohort, so we drop the year subscript and simply refer to these as , , 

, 

1F 2F

3F 1M  and 2M .   

 

A number of different scenarios (i.e., sets of parameter values) were used to generate 

the true and estimated release and recapture data (see next section).  For each 

scenario, we repeated the above steps 100 times and compared the parameter 

estimates obtained using the true age data with those obtained using the estimated age 

data. 

 

Scenarios

The effect of aging errors on the mortality rate estimates will depend on the number of 

fish whose ages are misclassified.  This will depend largely on (1) the shape of the 

age-length relationship, because the steeper the growth curve (i.e., the greater the rate 

of growth) the less separation between mean lengths of fish of adjacent ages, and (2) 

the variability in growth (i.e., the greater the variability in growth the greater the 

overlap in length distributions of fish of adjacent ages).  Increasing the variability in 

growth should have a similar effect on the results as decreasing the steepness of the 

curve, so we chose to keep the mean age-length relationship the same throughout all 

our scenarios and just change the amount of variability in the relationship.  In 

particular, throughout all our simulations we used 180µ∞ = , 0.2k =  and  

for the age-length relationship; these values roughly describe growth for SBT in the 

1980s and 1990s (Laslett et al. 2002; Polacheck et al. 2004).  There are two 

components contributing to variability in growth: 1) variability in asymptotic length 

( ) between fish; 2) additional model and measurement error.   The first component, 

individual variability in , results in variability in length increasing with age; 

however, this effect is minimal at the young ages we are considering (ages 1 to 3), so 

we chose to keep the asymptotic length variance parameter the same throughout our 

simulations and only vary the parameter for the additional model/measurement error.  

In particular, we used 

0 0.5a = −

L∞

L∞

10σ∞ =  and varied εσ .    

 

The number of fish misclassified as belonging to each age class in a year will depend 

not only on the age-length relationship, but also on the relative number of fish of ages 
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1, 2 and 3 being tagged in a year.  That is, it depends on the relative number of fish of 

ages 1, 2 and 3 in the population in a year, since we assumed that tagging occurs in 

proportion to abundance.  If a particularly large cohort comes through the population, 

then there will be a greater number of fish from this cohort in the population in a 

given year than from other cohorts, and therefore more fish from this cohort will be 

incorrectly classified as belonging to other cohorts as vice versa.  On the contrary, if a 

particularly small cohort comes through, then there will be fewer fish from this cohort 

in the population in a given year than from other cohorts, and therefore fewer fish 

from this cohort will be incorrectly classified as belonging to other cohorts as vice 

versa.  We considered scenarios in which all cohorts being tagged: had the same 

initial (age 1) size; had the same initial size except for one larger cohort (the cohort 

being modelled; had the same initial size except for one smaller cohort (again, the 

cohort being modelled).  We also considered a scenario intended to be representative 

of SBT for which the size of cohorts decreased over time.  We kept the absolute 

number of fish tagged in each year the same throughout our simulations, namely 

.  Although the absolute number of fish tagged will affect the accuracy of 

the parameter estimates, the effect should be similar for the estimates made using the 

true release-recapture data and those made using the estimated data.   

3000TN =

 

Finally, the effect of aging errors on the mortality rate estimates will depend on the 

true mortality rate values – if mortality rates are the same across ages, then age 

misclassifications should not cause biases in the mortality rate estimates (the 

uncertainty in the estimates could be affected).  We would expect biases in the 

estimated mortality rates to increase as the difference between the true mortality rates 

at adjacent ages increases.  In order to reduce the number of possible scenarios, we 

assumed that natural mortality was constant across ages and years, and that fishing 

mortality varied with age but not year.  We considered scenarios in which fishing 

mortality increased from age 1 to 3, and those in which it decreased from age 1 to 3.  

We also included a scenario with mortality rates representative of those for SBT, as 

described below.    

 

Table 1 specifies the parameter values used in the 19 scenarios we considered.  

Scenarios 1 to 9 all use the same fishing mortality vector, which increases from age 1 
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to age 3; the initial (age 1) cohort sizes and the variance in the age-length relationship 

vary.  Scenarios 10 to 18 are the same as scenarios 1 to 9 except that fishing mortality 

decreases from age 1 to age 3.  Scenario 19 is intended to be representative of SBT; 

the initial cohort sizes and age-specific fishing mortality rates are roughly based on 

estimates from the application to SBT in Appendix 5; the variance parameter for the 

model/measurement error in the age-length relationship is based on the estimate of the 

model/measurement error variance parameter for scientist-measured fish presented in 

Laslett et al. (2002).  

 

Figures 1 to 5 illustrate the amount of overlap in the length-frequency distributions of 

age 1 to 3 fish in the three years of tagging corresponding to a selection of scenarios 

(because only fish of ages 1 to 3 are tagged, these are the only age-classes that need to 

be shown).  The greater the overlap, the greater the number of age misclassifications 

that will be made based on length.  The dashed vertical lines delimit the length cut-

offs used to classify fish as age 1, 2 or 3 (e.g., any fish whose length falls between the 

first two lines will be estimated as age 1).  Figures 1 to 3 correspond to scenarios 4 to 

6. In these three scenarios all cohorts start out the same size at age 1, but the amount 

of variability in the age-length relationship, and therefore the amount of overlap in 

lengths of fish of adjacent ages, ranges from low in scenario 4 to high in scenario 6.  

Figures 4 and 5 correspond to scenarios 2 and 8, respectively, and illustrate the effect 

on the length-frequency distributions of having a particularly small or large cohort 

come through.  They both have the same amount of variability in the age-length 

relationship as scenario 5 (Figure 3), but in scenario 2 the cohort of interest for 

modelling (i.e., the one tagged at age 1 in year 1, age 2 in year 2, and age 3 in year 3) 

is substantially smaller than the other cohorts, and in scenario 8 the cohort of interest 

is substantially larger than the other cohorts.   

 

The length-frequency distributions look similar for scenarios 10 to 18 as for scenarios 

1 to 9, and therefore are not shown.  The two sets of scenarios are analogous except 

that in scenarios 1 to 9 fishing mortality increases with age, whereas in scenarios 10 to 

18 it decreases with age.  If we had chosen mortality rates that differed more 

dramatically in magnitude, then differences between the length-frequency 

distributions would become more noticeable.   
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Results 

Figure 6 shows the average parameter estimates for scenarios 1 to 9.  Generally 

speaking, when the size of the cohort being modelled is small relative to the other 

cohorts and/or the variance in the age-length relationship is high, negative biases 

emerge in the 1M , 2M  and  estimates obtained using the estimated release-

recapture data.  However, only scenarios 2 and 3 have any biases over 20% (Table 2).  

3F

 

Figure 7 shows the average parameter estimates for scenarios 10 to 18, which are the 

same as scenarios 1 to 9 except the fishing mortality rates decrease with age instead of 

increasing.  Again, the general pattern is that when the size of the cohort being 

modelled is small relative to the other cohorts and/or the variance in the age-length 

relationship is high, biases emerge in the 1M , 2M  and  estimates obtained using 

the estimated release-recapture data; however, the biases are now positive instead of 

negative and also tend to be larger in magnitude.  For example, scenarios 10, 11, 12, 

14 and 15 all have biases of over 20%, with scenarios 11 and 12 having biases of over 

80% (Table 2).   

3F

 

The most serious biases occur in scenarios where the size of the cohort being 

modelled is small compared to other cohorts.  This is because cohorts adjacent to the 

one being modelled have relatively large numbers of fish and therefore the number of 

fish misclassified from these cohorts as belonging to the cohort of interest can be 

large and can form a significant fraction of the data for this small cohort (see Figure 

4).  On the other hand, in all of the scenarios where the size of the cohort being 

modelled is large compared to other cohorts, the parameter estimates obtained using 

the estimated release-recapture data are unbiased.  This is because relatively few fish 

from adjacent cohorts will be misclassified as belonging to the cohort of interest even 

when the variability in length at age is large (see Figure 5).  Even though a large 

number of fish from the cohort of interest may be misclassified as belonging to 

another cohort, errors in this direction are not serious because they just mean some 

‘correct’ data will be omitted from the model. This will increase the variance of the 

parameter estimates compared to if all fish had been correctly aged but it will not 

introduce biases.   
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There are no large biases in any of the parameter estimates obtained using the true 

release-recapture data in scenarios 1 to 18 (Figures 6 and 7).  This is an important 

observation because, as shown in Appendix 5 and as will be seen in scenario 19, 

mortality rates estimated from Brownie models can have inherent biases. We wanted 

to be sure that the biases observed using the estimated data were in fact due to errors 

in age classifications and not estimation biases.    

 

The results for scenario 19, which is the scenario intended to be representative of 

SBT, are presented in Figure 8 and the last row of Table 2.  There is evidence of a 

positive bias in the 1M  estimate and a negative bias in the 2M  estimate using not 

only the estimated release-recapture data but also the true data (refer to previous 

paragraph).  The biases in the estimates obtained using the estimated data are larger 

than those using the true data; however, they are not so much larger that aging errors 

appear to be of great concern (for 1M , the bias is 13.1% using estimated data versus 

7.2% using true data; for 2M , the bias is -10.3% using estimated data versus -3.5% 

using true data).    Note that the percent biases for  and  are fairly large (Table 

2), but this is a consequence of the true values being so small; the absolute biases are 

minimal (Figure 8). 

1F 2F

 

Only the bias of the parameter estimates has been discussed so far, not the variance.  

The variance of the parameter estimates is influenced mainly by the sample size (i.e. 

the number of releases).  We have seen that in scenarios where the cohort being 

modelled is small, a large number of fish can be misclassified as belonging to this 

cohort; in such scenarios, the variance can be smaller for the estimates obtained using 

the estimated release-recapture data than for those obtained using the true data (but 

the biases of the parameter estimates tend to be large).  Generally, however, the 

variances of the parameter estimates are very similar whether the estimates were 

obtained using true or estimated data.   

Discussion 

Our simulation results suggest that in many situations the effects of aging errors on 

the mortality rate estimates obtained from a Brownie model are minimal.  However, 

this is not always the case – in scenarios where the size of the cohort being modelled 

 A8-15



Appendix 8:  Consequences of aging errors in Brownie tag-recapture models 

is much smaller than adjacent cohorts and where the variability in lengths at age is 

large, some of the estimates (namely, fishing mortality at older ages and natural 

mortality) have large biases. It should be noted that in these scenarios, the differential 

in the size of adjacent cohorts is much greater than has been estimated for successive 

cohorts of SBT, and the variability in growth is also greater than estimated for SBT.  

The true mortality rates also affect the results; we saw larger biases in the parameter 

estimates when fishing mortality decreased with age than when it increased.   In 

situations where mortality rates are the same at all ages, aging errors have no 

consequences, as we expected (this was confirmed using simulations but the results 

were not shown).  

 

In our investigation, we only changed the age-length relationship by changing the 

variability in lengths at age, but similar results could have been achieved by changing 

the rate of growth.  For example, consider scenario 4, which has growth parameters 

 and 0.2k = 9εσ = ; if we change these to 0.05k =  and 3εσ =  and keep all other 

parameter values the same, then the length-frequency distributions and degree of 

overlap between lengths at ages look very similar (compare Figures 3 and 9).   

 

The simulation results presented may underestimate the biases introduced by making 

errors in the ages of fish at release because the same mean growth curve used to 

generate lengths for fish was used subsequently to estimate age from length.  In 

reality, the age-length relationship being used to estimate age from length will itself 

be estimated from data and therefore will not be such an exact description of the true 

age-length relationship for the fish being tagged.  This will especially be true if the 

data used to estimate the age-length relationship are not representative of the fish 

being tagged.  For example, the data may have been collected in previous years or 

from a different geographic location than tagging, and growth may vary over time and 

space.  Furthermore, the fish being tagged may represent a particularly fast or slow 

growing subset of the population.  Ideally, a sample of fish should be taken at the 

same time as tagging and the age-length relationship estimated from these data, either 

using length-frequency modal analyses if adequate data exists, or else using direct age 

and length data from hard-parts analyses  (e.g. for SBT, otoliths would be removed 

from the sample and used to age the fish).  We are assuming that age cannot be 
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determined using scales; otherwise a direct age estimate could be obtained for each 

fish being tagged and an age-length relationship would not be necessary.    

 

For simplicity, we always used integer ages to generate lengths for fish being tagged.  

Then, for estimating the age-class of a fish, we calculated length cut-offs using the 

mean length at ages  and 0.5a − 0.5a + , with integer values for a.   In doing so, we 

are assuming that tagging occurs around the same time as birth/spawning.  In a true 

tagging experiment, fish may be tagged at any time of year and the length cut-offs 

should be adjusted accordingly based on the relative time of tagging to spawning; 

specifically, the length cut-offs should be calculated using the approximate decimal 

age of fish at the time of tagging.  For example, if the average time of spawning 

occurs in January and fish are tagged in July, then fish are already half a year older at 

the time of tagging and length cut-offs should be calculated using  a = 0.5, 1.5, 2.5, ...  

rather than a = 0, 1, 2, 3,... .  

 

A key assumption in our investigation is that fishing and natural mortality are age-

based, so that if fishing and natural mortality at age 1 are  and 1F 1M , respectively, 

then fish that we estimated to be age 2 but were truly age 1 will have experienced 

mortality of  and 1F 1M , but we will have assumed that they experienced mortality of 

 and 2F 2M .  Of course, if fishing mortality is truly length-based instead of age-based 

then the underlying model is incorrect and interpretation of the age-specific mortality 

rate parameters becomes complicated.   

 

Whether or not aging errors in a Brownie model are of concern depends on the 

situation and the researcher’s purpose.   Fortunately, in the situation most 

representative of SBT, the biases in the parameter estimates that resulted from using 

estimated release ages were not so large as to cause great concern.  This is an 

important finding because it means we do not expect the results presented throughout 

this report, and especially in Appendix 12, from applying Brownie models (and 

variations thereof) to SBT data to be unduly biased due to treating the estimated 

release ages as precise.  
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In cases where there is potential for aging errors from cohort slicing to introduce 

substantial biases, an alternative to relying on cohort slicing for aging of tagged fish 

should be considered in the experimental design phase. These would include: 

1. Collection of a scale from each tagged fish if scales can be used to reliably 

estimate age for the species being tagged; 

2. Collection of otoliths from a sample of fish during tagging operations in order 

to be able to produce an age-length key that could be directly applied to the 

tagged fish; 

3. Incorporation of aging error directly into the estimation framework. 

 

It should be noted that use of an age-length key would still necessitate the 

incorporation of aging errors directly into the estimation framework. This is because 

an age-length key does not provide a unique estimate of the age for each tagged fish 

but only a probability distribution for its age given its length. Incorporation of aging 

errors directly into the estimation framework is conceptually straightforward. It would 

involve specifying a likelihood function for the age of each tagged fish given its 

length. Then, conditional on its age of release, the other likelihood functions 

developed in this report can be used to estimate the conditional likelihood of 

recapturing a tagged fish. These conditional likelihoods would then need to be 

integrated over the possible ages of releases to provide an overall unconditional 

likelihood. While conceptually straightforward, it would be computationally complex 

and time consuming. Thus, in any specific application it is important to determine 

whether aging errors are likely to be important early in the design phase of the 

experiment. 
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Table 1.  Parameter values used for generating data in each of the scenarios considered. In all scenarios 180µ∞ = , 0.2k = , 0 0.5a = − , 10σ∞ = , 

, natural mortality is constant across ages and years, and fishing mortality is constant across years.  3000TN =

  Scenario

Parameter 1 2 3 4 5 6 7 8 9 10 11 2 3 4 15 16 7 8 91 1 1 1 1 1

εσ  3 6 9 3 6 9 3 6 9 3 6 9 3 6 9 3 6 9 3

1, 1P −
5( 10 )× 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

× 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5

×    1 1 5 5 5 .2 .2 1 1 1 5 5 5 0

× 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5

× 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

4

1,0P 5( 10 )  3

1,1P 5( 10 )  0.2 0.2 0.2 1 0 0 0.2 3

1,2P 5( 10 )  2

1,3P 5( 10 )  2

1,tF  0.1 0.1    0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.01

2,tF  0.2 0.2    0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.05

3,tF  0.3 0.3    0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2

4,tF  0.3 0.3    0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2

5,tF  0.3 0.3    0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2

,a tM  0.2 0.2    0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
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Table 2.  Percent bias in parameter estimates obtained using estimated release-

recapture data (100 simulations per scenario).  The true parameter values are given in 

Table 1. 

 

Scenario 1F  2F  3F 1M 2M

1 2.8 5.0 -0.8 10.7 -13.0

2 12.1 2.4 -12.6 -14.5 -29.3

3 25.1 -2.5 -21.9 -52.6 -33.8

4 1.5 1.4 -0.5 5.5 -4.2

5 4.0 0.4 -4.6 -0.5 -10.8

6 7.5 -1.2 -9.1 -13.6 -14.8

7 0.1 0.7 1.1 -0.1 4.3

8 0.9 0.5 -0.3 -0.1 0.1

9 1.8 0.3 -1.6 -2.8 -1.3

10 -3.7 1.0 22.9 -13.0 52.9

11 -3.9 6.3 58.4 23.3 92.0

12 -3.2 12.5 79.7 84.7 82.2

13 -0.4 1.5 8.2 0.5 16.2

14 -0.6 4.0 20.4 8.3 39.0

15 0.1 8.3 36.0 29.0 55.1

16 -0.1 -0.1 1.1 -0.4 1.1

17 0.0 0.3 2.8 2.2 3.3

18 0.3 2.1 7.2 8.6 10.2

19 16.5 10.2 -3.2 13.1 -10.3
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Figure 1.  Length-frequency distribution of age 1 to 3 fish in the three years of tagging 

corresponding to scenario 4 (see Table 1).  The thick solid line shows the overall 

distribution; the thin solid lines show the breakdown into age components.  The 

dashed vertical lines delimit the length cut-offs used to estimate the age of a fish 

based on its length (e.g., any fish whose length falls between the two left-most vertical 

lines will be estimated as age 1).  The cohort being modelled is the age 1 fish in year 1 

(panel 1), age 2 in year 2 (panel 2), and age 3 fish in year 3 (panel 3).  
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Figure 2.  Length-frequency distribution of age 1 to 3 fish in the three years of tagging 

corresponding to scenario 5 (see Table 1).  The thick solid line shows the overall 

distribution; the thin solid lines show the breakdown into age components.  The 

dashed vertical lines delimit the length cut-offs used to estimate the age of a fish 

based on its length (e.g., any fish whose length falls between the two left-most vertical 

lines will be estimated as age 1).  The cohort being modelled is the age 1 fish in year 1 

(panel 1), age 2 in year 2 (panel 2), and age 3 fish in year 3 (panel 3). 
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Figure 3.  Length-frequency distribution of age 1 to 3 fish in the three years of tagging 

corresponding to scenario 6 (see Table 1).  The thick solid line shows the overall 

distribution; the thin solid lines show the breakdown into age components.  The 

dashed vertical lines delimit the length cut-offs used to estimate the age of a fish 

based on its length (e.g., any fish whose length falls between the two left-most vertical 

lines will be estimated as age 1).  The cohort being modelled is the age 1 fish in year 1 

(panel 1), age 2 in year 2 (panel 2), and age 3 fish in year 3 (panel 3). 
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Figure 4.  Length-frequency distribution of age 1 to 3 fish in the three years of tagging 

corresponding to scenario 2 (see Table 1).  The thick solid line shows the overall 

distribution; the thin solid lines show the breakdown into age components.  The 

dashed vertical lines delimit the length cut-offs used to estimate the age of a fish 

based on its length (e.g., any fish whose length falls between the two left-most vertical 

lines will be estimated as age 1).  The cohort being modelled is the age 1 fish in year 1 

(panel 1), age 2 in year 2 (panel 2), and age 3 fish in year 3 (panel 3). 
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Figure 5.  Length-frequency distribution of age 1 to 3 fish in the three years of tagging 

corresponding to scenario 8 (see Table 1).  The thick solid line shows the overall 

distribution; the thin solid lines show the breakdown into age components.  The 

dashed vertical lines delimit the length cut-offs used to estimate the age of a fish 

based on its length (e.g., any fish whose length fall between the first two vertical lines 

will be estimated to be age 1). 
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Figure 6.  Average parameter estimates from fitting a Brownie model to 100 “true” 

and “estimated” release-recapture data sets corresponding to scenarios 1 to 9 (upper 

left panel to lower right panel, by row). Plus = true parameter value; circle = 

estimated parameter value using “true” data; triangle = estimated parameter value 

using “estimated” data.  (Note: εσ σ= .) 
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Figure 7.  Average parameter estimates from fitting a Brownie model to 100 “true” 

and “estimated” release-recapture data sets corresponding to scenarios 10 to 18 (upper 

left panel to lower right panel, by row). Plus = true parameter value; circle = 

estimated parameter value using “true” data; triangle = estimated parameter value 

using “estimated” data. (Note: εσ σ= .) 
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Figure 8.  Average parameter estimates from fitting a Brownie model to 100 “true” 

and “estimated” release-recapture data sets corresponding to scenario 19, intended to 

be representative of southern bluefin tuna data.  Plus = true parameter value; circle = 

estimated parameter value using “true” data; triangle = estimated parameter value 

using “estimated” data. 
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Appendix 8:  Consequences of aging errors in Brownie tag-recapture models 

Figure 9.  Length-frequency distribution of age 1 to 3 fish in the three years of tagging 

corresponding to scenario 4 (see Table 1), but with growth rate parameter k equal to 

0.05 instead of 0.2.  The thick solid line shows the overall distribution; the thin solid 

lines show the breakdown into age components.  The dashed vertical lines delimit the 

length cut-offs used to estimate the age of a fish based on its length (e.g., any fish 

whose length falls between the two left-most vertical lines will be estimated as age 1).  

The cohort being modelled is the age 1 fish in year 1 (panel 1), age 2 in year 2 (panel 

2), and age 3 fish in year 3 (panel 3). 
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Abstract 
The integrated tag-recapture and catch-at-age model for estimating mortality rates and 
abundance developed in CCSBT-ESC/0309/22 is extended to a two-fishery situation with a 
surface purse seine fishery and a longline fishery intended to resemble the southern bluefin 
tuna (SBT) situation.  We also extended the model to allow for overdispersion in the tag 
return data.  Tag reporting rates are assumed to differ between the two fisheries, and they are 
estimated from tag seeding data in the surface fishery and from observer data in the longline 
fishery.  Simulations are used to investigate design issues for the tagging program currently 
being conducted on SBT as part of the CCSBT Scientific Research Program (SRP), in 
particular, to investigate levels of observer coverage and tag releases necessary to achieve 
reasonable precision in mortality rate and abundance estimates.  The results suggest that the 
number of tags that have been released in recent years as part of the CCSBT SRP tagging 
program are adequate, but that increasing observer coverage from current levels could 
potentially lead to significant improvements in the precision of the fishing mortality rate 
estimates for the longline fishery, as well as smaller improvements in the estimate of 
population abundance.  The results from the model with overdispersion in the tag returns 
suggest that in order to achieve coefficients of variation of 20% or less for the longline 
fishing mortality rates at ages 1 to 3, observer coverage must be at least 30% (and at least 
20% for the model without overdispersion).  Estimates of fishing mortality in the surface 
fishery are chiefly unaffected by the level of observer coverage in the longline fishery, 
provided fairly accurate estimates of surface fishery reporting rates and catch-at-age by 
fishery exist.  It is important to note, however, that these results depend on the assumption of 
complete mixing.  If this assumption is violated, then the level of observer coverage in the 
longline fishery would become more influential on the accuracy and precision of parameter 
estimates.  Without good observer data, and thus good information on differential tag 
reporting and return rates between fishery components, there would be little power to test the 
assumption of non-mixing and, if necessary, develop spatially-explicit tag recovery models to 
account for heterogeneity in recapture probabilities. The results also demonstrate the 
importance of having reliable and precise estimates of the catch-at-age for each fishery when 
applying the estimation model presented here.  This emphasizes the need to develop 
appropriate sampling and error models for the catch data; having representative and adequate 
observer coverage can help to accomplish this in the longline fishery. 
 

 A9-3



Appendix 9: Exploring design trade-offs in a 2-fishery integrated tagging and catch model 

Introduction 
In CCSBT-ESC/0309/22, we developed an integrated Brownie and Petersen model for 
estimating abundance and mortality rates (fishing and natural) from multi-year tagging 
programs and estimates of the catch-at-age data.  We explored the situation in which 
reporting rates are known in the catch-at-age data, and the situation in which reporting rates 
are estimated from observer data from a portion of the fleet.  We showed that combining the 
catch-at-age data with the multi-year tagging data allows for population abundance to be 
estimated directly from the model and also provides additional information for estimating 
mortality rates. We also presented results from simulations on how the relative trade-off 
between effort put into tagging and observers affects the overall mortality and abundance 
estimates. The results suggested that observer levels of 20-30% (or even greater) may be 
required to achieve reasonable levels of precision in the parameter estimates, and raised 
concerns about whether the current tagging program being undertaken as part of the Council 
for the Conservation of Southern Bluefin Tuna Scientific Research Program (CCSBT SRP) 
(Anon. 2001a) will be able to meet its primary objective of being able to estimate mortality 
rates for southern bluefin tuna (SBT) with sufficient levels of precision to substantially 
improve the SBT stock assessment.  
 
The results in CCSBT-ESC/0309/22 were based on consideration of a single fishery in which 
the only source of information for estimating reporting rates was from observers. However, 
juvenile SBT, which are the target of the SRP tagging program, are harvested both by purse 
seine and longline vessels. These gears have different age-specific selectivities, different 
levels of catch, and tag reporting rates are also likely to vary between the purse seine and 
longline fisheries (and in the case of the latter, there are multiple fleets in which reporting 
rates are also likely to vary). In addition, observers in the SBT purse seine fishery cannot 
provide any useful data by which to estimate reporting rates since captured fish are 
transferred without being removed from the water to cages for farming. Instead, tag seeding 
is being used to obtain estimates of reporting rates from this fishery component (Stanley and 
Polacheck 2003; Polacheck and Stanley 2004).   
 
In the current paper, the estimation model in CCSBT-ESC/0309/22 is extended to a two-
fishery situation with a purse seine fishery (referred to as the surface fishery) and a single 
longline fishery.  We have reduced the multiple longline fleets to a single fishery with a 
uniform level of observer coverage and a uniform reporting rate both to simplify the 
presentation and because exploration of the possible trade-offs in observer coverage amongst 
different longline fisheries did not seem fruitful given the commitment of the CCSBT to have 
similar observer target levels in all fisheries.  In our model, we allow for fishing mortality 
rates, as well as reporting rates, to differ between the two fisheries.  Reporting rates are 
estimated from tag seeding data in the surface fishery and from observer data in the longline 
fishery. We present results on how the amount of effort put into tag releases and observers 
affects the mortality rate and abundance estimates. We have conditioned the simulations used 
to generate these results so that they qualitatively resemble the SBT situation.  
 
The motivation for this papers stems from decisions made at the 2003 CCSBT Scientific 
Committee meeting (Anon. 2003). This meeting concluded that the current levels of observer 
coverage in the Japanese, Korean and Taiwanese longline fleets are not high enough to 
provide useful estimates of reporting rates, and thus fishing mortality rates, from these fleets. 
The overall implication of this conclusion for the ability of the SRP tagging program to meet 
its primary objectives were not certain because of the differential and much higher reporting 
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rate in the Australian surface fishery, combined with the fact that the Australian surface 
fishery catches a substantial portion of the global catch of juvenile SBT.  As such the 
Scientific Committee agreed to convene a Technical Group Meeting in conjunction with its 
next meeting to deal with this question. Among the terms of reference agreed to for this 
Technical Group are: 
 

1. To evaluate the level of precision of mortality and abundance estimates that the 
current tagging program will be likely to provide at current levels of observer 
coverage and anticipated tag recovery rates (given current efforts directed at 
increasing them). 

2. To evaluate the levels of observer coverage and tag recovery rates that would be 
required for the tagging program to provide acceptable levels of precision in key 
mortality and abundance estimates, and how these are influenced by model 
assumptions. 

 
The results presented here will hopefully assist the Technical Group in its deliberations. 

Methods 

Estimation model 
Underlying the integrated tag and catch model used here are the general population dynamics 
and catch equations commonly used in fisheries.  These equations, presented in CCSBT-
ESC/0309/22 and repeated below for fluidity, are expressed in terms of exponential and 
competing natural and fishing mortality rates.   For a cohort of animals of a given age, the 
number that survive and the number that are caught are given by: 
 
 , 1 , , ,exp{ }i t i t i t i tP = P F M+ − −  (1) 
 

 ( , ,1 exp{ }i,t
i,ti,t i t i t

i,t i,t

F=C P+F M
− − − )F M  (2) 

 
where   
 

Pi,t = the number of individuals of age i at time t 
Ci,t = the catch of individuals of age i at time t 
Fi,t = the instantaneous fishing mortality rate for individuals of age i at time t  
Mi,t = the instantaneous natural mortality rate for individuals of age i at time t. 

 
In the context of a tagging experiment, the above equations provide the basis for predicting 
the expected number of returns, assuming that the tagged fish constitute a representative 
sample of the population.  In the current paper, we consider a multi-year tagging experiment 
involving only a single cohort of fish (tagged at consecutive ages).  As such, age and year 
provide equivalent information, and we can simplify the notation by dropping the reference to 
year (i.e. the t subscript in the above equations) and expressing everything in terms of age.   
 
In the two-fishery model presented here, we allow for natural mortality to differ between 
ages, and fishing mortality to differ between ages and fisheries. We also allow fishing 
mortality to differ between tagged fish in the year of tagging and untagged fish in that year 
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(following the model presented in Hoenig et al. 1998).  This is to allow for the fact that 
tagged and untagged fish will not be fully mixed directly after tagging, and also because in 
the SBT situation much of the tagging occurs near the end of the fishing season.  This is done 
in order to prevent a large number of immediate returns, but will obviously mean that fishing 
mortality in that year will not be the same for tagged and untagged fish.  As Hoenig et al. 
(1998) point out, technically, the model formulation assumes that the relative timing of 
fishing and natural mortality for tagged fish in the first year after tagging is the same as that 
for untagged fish and fully mixed tagged fish in subsequent years. However, this is not a 
critical assumption because the relative timing has only a minor effect on estimation of 
natural mortality, and furthermore, we are not interested in fishing mortality of newly tagged 
fish. 
 
Reporting rates are estimated differently for the surface fishery than for the longline fishery.  
For the longline fishery, we assume observers are on board a percentage of vessels and that 
the reporting rate is 100% for fish caught on these vessels.  Because on average the fishing 
mortality have been assumed to be the same for all longline vessels, the relative return rate 
between the observed catches and the unobserved catches provides an estimate of the 
reporting rate in the unobserved component (i.e. observer coverage is representative of the 
entire longline fleet).  For the surface fishery, we assume reporting rates are estimated from 
independent data, such as tag seeding data, and that we have estimates of reporting rates, 
along with standard errors on the estimates, to use in our model.   
 
We divide the tag returns and the corresponding catches into those coming from the surface 
fishery, the observed component of the longline fishery, and the unobserved component of 
the longline fishery.  However, before proceeding we introduce the following notation: 
 
Table 1.  Data (to be inputted into the model). 

aN = number of tag releases of age a fish from a particular cohort 

,
S
a iR = tag returns of age i fish that were tagged at age a from the surface fishery 

,
,

LL obs
a iR = tag returns of age i fish that were tagged at age a from the observed component of 

the longline fishery 
,

,
LL unobs
a iR = tag returns of age i fish that were tagged at age a from the unobserved component 

of the longline fishery 
ˆS
iλ = estimated tag reporting rate for fish recaptured at age i in the surface fishery 

is = standard error of ˆS
iλ  

S
iC = number of age i fish from the cohort of interest caught in the surface fishery 

,LL obs
iC = number of age i fish from the cohort of interest caught in the observed component of 

the longline fishery 
,LL unobs

iC = number of age i fish from cohort of interest caught in the unobserved component of 
the longline fishery 

iδ = proportion of age i fish in the observed component of the longline fishery 
S
iυ = coefficient of variation of age i catch data from the surface fishery 

,LL obs
iυ = coefficient of variation of age i catch data from the observed component of the 

longline fishery 
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Table 2.  Parameters (to be estimated in the model). 
S
iλ = tag reporting rate for fish captured at age i in the surface fishery 
LL

iλ = tag reporting rate for fish captured at age i in the unobserved component of the longline 
fishery 

iM = instantaneous natural mortality rate for age i fish  
S

iF = instantaneous fishing mortality rate in the surface fishery for age i fish (excluding fish 
tagged at age i)  

LL
iF = instantaneous fishing mortality rate in the longline fishery for age i fish (excluding fish 

tagged at age i) 
*S

iF = instantaneous fishing mortality rate in the surface fishery for age i fish tagged at age i  
*LL

iF = instantaneous fishing mortality rate in the longline fishery for age i fish tagged at age i  

1P  = initial population size (at age 1) of tagged cohort  

aω  = Dirichlet variance parameter for the return probabilities of fish released at age a; only 
used in model with overdispersion in tag returns 

 
 
Now define: 
 

* *Tot S LL
i i iF F F= + *

iM
 

* *exp{ ( )}Tot
i iS F= − +  

*
* *

* (1 )
Tot

i
i iTot

i i

F
f S

F M
= −

+
 

Tot S LL
i iF F F= + i

iM
 

exp{ ( )}Tot
i iS F= − +  

(1 )
Tot

i
i iTot

i i

F
f S

F M
= −

+  
 
Note that represents the survival rate of age i fish tagged at age i;  represents the 
survival rate of age i fish, excluding those tagged at age i; 

*
iS iS

*
if represents the exploitation rate 

of age i fish tagged at age i; and if  represents the exploitation rate of age i fish, excluding 
those tagged at age i1.  
 
First consider the tag-recapture component of the model.  The probability that an age i fish 
that was tagged at age a is returned from the surface fishery is: 
 

                                                 
1 In the model developed here, the longline and surface fisheries are modelled as taking place throughout the 
year and their respective fishing mortalities constitute competing risks. In fact, for SBT, the surface and longline 
fisheries take place almost sequentially. While this detail could be added to the model without much difficulty, it 
would not be expected to change the general results presented in this paper. However, in an application in which 
fishing mortality rates are relatively high in one or both fisheries, it could have a small effect on the model 
predictions of the number of returns. In such situations, the modifications necessary for dealing with sequential 
fisheries might be worth including in the estimation model. 
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= +  (3) 

 
The probability that an age i fish that was tagged at age a is returned from the observed 
component of the longline fishery is: 
 

 

*
*

*

, *
,

1
*

1

1

1

LL
i

i iTot
i

LL
LL obs i
a i i a iTot

i
LL i

i
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k ai

F
f i a

F

F
p S f i a

F

F
S S f i a

F

δ

δ
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−
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⎧
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⎪
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⎪
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∏

= +  (4) 

 
The probability that an age i fish that was tagged at age a is returned from the unobserved 
component of the longline fishery is: 
 

 

*
*

*

, *
,

1
*

1

(1 )

(1 ) 1

(1 ) 1

LL
LL i

i i iTot
i

LL
LL unobs LL i
a i i i a iTot

i
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i i a k iTot

k ai
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f i a

F

F
p S f i a
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F
S S f i a

F
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= +

⎧
− =⎪

⎪
⎪⎪= − = +⎨
⎪
⎪ ⎛ ⎞⎪ − >⎜ ⎟⎪ ⎝ ⎠⎩

∏ +

 (5) 

 
 
These probability statements assume no mortality due to tagging and no tag shedding.  If 
these assumptions are not met, additional parameters and potentially additional data will need 
to be introduced to account for these factors. 
 
For tags released at a particular age, the numbers of returns by age from all sources (i.e. the 
surface fishery, the observed component of the longline fishery, and the unobserved 
component of the longline fishery), as well as those tags not returned, are expected to be 
multinomial with probabilities given in equations (3), (4) and (5).  Thus, the likelihood 
equation for the tag return data corresponding to all release ages is:  
 

  (6) ( ) ( ) ( ) ( )
, ,

, , , ,, ,
, , , ,1

LL obs LL unobsTot S
a a a i a i a iTot S LL obs LL unobs

R a a i a i a i
a i a

N R R R R
L p p p pγ •

•
≥

−⎛ ⎞⎛ ⎞= × −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∏ ∏
 
where 
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( ) ( ), ,

, , , ,! ! !
a

Tot S LL obs LL unobs
a a a a i a i a i

i a

N
N R R R R

γ
•

≥

=
−

∏ ∏ !
, 

 

 , ( ), ,
, , , ,

Tot S LL obs LL unobs
a a i a i a i

i
R R R R• = + +∑

and  

 . ( ), ,
, , , ,

Tot S LL obs LL unobs
a a i a i a i

i
p p p p• = + +∑

 
Note that γ  is a constant that can be left out when maximizing the likelihood. 
 
Estimates of the fishing and natural mortality rates ( ’s, ’s and *F F M ’s) can be obtained 
from the multi-year tagging data by maximizing the above likelihood.  Note, however, that 
the information for estimating Mi comes from the differential between the expected returns at 
age  of fish released at age i and those released at age 1i + 1i + ;  thus, in an experiment with 
n consecutive release years, estimates can only be obtained for 1n −  of the natural mortality 
rate parameters (regardless of the number of recapture years).  Estimates of the reporting 
rates for the longline fishery ( LL

iλ ’s) can also be obtained from the above likelihood using the 
differential between the return rates from the observed and unobserved catches, provided the 
ratios of observed to unobserved catches ( iδ ’s) are known.   
 
There is not enough information in likelihood (6) to be able to estimate the reporting rates 
from the surface fishery.  We assume instead that an estimate of the reporting rate at each age 
( ˆS

iλ ) and an associated standard error ( ) has been obtained from independent tag seeding 
data, and that the estimate follows a standard beta distribution with mean 

is
S
iλ and variance 

approximated by .   We chose a standard beta distribution because it gave a reasonably 
bell-shaped distribution that was constrained to lie between 0 and 1 (as desired for reporting 
rates).  Thus, the likelihood component for the surface fishery reporting rate data is: 

2
is

 

 ( ) ( )1( ) ˆ ˆ1
( ) ( )S

iS Si i
i i

i i i

L
α β

λ

1iα β
λ λ

α β
− −Γ +

=
Γ Γ∏ −  (7) 

 where 

 ( )
2

1
S

S Si
i i

is
λ

iα λ λ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

−  

and 

 
( )1 S

i i
i S

i

α λ
β

λ

−
= . 

Note that  denotes the gamma function. ( )Γ ⋅
 
Now consider the catch component of the model.  The probability that an age i fish from the 
cohort being studied is caught in the surface fishery is:  
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 (8) 

 
The probability that an age i fish from the cohort of interest is caught in the observed 
component of the longline fishery is: 
 

 ,
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 (9) 

 
The probability that an age i fish from the cohort of interest is caught in the unobserved 
component of the longline fishery is: 
 

 ,

1

1

(1 )
1
1

(1 )

LL
i

i iTot
iLL unobs

i LL i
i

i k iTot
ki

F
f

F i
iF

S f
F

δ
π

δ
−

=

⎧
−⎪ =⎪= ⎨ >⎛ ⎞⎪ − ⎜ ⎟⎪ ⎝ ⎠⎩

∏
 (10) 

 
 
If we assume the numbers of fish caught at each age are known accurately (and that each fish 
has an equal probability of being caught), then the catch-at-age data, including those fish 
from the cohort not caught, are random multinomial, where each fish has a probability of 
being captured at age i in one of the fishery components (given by the expressions in (8), (9) 
and (10)) or else not captured.  Usually, however, the catch-at-age data are not known 
accurately.  In the case of SBT, the age distribution of the catch is determined by taking a 
sample, estimating the ages of fish in the sample (either from lengths or from direct aging of 
hard parts), and using the estimated age frequencies of the sample to represent the total catch.  
We have chosen to model the error in the catch-at-age data that results from this sampling 
procedure as Gaussian, with a coefficient of variation (CV) that depends on the level of 
sampling. The CV is intended to capture variability in the catch-at-age data due to non-
homogeneous spatial and temporal distribution of fish, as well as different size/age 
selectivities among vessels (i.e. if these factors are significant, then the CV of the catch-at-
age data would be large because the age distributions derived from different samples could 
vary a lot).   
 
To fit a model with both multinomial “process” error and Gaussian sampling error would 
require a relatively sophisticated approach, such as a Kalman filter.  However, in most fishery 
situations, the number of fish in the cohort from which catches are being taken will be very 
large such that the multinomial error will be negligible compared to the Gaussian sampling 
error, and only the latter source of error needs to be considered.  This is the approach taken in 
the current paper.     
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For the surface fishery, we assume that catches are routinely sampled and that there is an 
appropriate sampling design and estimation model that allows for the variance in the catch 
data to be well estimated.  We have assumed that the CV of the catch data for each year ( S

iυ ) 
is known and independent of the tag data.  For the longline fishery, we assume that all fish 
caught in the observed component are sampled, but that no fish from the unobserved 
component are sampled.  Thus, there is no age information for the unobserved catches, and 
only catch-at-age data from the observed component is included in the model.  The CV for 
the longline catch data in a given year ( LL

iυ ) will be determined by the level of observer 
coverage (since this determines the level of sampling).   
 
The likelihood for the surface and observed longline catch data is: 
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The overall likelihood for the combined recapture and catch data can be obtained by 
multiplying likelihoods for the tag-recapture data, the tag-seeding data and the catch data 
together: 
 
 STot R CL L L Lλ= × ×  (12) 
 
 
The inclusion of the catch component in the overall likelihood allows for the initial cohort 
size  to be estimated and also provides more information on the mortality rate estimates.  
Additionally, for our specific model which allows for non-mixing of tagged fish in the first 
year after release, the tag-recapture data does not provide an estimate of the fishing mortality 
at age 1 of untagged fish (  and ); inclusion of the catch data provides these estimates.  
Thus, by maximizing (12), estimates of all parameters given in Table 2 can be estimated, with 
the exception that we can only estimate 

1P

1
SF 1

LLF

1n −  natural mortality rate parameters, where n is the 
number of consecutive release years.  
 
In the current model formulation, there is not enough information to estimate the proportion 
of observer coverage in each year (the δ ’s).  To do so, we would need to know the total 
observer catch in each year as well as the total overall catch in each year.  Currently, the 
model only requires catch data from a single cohort (i.e. from a single age class in each year).  
Rather than bringing the total catch data into the model, we assume that the total catch 
numbers are known well enough that the δ’s are estimated accurately, and we treat the δ’s as 
being known without error in our model. 
 
The model allows for the catch CV in each fishery to vary with year, and we assume that 
these CV’s are known (there is not enough information with which to estimate them).  If we 
were to assume a constant CV in all years for a given fishery, then, in theory, the CV should 
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be estimable from the likelihood; however, we found in practice that its estimation is very 
poor (often converging to zero).   

Overdispersion in tag return data 
The tag-recapture component of the model presented above assumes a multinomial 
distribution for the tag returns; this is only valid if all fish of a particular age have the same 
probability of being caught.  If there is unsystematic incomplete mixing of tagged and 
untagged fish2 (e.g. if fish tagged in the same school and/or in close proximity on the same 
day have positively correlated recapture probabilities), then the numbers of returns at age will 
have more variability than a multinomial distribution would predict. Differential age/size 
selectivities among fishing vessels will also contribute to overdispersion if tagged fish are not 
homogeneously mixed within the untagged population.  One way of incorporating this 
overdispersion is to model the tag return data as Dirichlet-multinomial.  Essentially, the 
probabilities of return corresponding to releases at age a are modelled as Dirichlet random 
variables with variance parameter aω  (see Appendix A).  Then the numbers of returns 
conditional on the probabilities of return follow a multinomial distribution, and the 
unconditional numbers of returns follow the compound distribution referred to as the 
Dirichlet-multinomial (see Appendix A).  
 
The likelihood for the tag return data when these data are modelled as Dirichlet-multinomial 
is:  
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∏
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where 
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a
Tot S LL obs LL unobs

a a a a i a i a i
i

N
N R R R R

ωγ
•

=
−

∏ ∏ !

                                                

, 

and, as in equation (6), 

( ), ,
, , , ,

Tot S LL obs LL unobs
a a i a i a i

i
R R R R• = + +∑ , 

and 

( ), ,
, , , ,

Tot S LL obs LL unobs
a a i a i a i

i
p p p p• = + +∑ . 

 
2 Unsystematic incomplete mixing is meant to refer to situations where there is still large amounts of mixing 
among tagged and untagged fish and the pattern of mixing has a large “random” component such that on 
average the probability of recapture of tagged and untagged fish are the same. This should be distinguished from 
the situation where there is a systematic and repeatable pattern of non-mixing between tagged and untagged fish 
-- for example, if all tagging was done late in the season in one location and fish in that location and time period 
only remain in one part of the stock’s overall range. Such systematic non-mixing will induce biases into the 
population and mortality estimates if it is not accounted for within the estimation model. A basic assumption of 
the estimation model used here is that the tagged fish constitute a representative sample of the population. 
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Note that ωγ  is a constant that can be left out of the likelihood. 
 
The overall likelihood is now analagous to (12) except RLω  replaces : RL
   
 STot R CL L L Lω ω

λ= × ×  (14) 
 
The parameters that we estimate by maximizing the likelihood in (14) are the same as before, 
except now we also have overdispersion parameters ( aω ’s) to estimate.  Rather than 
estimating an overdispersion parameter for each release event (which would not likely be 
possible with the current model formulation), we constrain the aω ’s so that they lead to an 
increase in the variance of the returns at age of x times over that of multinomial returns.  This 
can be accomplished by setting ( ) ( 1a aN x xω = − − )  (refer to Appendix A).  Now, instead 
of having several additional overdispersion parameters to estimate, we have just one, x.    

Data and parameters used to condition the simulations 
In generating data for the simulations, our aim was to choose input values that emulate the 
most recent years of SBT tag-recapture and catch data as closely as possible.  SBT are 
generally tagged at ages 1 to 3, therefore in our simulations we assume that we tag a single 
cohort of fish in 3 consecutive years at ages 1, 2 and 3.  Most SBT tags are returned within 
the first 5 years after release, so we generate 5 years of recapture data, along with 5 years of 
corresponding catch data.   
 
The input values used to generate the tag-recapture and catch-at age data sets for our 
simulations are given in Table 3.  The number of releases were determined by averaging the 
number of tags released at ages 1 to 3 as part of the CCSBT tagging program in years 2002, 
2003 and 2004.  We also looked at the effect of halving and doubling the number of releases. 
 
The mortality rates were assumed to follow a negative linear trend with age; the slope and 
intercept were chosen to give values that closely resemble the mortality rate vector 
commonly used in past stock assessments.  The reason for assuming a linear trend is that with 
only 3 release years, we can only estimate 2 mortality rate parameters.  By constraining the 
mortality rates to be linear with age, we reduced the number of mortality rate parameters to 2 
as required.  Other constraints could have been imposed but a linear trend is consistent with 
previous assumptions about natural mortality rates for SBT.   
 
The total fishing mortality rates (across fisheries) were based on total SBT catches from years 
1998 to 2000.  The average total catches in numbers of ages 1 to 5 fish over these 3 years 
were calculated to be 1959, 58208, 225015, 69982 and 26817  respectively.   Thus, using the 
mortality rates discussed above and assuming an initial (age 1) population size of 2 million 
fish, we could calculate the age-specific fishing mortality rates required to give these catch 
numbers using equations (1) and (2).  These are the values reported in Table 3.  We 
chose 2 million for  because it is within the plausible range of values for SBT based on 
recent stock assessments (e.g. Hirmatsu and Tsuji 2001; Kolody and Polacheck 2001; 
Polacheck and Preece 2001), and it also resulted in reasonable fishing mortality rates. 
However, varying  over the range of 1 to 4 million had a negligible effect on the results.   

Tot
iF

1P

1P
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We expect the total fishing mortality rates for tagged fish in their first year after release (i.e. 
the ’s) to be quite low for SBT because tagging generally occurs near the end of the 
surface fishery season. The values we chose were rather arbitrary (0.05 for all ages), but they 
do not have much influence on the results, with an exception being if one of the values is so 
close to zero that the simulated tagging data has no tag returns at that age.  In such a case, not 
all parameters are estimable unless constraints/assumptions are imposed regarding the 
mortality rates and reporting rate for that age.  Zero tag returns, especially at ages 1 and 2, 
may be an issue with real SBT tag-recapture data and, if so, would have to be dealt with 
appropriately.  

*Tot
iF

 
To apportion the total fishing mortality between the surface fishery and longline fishery, we 
need to know the proportion of surface versus longline catches at each age.  Using SBT catch 
data for years 1998 to 2000, we calculated the proportion of surface catches at each age in 
each year and then took the average of the 3 years; these values are reported as iθ  in Table 3.  
Then the fishery-specific ’s and ’s were calculated by simply multiplying the total 
fishing mortalities by 

iF *
iF

iθ  for the surface fishery and (1 iθ− ) for the longline fishery.  
 
The reporting rates used for the surface fishery were based on a preliminary analysis of data 
from a pilot tag seeding experiment conducted on SBT farm cages in 2002/2003 (Polacheck 
and Stanley 2004). This analysis suggested an average reporting rate of 0.65 with a standard 
error of 0.10. These values were assumed to apply in all years in the results presented here 
(i.e. for all ages in our single-cohort formulation).  The reporting rates used for the 
unobserved component of longline fishery (0.10 for all ages) were based on longline 
reporting rate estimates from previous analyses of the 1990s SBT tagging data (which ranged 
between 0 and around 0.40 depending on the fleet) combined with concerns that promotional 
activities (particularly direct personal contact) encouraging fisherman to return tags has been 
less during the SRP than during the 1990s. However, the effect of increasing the reporting 
rates for the longline fishery was explored.   
 
The CV for the catch-at-age data from the surface fishery was chosen to be 0.2 in all years. 
This figure is rather arbitrary but currently there are no estimates, or developed statistical 
models for obtaining estimates, of the error in the age composition of the surface catches. In 
addition, the actual CV is likely to vary among years.  The CV of the catch-at-age data for the 
observer component of the longline fishery is assumed to be related to the level of observer 
coverage, because more observers means more catch sampling.  A hypothetical relationship 
between the level of observer coverage and the CV of the catch data, which we believe to be 
reasonable for our purposes, is shown in Figure 1.  The formula used to generate this curve is 

0.75* (0.05) iLL
i

δυ = .  Note that even with 100% observer coverage, the CV does not go to 
zero because there is still variability in the catch process (referred to previously as 
multinomial process error) and aging error in going from measured length distributions to 
estimated age distributions. This relationship is rather arbitrary; however, sufficient  data and 
information are not available on the actual sampling protocols to develop a more realistic 
model. 
 
We kept the level of observer coverage in the longline fishery the same in all years (i.e. at all 
ages) and, initially, set the level of be 0.1.  This value was chosen because 10% observer 
coverage has been the goal set by CCSBT members in past years (Anon. 2001b).  The CV of 
the observer catches that corresponds to this observer level is 0.29 (calculated using the 
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relationship given in the previous paragraph).  One of the primary goals of this paper is to 
investigate how the level of observer coverage affects our ability to estimate mortality rate 
and abundance parameters; thus, we also considered observer levels of 0.05, 0.2, 0.3 and 0.5, 
with corresponding catch CV’s of  0.38, 0.20, 0.15 and  0.09 respectively.    
 
In the model that incorporates overdispersion in the tag return data, we also need to specify 
how much extra variability we want in the tag returns compared to that of multinomial 
returns.  We chose a factor of 3 (i.e., in the notation used in the Methods section, ). 
Note that overdispersion in the tag return data is likely to be associated with higher variability 
in the longline catch data, especially at low levels of observer coverage (e.g. a large source of 
the variability in the catch data would come from large inter-vessel variability in the size/age 
composition of their catches, especially if catches from only a few vessels were sampled; this 
would be the case when observer coverage is low because observers would likely be 
constrained to a limited number of relatively long cruises). However, in the absence of 
information on this, the same CV/observer coverage relationship for the longline catch data 
was used in both the model with and without overdispersion in the tag returns. 

3x =

 
Table 3.  Parameter values for reference case simulation run. 
 Age/year, i 
 1 2 3 4 5 

iP  62 10×  − − − − 

iN  2718 5807 1223 − − 

iM  0.4 0.35 0.3 0.25 0.2 

*Tot
iF  0.05 0.05 0.05 − − 

Tot
iF  0.001 0.053 0.340 0.183 0.103 

iθ  0.882 0.825 0.828 0.407 0.120 
*S

iF  0.044 0.041 0.041 − − 

*LL
iF  0.006 0.009 0.009 − − 

S
iF  0.001 0.044 0.282 0.075 0.012 

LL
iF  0.000 0.009 0.058 0.108 0.091 

S
iλ  0.65 0.65 0.65 0.65 0.65 

is  0.10 0.10 0.10 0.10 0.10 

S
iυ  0.20 0.20 0.20 0.20 0.20 

LL
iλ  0.10 0.10 0.10 0.10 0.10 

iδ  0.10 0.10 0.10 0.10 0.10 

LL
iυ  0.29 0.29 0.29 0.29 0.29 

 
 

Results 

Multinomial tag returns 
Using the values in Table 3, we simulated 100 multinomial tag-recapture and Gaussian catch-
at-age datasets.  We then obtained parameter estimates corresponding to each of the 100 
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datasets by maximizing the likelihood in (12).  We refer to the simulations carried out using 
the values in Table 3 as the ‘reference case’ simulations.   

Effect of observer coverage 
In addition to the reference case simulations, we also ran 100 simulations using each of the 
alternative levels of observer coverage being considered, namely, δ = 0.05, 0.2, 0.3 and 0.5 
(with corresponding longline catch CV’s of LLυ =  0.38, 0.20, 0.15 and 0.09). The means and 
standard deviations of the 100 maximum likelihood estimates for the parameters of key 
interest are given in Tables 4 and 5.  Results for the remaining parameters can be found in 
Appendix B, Tables B1 and B2.  The mean estimates of almost all parameters are within two 
standard errors of the true value, suggesting they are estimated without bias (standard error 
equals standard deviation divided by square root of sample size, where the sample size is 100 
in our case).  An exception is the estimate of the age 1 population size, , which has a slight 
negative bias; however, the bias is small (<7%) and disappears as the level of observer 
coverage increases.  There are also significant biases (statistically speaking) in some of the 
reporting rate estimates, but these biases are small in practical terms and they diminish as the 
level of observer coverage increases.  The reporting rate estimates are not of primary interest, 
and since small biases in these estimates do not appear to induce biases in the mortality rate 
estimates, they are not of concern.  Although insignificant, there is some suggestion of a 
small negative bias for both 

1P

1M  and 5M  (recall that natural mortality is constrained to be 
linear with age so it can be fully described by 2 parameters; we have chosen to parameterize 
the line in terms of 1M  and 5M ). Interestingly, the bias for 1M  decreases as observer 
coverage increases, but the bias for 5M  increases.  
 
Our ability to estimate almost all of the parameters improves as the level of observer 
coverage in the longline fishery increases (as seen by a decrease in standard deviation as 
observer coverage increases; Table 5).  The degree of improvement differs between 
parameters and can be better evaluated by looking at the coefficient of variation (CV = 
standard deviation/mean) of the estimates as opposed to the standard deviation (Figure 1).  As 
we would expect, the CV’s of the fishing mortality rate estimates for the longline fishery are 
most improved by increases in longline observer coverage, with improvements in CV ranging 
from 8% to 27% when observer coverage goes from 5% to 50%.   We note that the CV of 5M  
is large in all situations (~90%), whereas the CV of the initial cohort size  is always small 
(~10%); we discuss these findings in the Discussion. 

1P

 
Table 4.  Mean of key reference case parameter estimates (from 100 simulations) for various 
levels of observer coverage (δ ).  True parameter values are given below parameter names.  
The values for  are expressed in millions. 1P
 1P  1M  5M  1

SF  2
SF  3

SF  4
SF  5

SF  1
LLF  2

LLF  3
LLF  4

LLF  5
LLF  

δ   2.0 0.4 0.2 0.001 0.044 0.282 0.074 0.012 0.000 0.009 0.058 0.109 0.091 
0.05 1.86 0.390 0.197 0.001 0.044 0.293 0.081 0.014 0.000 0.009 0.062 0.109 0.100 
0.10 1.88 0.392 0.198 0.001 0.044 0.293 0.082 0.014 0.000 0.009 0.061 0.111 0.100 
0.20 1.92 0.392 0.189 0.001 0.043 0.287 0.079 0.013 0.000 0.009 0.059 0.111 0.097 
0.30 1.94 0.393 0.180 0.001 0.044 0.285 0.076 0.013 0.000 0.009 0.059 0.108 0.094 
0.50 1.97 0.396 0.178 0.001 0.044 0.283 0.076 0.013 0.000 0.009 0.059 0.109 0.093 
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Table 5. Standard deviation of key reference case parameter estimates (from 100 
simulations) for various levels of observer coverage (δ ).  The values for  are expressed in 
millions. 

1P

δ  1P  1M  5M  1
SF  2

SF  3
SF  4

SF  5
SF  1

LLF  2
LLF  3

LLF  4
LLF  5

LLF  
0.05 0.23 0.057 0.176 0.000 0.007 0.050 0.023 0.006 0.000 0.003 0.016 0.032 0.051 
0.10 0.22 0.056 0.177 0.000 0.007 0.046 0.023 0.007 0.000 0.003 0.013 0.030 0.042 
0.20 0.20 0.056 0.174 0.000 0.007 0.045 0.020 0.007 0.000 0.002 0.010 0.027 0.043 
0.30 0.18 0.052 0.165 0.000 0.008 0.044 0.019 0.006 0.000 0.001 0.008 0.023 0.037 
0.50 0.16 0.054 0.168 0.000 0.008 0.040 0.018 0.005 0.000 0.001 0.006 0.023 0.034 
 

Effect of number of releases 
While the level of observer coverage is one factor of the experimental design that can be 
controlled, the number of releases is another.  We repeated the reference case simulations 
except we first halved, and then doubled, the number of releases at each age.  Again, the 
mean parameter estimates were unbiased for the most part, and any biases were small and not 
of concern; as such, we do not present the mean estimates.  The CV’s are of more interest 
(Figure 2).  The general direction of the results is as expected ⎯ halving the number of 
releases degrades the estimates and doubling the number of releases improves the estimates, 
at least for parameters of interest (those shown in Figure 2).  However, the response appears 
to be asymmetric; the loss in precision from halving the number of releases appears to be 
greater than the gain in precision from doubling the number of releases.  It is also worth 
noting that changing the number of releases had a larger effect on the precision of the natural 
mortality rate estimates, 1M  and 5M , than changing the level of observer coverage.  
 
These results were obtained using a 10% level of observer coverage since this is the reference 
level; however, the general relative effect of halving and doubling the number of releases on 
the precision of the parameter estimates remained the same at other levels of observer 
coverage. 

Effect of other factors 
We increased the longline reporting rate from the reference case value of 0.1 to 0.5 in all 
years, then reran the simulations.  There was almost no improvement in the parameter 
estimates (Figure 4).  This is expected because in the likelihood, the tag returns from the 
unobserved component of the longline fishery are scaled up by the estimated reporting rate to 
give an estimate of the actual number of tag recaptures.  The reporting rates are determined 
by the return rate in the observer component, so that the age distribution of the returns always 
ends up the same for the unobserved component as the observed component.  As such, it does 
not matter whether the reporting rate is 0.1 or 0.5; it is the accuracy of the observer tag return 
data that matters (as we saw in our previous simulations).   
 
Preliminary analyses of data from recent tag seeding experiments suggested a value of  65% 
for the surface fishery reporting rates, so we used this value in our reference case simulations.  
However, in previous analyses of SBT tagging data , the reporting rate in the surface fishery 
has generally been assumed to be 100% (Polacheck et al. 1996,  1998). Thus, we ran 
simulations using 100% surface reporting rates (and assumed they were known without error) 
and found only a minimal improvement in the fishing mortality rate estimates for the surface 
fishery, and no improvement in the natural mortality rate and abundance estimates (Figure 
5a).   Furthermore, in the case of 65% reporting rates, we looked at the effect of changing the 
precision with which these rates are estimated; in particular we increased that standard error 
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of the estimates from 0.10 to 0.30.  This made virtually no difference to the results (Figure 
5b).  These results suggest that the return data from the surface fishery are already 
sufficiently informative that neither an increase in the magnitude of the reporting rates, nor an 
increase in the precision of the reporting rate estimates, has much effect.  
 
Lastly, we considered the effect of changing the CV of the catch-at-age data in the surface 
fishery from 0.2 in all years to 0.05, and also 0.30, in all years.  The estimates of fishing 
mortality at ages 1 and 2 in the surface fishery were most affected, with the CV of the age 1 
estimates decreasing by over 20% when the catch CV was improved from 0.30 to 0.05 
(Figure 6).   
 

Dirichlet-multinomial tag returns 
We repeated all of the simulations done in the case of multinomial tag returns using the 
model with Dirichlet-multinomial tag returns.  
 
We first present the results from the simulations looking at the effect of changing the level of 
observer coverage.  The means and standard deviations of the estimates for the parameters of 
key interest are summarized in Tables 6 and 7; those for the remaining parameters can be 
found in Tables B3 and B4 of Appendix B.  The CV’s of the key parameter estimates are 
shown in Figure 7.  Comparing these results with the analogous results for the case of 
multinomial tag returns (i.e., Tables 4, 5, B1 and B2, and Figure 2), we see that: 
 
• Again, the mean estimates are all within one standard deviation of the true value, with the 

exception of the increased-variance factor, x, for the Dirichlet distribution, which is 
consistently underestimated (see Tables B1 and B2 of Appendix B). 

• The slight biases seen in the abundance and natural mortality rate estimates in the case of 
multinomial returns no longer appear to exist. 

• The standard deviations (and hence CV’s) of the estimates are larger for all parameters 
(and significantly so for some parameters, in particular for the fishing mortalities at older 
ages in both fisheries). 

• Again, the standard deviations (and hence CV’s) of almost all parameter estimates decline 
as the level of observer coverage increases, and for a given parameter, the amount that the 
CV declines is roughly the same.  For example, the declines in the CV’s are still largest 
for the fishing mortality rates in the longline fishery and they are in the range of 10 to 
30% when the observer level increases from 5% to 50%. 

 
Qualitatively, the results from varying any of the factors were very similar in the model with 
Dirichlet-multinomial returns as the model with multinomial tag returns.  The parameters 
were almost always estimated with less precision (i.e. their CV’s were larger) with Dirichlet-
multinomial returns, but the relative changes in CV’s and general observations made did not 
change significantly between the models.  
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Table 6.  Mean of key reference case parameter estimates (from 100 simulations) for various 
levels of observer coverage (δ ) when overdispersion is incorporated in tag return data.  True 
parameter values are given below parameter names.  The values for  are expressed in 
millions. 

1P

 1P  1M  5M  1
SF  2

SF  3
SF  4

SF  5
SF  1

LLF  2
LLF  3

LLF  4
LLF  5

LLF  
δ   2.0 0.4 0.2 0.001 0.044 0.282 0.074 0.012 0.000 0.009 0.058 0.109 0.091 
0.05 1.94 0.398 0.193 0.001 0.045 0.297 0.084 0.015 0.000 0.009 0.059 0.111 0.106 
0.10 1.95 0.397 0.198 0.001 0.044 0.288 0.084 0.015 0.000 0.009 0.059 0.111 0.104 
0.20 2.00 0.400 0.219 0.001 0.044 0.299 0.084 0.016 0.000 0.009 0.060 0.117 0.116 
0.30 2.02 0.411 0.205 0.001 0.044 0.298 0.082 0.015 0.000 0.009 0.060 0.114 0.114 
0.50 1.99 0.399 0.190 0.001 0.045 0.289 0.078 0.013 0.000 0.009 0.058 0.112 0.103 
 
 
Table 7. Standard deviation of key reference case parameter estimates (from 100 
simulations) for various levels of observer coverage (δ ) when overdispersion is incorporated 
in tag return data.  The values for  are expressed in millions. 1P

δ  1P  1M  5M  1
SF  2

SF  3
SF  4

SF  5
SF  1

LLF  2
LLF  3

LLF  4
LLF  5

LLF  
0.05 0.30 0.097 0.211 0.000 0.010 0.066 0.033 0.010 0.000 0.004 0.023 0.050 0.074 
0.10 0.30 0.104 0.215 0.000 0.009 0.065 0.032 0.011 0.000 0.003 0.018 0.039 0.065 
0.20 0.28 0.087 0.223 0.000 0.009 0.063 0.029 0.010 0.000 0.002 0.015 0.043 0.075 
0.30 0.24 0.086 0.218 0.000 0.008 0.060 0.027 0.009 0.000 0.002 0.012 0.038 0.065 
0.50 0.25 0.086 0.204 0.000 0.009 0.059 0.024 0.008 0.000 0.001 0.010 0.035 0.056 
 

Discussion 
The estimation framework and simulation results presented in this paper provide insights into 
design issues for the tagging program currently being conducted as part of the CCSBT SRP, 
in particular into appropriate levels of observer coverage and tag releases.  Observer coverage 
to date has generally been minimal (<5%) (Anon. 2003). The results suggest that increasing 
observer coverage can lead to significant improvements in the precision of the fishing 
mortality rate estimates for the longline fishery, as well as smaller improvements in the 
estimate of population abundance.  The number of tags that have been released in recent 
years as part of the CCSBT SRP tagging program appear to be adequate.  Doubling the 
number of releases at each age led to only marginal improvements in any of the parameter 
estimates.  On the contrary, halving the number of releases noticeably degraded some of the 
parameter estimates; thus, we would caution against reducing the number of releases without 
further investigation.   
 
An advantage to having a multi-component fishery is that, if the catches by component are 
known well, then reporting rates only need to be estimated well in one component in order to 
get reasonable estimates of reporting rates (and hence other parameters) in other components 
(Hearn et al. 2003).  This relies on the assumption that recapture rates of tagged fish (i.e. 
number of tags per unit of catch) are the same in all components (i.e. complete mixing).  
Then, knowing the reporting rate in one component means the recapture rate is known in that 
component, so that the number of tags that should have been returned in another component 
to achieve the same recapture rate can be calculated.  We see evidence of this in our 
simulations because the reporting rates in the surface fishery are estimated very well so that 
even when the level of observer coverage is only 5% in the longline fishery, the reporting 
rates (and hence fishing mortality rates) in the longline fishery can still be estimated 
reasonably well. In essence, the observer data are not contributing substantially to the 

 A9-19



Appendix 9: Exploring design trade-offs in a 2-fishery integrated tagging and catch model 

estimation of reporting rates; instead, the reporting rates for the longline fishery are being 
derived in most part from extrapolation from the surface fishery return rates.  On the 
contrary, if we were to assume that there is no information about reporting rates in the surface 
fishery (e.g. no tag seeding data), then our ability to estimate the reporting rates in the 
longline fishery, as determined by the level of observer coverage, would have a larger 
influence on the reporting rate and fishing mortality rate estimates in the surface fishery (see 
Figure 8).  The degree of influence will be greater when the surface catches are known with 
high precision (Figure 8a) versus when they are known with less precision (Figure 8b).  It is 
interesting to note that when there is no information on reporting rates in the surface fishery, 
the level of observer coverage becomes more influential not only on the estimation of the 
surface fishery parameters, but also on the estimation of the initial population size parameter. 
 
There are several disadvantages of basing reporting rates for the longline fishery on 
extrapolation from the surface fishery instead of obtaining independent estimates from 
observer data.  Firstly, extrapolation from the surface fishery precludes the ability to test for 
significant non-mixing.  Low return rates of tags in one fishery component could be the result 
of either low reporting rates or the fact that tagged fish did not mix with the portion of the 
stock being fished by this fishery component.  These two possibilities are unresolvable 
without direct information on the reporting rates in the different fishery components.  This 
issue is particularly of concern for SBT longline fisheries given the large spatial/temporal 
scales on which these fisheries operate and the spatially-restricted nature of the current 
tagging operations.  For example, if low tag return rates are found for longline vessels fishing 
off South Africa, this could be due to low reporting rates or the fact that low numbers of 
tagged fish actually mixed with fish off South Africa.  The implications of these two 
alternatives could be large in terms of estimates of mortality rates and population size; simply 
assuming complete mixing when it does not exist will bias these estimates.  Furthermore, if 
non-mixing exists, then the extrapolated reporting rates will be biased, which will compound 
the biases already introduced into the mortality rate and population size estimates due to non-
mixing.  Moreover, the use of extrapolated reporting rates prevents the application of more 
spatially-explicit tag recovery models to account for heterogeneity in recapture probabilities 
as a result of non-mixing. 
 
The model with multinomial tag returns assumes complete mixing of tagged and untagged 
fish, and that the fate of each tagged fish is independent of the fate of other tagged fish.  The 
first of these assumptions may be violated in the case of SBT because their distribution is 
often patchy and juvenile fish tend to form schools.  The second assumption is also likely to 
be violated for SBT because tagging generally occurs over a limited geographic area and a 
limited time period, and multiple fish from the same school are often tagged.  If fish tagged 
from the same school or within close time and proximity of each other have a tendency to 
behave similarly, then their recapture probabilities would be positively correlated.  Either 
non-mixing or dependence between tagged fish would mean that the return data are 
overdispersed. We attempted to incorporate overdispersion into our model by modelling the 
tag return data as Dirichlet-multinomial, which allows for extra variability compared to that 
of a multinomial distribution.  We parameterized the Dirichlet-multinomial distribution so 
that the amount of extra variability was a constant factor, regardless of the number of 
releases.  It may be argued that if the overdispersion stems mainly from non-independence 
among tagged fish, then tagging more fish will reduce this source of variance (assuming more 
releases would mean fish from a larger number of schools and a larger geographical and 
temporal range would be tagged).  In such a case, the overdispersion should be modelled as a 
function of the number of releases.  Determining the sources of overdispersion, their relative 
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magnitudes, and the most appropriate way to model them is an issue requiring further 
investigation.   
 
In modelling the catch-at-age data as Gaussian, we argued that the multinomial process error 
should be negligible compared to the sampling error (assumed to Gaussian), so that only the 
latter source of error needed to be considered.  However, if fish are not distributed 
homogeneously in space or time, or if there is large variability in the size/age selectivities of 
vessels, then the process error would be overdispersed relative to a multinomial distribution.  
Furthermore, the sampling error would be larger (i.e. the CV of the Gaussian distribution 
would be larger).  In this case, it is not clear if the process error would still be negligible 
compared to the sampling error, nor is it clear how the relationship between the CV of the 
sampling error and the level of sampling (i.e. the level of observer coverage for the longline 
fishery) should be modelled.  More observer data should still mean a reduction in the 
sampling error (i.e. a smaller CV), but the amount of reduction will depend on the nature of 
the increased observer coverage.  If all of the additional observer data comes from only a few 
vessels/cruises, then the gain will be much less than if it comes from a large number of 
vessels/cruises operating over a wide geographic range.  Developing an appropriate error 
model for the catch-at-age data is an important area for future work because it is critical for 
understanding the statistical properties of the parameter estimates obtained from the tagging 
and catch model.    
 
In all of our results, the natural mortality rate at age 1, 1M , is estimated with reasonable 
precision, even in the model with overdispersion (CV around 20-25%).  On the other hand, 
the natural mortality rate at age 5, 5M , is estimated with very low precision (CV over 100% 
in the case of overdispersion), and a histogram of the estimates for any set of simulations 
shows that the estimate of 5M  usually equals either the lower bound (0.01) or upper bound 
(0.4) set for this parameter.  While this causes some concern, it is important to recall that 
natural mortality has been constrained to be a linear function of age, so that the natural 
mortality rate estimates for ages 2 to 4 will have CV’s intermediate to those at ages 1 and 5.  
For example, we calculated the natural mortality estimates at all ages for the reference case 
simulations and found their CV’s to be 0.14, 0.14, 0.28, 0.52 and 0.89 for ages 1 to 5 
respectively.    
 
The initial population size ( ) was estimated well in all cases (CV less than 20%), even 
when many of the fishing and natural mortality rate parameters were not.  At first this seems 
counter-intuitive.  However, on further consideration, it can be explained by the presence of 
high positive correlations between natural mortality and fishing mortality (see discussion 
below).  If natural mortality is overestimated for a particular set of data, then fishing 
mortality is also likely to be overestimated since fishing and natural mortality are positively 
correlated.  An overestimation of natural mortality would mean the probability of catching a 
fish is underestimated, whereas an overestimation of fishing mortality would mean the 
probability of catching a fish is overestimated; thus, the two counteract each other such that 
the probability of catching a fish may be estimated without any bias.  A similar argument 
holds if natural mortality was underestimated.  For estimating population size, it is the 
estimate of the probability of catching a fish that matters, not the actual estimates of natural 
and fishing mortalities (since, in simplistic terms, catch equals population size times 
probability of catching a fish, so if we know the catch and the probability of catch well, then 
we know the population size well).      

1P
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High correlations exist between many of the parameter estimates (see Appendix B, Table 
B5).  As already mentioned, there are some high positive correlations between the natural 
mortality and fishing mortality estimates, especially at older ages.  This is expected because 
an increase in natural mortality means that less fish are still alive in the population; thus, in 
order to achieve a particular level of catch, fishing mortality must increase (i.e. the 
percentage of the population caught must increase) as natural mortality increases.  For the 
same reason, the fishing mortality rates between ages and fisheries are often highly positively 
correlated.  For example, if fishing mortality at age i increases, then there are less fish of age 
i+1 alive in the population the next year; thus, in order to achieve a particular level of catch 
at age i+1, the fishing morality at age i+1 would have to increase if fishing mortality at age i 
increased.  Finally, there are high negative correlations between the initial population size 
and the fishing mortality estimates.  These can be explained in a similar fashion, because to 
have achieved a particular level of catch, the population size must have been larger if the 
fishing mortality had been low than if it had been high.  
 
The results presented here are for a tagging experiment involving a single cohort. In practice, 
it would likely be feasible and cost efficient to tag two or more cohorts in any given year, and 
this is done in the case of SBT.  This could improve the information available for estimating 
reporting rates since we assume that reporting rates differ only by year, and not age.  Perhaps 
more importantly, if mortality rates are assumed to vary only with age and not year, then 
having data from more cohorts could potentially improve our ability to estimate natural 
mortality rates, which we have seen is quite poor.  In order to evaluate the potential benefit of 
including more cohorts, we ran some simulations using data for two consecutive cohorts, 
both with 3 consecutive release years and 5 recapture years (i.e. cohort 1 was tagged in years 
1, 2 and 3 at ages 1, 2 and 3 and recaptured in years 1 to 5; cohort 2 was tagged in years 2, 3 
and 4 at ages 1, 2 and 3 and recaptured in years 2 to 6).  We allowed fishing mortality rates to 
vary with age, year and fishery; natural mortality rates to vary with age; and reporting rates to 
vary with year and fishery.  A small improvement was seen in the estimate of 1M   (3-4% 
decrease in CV) and a slightly larger improvement in the estimate of 5M  (5-10% decrease in 
CV).  Further improvements would be expected with the inclusion of even more cohorts, and 
data from multiple cohorts should be available from the current SBT tagging program.   
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Figure 1.  The assumed relationship between level of observer coverage and accuracy (i.e. 
the coefficient of variation) of the catch-at-age data for the longline fishery. 
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Figure 2. Effect of varying the level of observer coverage on the coefficient of variation 
(CV) of the key parameter estimates.   
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Figure 3. Effect of varying the number of releases (N) on the coefficient of variation (CV) of 
the key parameter estimates when the level of observer coverage is 0.10.  N refers to the 
reference case number of releases. 
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Figure 4. Effect of varying the reporting rate in the unobserved component of the longline 
fishery (LL rep rate) on the coefficient of variation (CV) of the key parameter estimates.   
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Figure 5. Effect of varying a) the magnitude of the reporting rates in the surface fishery (surf 
rep rate); and b) the standard error (SE) of the reporting rate estimates for the surface fishery, 
on the coefficient of variation (CV) of the key parameter estimates.   
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Figure 6. Effect of varying the coefficient of variation of the catch-at-age data in the surface 
fishery (CV_surf) on the coefficient of variation (CV) of the key parameter estimates. 
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Figure 7.  Effect of varying the level of observer coverage on the coefficient of variation 
(CV) of the key parameter estimates for the model with overdispersion in the tag return data. 
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Figure 8.  Effect of varying the level of observer coverage on the coefficient of variation 
(CV) of the key parameter estimates when there is no information about reporting rates for 
the surface fishery and a) the surface catch data are known with high precision (CV=0.05); b) 
the surface catch data are know with less precision (CV=0.20).  Results are shown for model 
with multinomial tag returns. 
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Appendix A.   
The notation and parameterizations used in this Appendix were chosen to be representative of 
the estimation model with overdispersion presented in the main body of the paper.   Thus, in 
the presentation below, N represents the number of tag releases at a particular age, 1 1, , kR R −K  
represent the number of tag returns at ages 1 to 1k − , and kR  represents the number of tags 
that were not returned by age k.  The π ’s are the random Dirichlet probabilities of return at 
age and the p’s are their expected values (in our estimation model with overdispersion, the 
p’s are analogous to the return probabilities given in equations (3)-(5)).   

The Dirichlet distribution 
The Dirichlet distribution is used to describe the variation in a set of proportions that sum to 
1.  The probability density of a set of proportions { }1 , , kπ π π= K  with parameter set 

{ }1, , , kp p pω= K  is given by: 
 

 ( ) ( )
( ) 1

1

1Pr
k

i
ik

iii

p

p
ωω

π π
ω =
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= ∏
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where 0  for all i and 1ip< <

1
1k
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p

=
=∑ . 

 
The mean and variance of the proportions are: 
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−

=
+

. 

 
Note that the Dirichlet distribution with 2k =  reduces to the beta distribution. 

The Dirichlet-multinomial distribution 
The multinomial distribution describes a situation in which N independent random trials are 
conducted and the outcome of each trial can fall into one of k categories; the probability of 
falling into category i is iπ  ( 

1
1k

ii
π

=
=∑ ).  The final category counts { }1 , , kR R R= K , where 

1

k
ii

R N
=

=∑ , have a multinomial distribution with probability density: 
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When the category probabilities are themselves viewed as random variables following a 
Dirichlet distribution, then the multinomial probability density given above describes the 
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conditional distribution of the category counts given the probabilities, which we denote by 
(Pr |R )π .  Then the unconditional distribution of the category counts is given by the 

compound distribution called the Dirichlet-multinomial with probability density: 
 
 ( ) ( ) ( )Pr Pr | PrR R d

π
π π π= ∫  

 
The integral is k-dimensional over all values of π  such 0 1iπ≤ ≤  and 

1
1k

ii
π

=
=∑ .  It is easy 

to show that the resulting distribution is: 
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The mean and variance of the category counts are: 
 
 [ ]i iE R N p=  
and 

 [ ] (1 )
1i i

NV R N p pω
ω
+⎛ ⎞= −⎜ ⎟+⎝ ⎠

i . 

 
Recall that the variance of the category counts for the multinomial distribution is (1 )i iN p p−  
so that the variance for the Dirichlet-multinomial is a factor of ( ) ( )1N ω ω+ +  times larger.  
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Appendix B.  Additional results 
 
Table B1. Mean of remaining reference case parameter estimates (from 100 simulations) for 
various levels of observer coverage (δ ). True parameter values are given below parameter 
names. 
 *

1
SF  *

2
SF  *

3
SF  *

1
LLF  *

2
LLF  *

3
LLF  

δ   0.044 0.041 0.041 0.006 0.009 0.009 
0.05 0.045 0.044 0.043 0.005 0.008 0.010 
0.10 0.045 0.044 0.043 0.006 0.009 0.007 
0.20 0.045 0.043 0.042 0.006 0.009 0.008 
0.30 0.045 0.042 0.043 0.006 0.009 0.008 
0.50 0.045 0.041 0.042 0.006 0.009 0.008 
 
 

1
Sλ  2

Sλ  3
Sλ  4

Sλ  5
Sλ  1

LLλ  2
LLλ  3

LLλ  4
LLλ  5

LLλ  
δ   0.65 0.65 0.65 0.65 0.65 0.10 0.10 0.10 0.10 0.10 
0.05 0.648 0.631 0.632 0.622 0.623 0.189 0.141 0.103 0.110 0.107 
0.10 0.644 0.633 0.633 0.624 0.626 0.146 0.117 0.101 0.101 0.101 
0.20 0.644 0.638 0.641 0.631 0.621 0.134 0.107 0.097 0.098 0.100 
0.30 0.644 0.644 0.641 0.627 0.623 0.143 0.101 0.096 0.101 0.093 
0.50 0.643 0.650 0.645 0.630 0.624 0.142 0.112 0.097 0.097 0.100 
 
 
 
Table B2. Standard deviation of remaining reference case parameter estimates (100 
simulations) for various levels of observer coverage (δ ). 
δ   *

1
SF  *

2
SF  *

3
SF  *

1
LLF  *

2
LLF  *

3
LLF  

0.05 0.008 0.009 0.043 0.005 0.005 0.008 
0.10 0.008 0.009 0.043 0.005 0.004 0.007 
0.20 0.008 0.010 0.042 0.004 0.003 0.005 
0.30 0.007 0.009 0.043 0.003 0.002 0.004 
0.50 0.006 0.009 0.042 0.002 0.002 0.004 
 
δ  1

Sλ  2
Sλ  3

Sλ  4
Sλ  5

Sλ  1
LLλ  2

LLλ  3
LLλ  4

LLλ  5
LLλ  

0.05 0.084 0.084 0.074 0.084 0.091 0.165 0.091 0.041 0.033 0.038 
0.10 0.082 0.083 0.074 0.083 0.089 0.137 0.067 0.026 0.032 0.032 
0.20 0.082 0.084 0.076 0.083 0.090 0.116 0.051 0.028 0.023 0.029 
0.30 0.082 0.078 0.072 0.082 0.087 0.119 0.042 0.024 0.023 0.029 
0.50 0.082 0.076 0.073 0.084 0.086 0.116 0.057 0.028 0.027 0.038 
 
 
 
Table B3. Mean of remaining reference case parameter estimates not in Table 5 (from 100 
simulations) for various levels of observer coverage (δ ) when overdispersion is incorporated 
in tag return data. True parameter values are given below parameter names.   
 *

1
SF  *

2
SF  *

3
SF  *

1
LLF  *

2
LLF  *

3
LLF   x 

δ   0.044 0.041 0.041 0.006 0.009 0.009  3.0 
0.05 0.045 0.043 0.045 0.007 0.010 0.011  1.86 
0.10 0.045 0.044 0.044 0.006 0.009 0.008  1.89 
0.20 0.046 0.044 0.045 0.006 0.009 0.009  1.81 
0.30 0.047 0.043 0.044 0.007 0.009 0.008  1.86 
0.50 0.046 0.042 0.043 0.007 0.009 0.009  1.82 
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1
Sλ  2

Sλ  3
Sλ  4

Sλ  5
Sλ  1

LLλ  2
LLλ  3

LLλ  4
LLλ  5

LLλ  
δ   0.65 0.65 0.65 0.65 0.65 0.10 0.10 0.10 0.10 0.10 
0.05 0.643 0.640 0.641 0.631 0.613 0.185 0.134 0.122 0.120 0.110 
0.10 0.643 0.636 0.653 0.624 0.622 0.175 0.126 0.111 0.109 0.106 
0.20 0.643 0.636 0.642 0.627 0.621 0.119 0.125 0.104 0.104 0.097 
0.30 0.643 0.646 0.648 0.623 0.611 0.133 0.121 0.108 0.109 0.096 
0.50 0.649 0.642 0.651 0.632 0.617 0.126 0.113 0.104 0.103 0.099 
 
 
 
Table B4. Standard deviation of remaining reference case parameter estimates (100 
simulations) for various levels of observer coverage (δ ) when overdispersion is incorporated 
in tag return data.  
δ   *

1
SF  *

2
SF  *

3
SF  *

1
LLF  *

2
LLF  *

3
LLF   x 

0.05 0.012 0.011 0.018 0.012 0.008 0.016  0.35 
0.10 0.012 0.011 0.016 0.008 0.006 0.010  0.42 
0.20 0.013 0.012 0.016 0.005 0.005 0.010  0.31 
0.30 0.015 0.011 0.017 0.005 0.004 0.008  0.42 
0.50 0.013 0.008 0.015 0.004 0.003 0.007  0.34 
 
δ  1

Sλ  2
Sλ  3

Sλ  4
Sλ  5

Sλ  1
LLλ  2

LLλ  3
LLλ  4

LLλ  5
LLλ  

0.05 0.083 0.089 0.084 0.084 0.097 0.170 0.087 0.070 0.060 0.065 
0.10 0.083 0.088 0.084 0.080 0.094 0.162 0.090 0.055 0.046 0.053 
0.20 0.082 0.083 0.085 0.083 0.092 0.119 0.092 0.043 0.039 0.046 
0.30 0.081 0.091 0.079 0.091 0.104 0.126 0.094 0.046 0.043 0.042 
0.50 0.085 0.084 0.095 0.082 0.099 0.127 0.083 0.056 0.047 0.049 
 
 
 
Table B5. Correlations between key parameter estimates for the reference case simulations 
(those with magnitude ≥ 0.5 are shaded). 
 1M  5M  1

SF  2
SF  3

SF  4
SF  5

SF  1
LLF  2

LLF  3
LLF  4

LLF  5
LLF  1P  

1M  1.0 -0.27 -0.07 0.15 0.24 0.14 0.05 -0.04 0.08 0.20 0.17 0.07 0.13 
5M   1.00 -0.04 -0.01 0.16 0.50 0.71 -0.01 -0.01 0.26 0.54 0.71 0.02 

1
SF    1.00 0.50 0.51 0.42 0.31 0.35 0.36 0.44 0.34 0.23 -0.69 

2
SF     1.00 0.64 0.52 0.4 0.36 0.49 0.56 0.49 0.38 -0.69 

3
SF      1.00 0.76 0.61 0.38 0.45 0.68 0.66 0.57 -0.69 

4
SF       1.00 0.82 0.28 0.37 0.70 0.80 0.77 -0.57 

5
SF        1.00 0.23 0.27 0.61 0.81 0.86 -0.40 

1
LLF         1.00 0.32 0.35 0.27 0.20 -0.48 

2
LLF          1.00 0.34 0.32 0.27 -0.51 

3
LLF           1.00 0.68 0.56 -0.63 

4
LLF            1.00 0.78 -0.52 

5
LLF             1.00 -0.36 

1P              1.00 
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1 Introduction

In the design and analysis of tagging experiments, spatial heterogeneity and incom-

plete mixing of tagged and untagged fish throughout the population of interest are

critical issues to consider. If non-trivial levels of spatial heterogeneity and/or in-

complete mixing exist, then they must be accounted for in the design and analysis

stages in order to get reliable estimates of mortality rates and abundance as well

as the uncertainty in these estimates. In the current appendix, we expand the inte-

grated multi-year tagging and catch-at-age model developed in Appendix 5 to allow

for abundance and fishing mortality to differ among defined regions and for fish to

move among these regions. This model assumes 100% (or known) reporting rates.

We then expand the spatial model to incorporate the estimation of reporting rates

using observer data, in a similar manner to how the non-spatial model was expanded

in Appendix 7.

The spatial framework considered here is generic, without any restrictions on

the movement patterns (i.e., transition probabilities) between regions. As long as

the underlying spatial structure and time periods in the model are appropriate and

the transition probabilities are allowed to vary with age and year/time-period, this

framework should be able to represent most movement dynamics reasonably well.

For a given cohort of tagged fish, the spatial integrated multi-year tagging

and catch-at-age models can provide age-specific estimates of natural mortality, age-

and region-specific estimates of fishing mortality, region-specific estimates of abun-

dance at the time of initial tagging, as well as age-specific transition rates between

regions (issues of parameter identifiability are discussed in Appendix 13). In the

model using observer data, age- and region-specific reporting rate estimates are also

obtained. Often, however, it is not the regional parameter estimates for fishing mor-

tality and abundance that are of primary interest, but rather the population-wide

estimates (i.e., over all regions). Such population-wide estimates can be obtained

using a non-spatial model, however we would expect them to be biased if spatial

heterogeneity exists. To investigate the consequences (biases) of not allowing for
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spatial heterogeneity when it exists, we compare estimates of total fishing mortality

and abundance when regional data are analysed using the spatial model versus when

the data are pooled across all regions and analysed using the equivalent non-spatial

model (e.g., results from the spatial model with observers are compared with results

from the non-spatial model with observers). Results for a range of scenarios are

presented in order to explore in which situations spatial tag designs and models are

necessary.

The above spatial models only consider tagging experiments using conven-

tional tags, for which the time and location of release and recapture are known but

no information between release and recapture is available. For a spatial model, the

location of a fish between release and recapture is potentially very useful informa-

tion; thus, we consider the benefit of supplementing the conventional tag releases

with some archival tag releases, for which the entire spatial history of a fish between

release and recapture is known.

Finally, the above models make the common assumption that the tag-recapture

data are multinomially distributed. In most cases, the tag-recapture data will ex-

hibit more variation than a multinomial model predicts (i.e., will be overdispersed

multinomial) due to spatial heterogeneity and incomplete mixing. Although the spa-

tial model is intended to account for much of this, some overdispersion is still likely

to exist due to the patchy distribution (e.g., schooling nature) of many fish species.

Thus, we show how the spatial model can be expanded to incorporate overdispersion

in the tag-recapture data.

In summary, details and results for the following models will be presented in

this appendix (in all cases, multi-year tag-recapture data and catch-at-age data are

assumed to be available):

1. Spatial model applied to regional data, 100% reporting rates.

2. Non-spatial model applied to data pooled over regions, 100% reporting rates.

3. Spatial model applied to regional data, reporting rates estimated using ob-

server data.
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4. Non-spatial model applied to data pooled over regions, reporting rates esti-

mated using observer data.

5. Model (1) including a proportion of archival tag releases.

6. Model (1) allowing for more variability in the tag-recapture data than a multi-

nomial distribution predicts.

2 Model 1: the generic spatial Brownie model

Model (1) will, for brevity, be referred to as the generic spatial Brownie model (or

often just the generic base model), noting that historically Brownie models do not

include catch-at-age data and it would more accurately be referred to as the spatial

integrated Brownie and Petersen model .

In order to make the problem tractable, we divide time into t = 1, 2, . . . , T

time periods, and space into r = 1, 2, . . . , R regions. Here time period t refers to

the interval (t− 1, t]. For convenience, we will consider time periods equal to years.

For computational convenience, we shall impose a slightly artificial structure on the

fishery. During year t (that is, during the period (t− 1, t)), the fish in a region stay

within the region, but they may be caught or die naturally. Exactly at the end of

each year (that is, at time t exactly), the fish will move between regions, according

to a Markov chain model. The states of the Markov chain are the R regions, and

the movement is governed by transition probabilities that depend on the age of the

fish. This model conveniently separates the fishing and natural mortality processes

from the movement processes.

Data of two types are available in each region and time period: tag-recapture

and catch-at-age data. In our presentation of the data and the model, we shall focus

on a single cohort of fish. Because of this focus, and because we are considering time

periods of years, the age of the fish, denoted by a, equals the time period t. In short,

t = a in the model statements below.
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We now describe the model in more detail. We assume that natural mortality

depends only on age, denoted by Ma, and that fishing mortality depends on age

and region, donted by Far (so that for T years and R regions, there are TR fishing

mortality parameters). The conditional probability that a fish, alive at the beginning

of time t (age a), survives is

Sar = exp(−Ma − Far) .

Given that the fish does not survive, the probability that it is caught rather than

dies naturally is

far =
Far

Ma + Far
.

Thus, the probability that a fish, alive at the beginning of year t, is caught during

that year is

(1 − Sar) far .

If we let Rt be the region that the fish is in at the start of (and during)

time period t and Lt = 1 if the fish is alive at the start of time period t, then the

probability that the fish is alive and in region r at the start of time period t + 1 is

given by:

Pr{Rt+1 = r, Lt+1 = 1} =
R∑

r′=1

Pr{Rt = r′, Lt = 1}Str′πr′r|t . (1)

Here πrs|t is the probability of moving from region r to s at time t, that is, immedi-

ately after the interval (t − 1, t). If the fish is initially in region r0 at time t = 0, it

is assumed to remain in that region for period 1, so that Pr{R1 = r0, L1 = 1} = 1

and Pr{R1 = r, L1 = 1} = 0 for r �= r0.

Set ptr = Pr{Rt = r, Lt = 1}. Given Str and πrs|t, we can write the updating

equations (1) for ptr in matrix form. For example, in the case of two regions⎛
⎜⎜⎝ pt+1,1

pt+1,2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ π11|t π21|t

π12|t π22|t

⎞
⎟⎟⎠
⎛
⎜⎜⎝ St1 0

0 St2

⎞
⎟⎟⎠
⎛
⎜⎜⎝ pt1

pt2

⎞
⎟⎟⎠ (2)

where p11 = 1, p12 = 0 or p11 = 0, p12 = 1. Reading the right-hand side of (2) from

right to left, the terms refer to the probability that a fish is alive and in a particular
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region at the start of time period t, survives the time period, and then stays in its

current region or else migrates to the other region. It is conventional to write the

transition matrix as Πt = {πrs|t}. The rows then sum to 1. Note that the matrix

⎛
⎜⎜⎝ π11|t π21|t

π12|t π22|t

⎞
⎟⎟⎠

that appears in (2) is the transpose of Πt. Thus, (2) may be written in matrix form

as

pt+1 = Π
′
t St pt , (3)

where St is the R × R diagonal matrix with rth diagonal element Str = e−Mt−Ftr .

2.1 Tagging data

The cohort of fish is tagged in each region at the beginning of each of years t′ =

1, 2, . . . , T . The number of fish tagged in region r′ at the beginning of time t′ is

Nt′r′; we shall refer to these fish as tagging group Gt′r′. Recaptures of tagged fish

occur over the same regions and years as releases.

For any given tagging group, the vectors pt from (3) can be generated by

following the principles outlined in the previous section. After this, we can calculate

the probability that the tag is returned from region r during year t. In the base

model we assume 100% reporting of tagged fish, so the relevant probability is

qtr = ftr(1 − Str)ptr . (4)

The probability that the tag is not returned is

q̄ = 1 −
T∑

t=1

R∑
r=1

qtr .

We therefore obtain a set of probabilities.

q = (q̄, q11, q12, . . . , q1R, q21, q21, . . . , q2R, . . . , qT1, qT2, . . . , qTR) (5)
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For the tagging group Gt′r′, we will denote its corresponding vector q by q|t′r′ , with

elements q̄|t′r′ and qtr|t′r′ . If, for example, there are R = 3 regions and T = 3 years,

there will be RT = 9 tagging groups and, thus, RT = 9 separate vectors q. For the

R groups tagged at the beginning of year 1, the only substantive difference is that

the initial vectors p1 are different. For the R groups tagged at the beginning of year

2, the elements q1r of q are all 0. Similarly, the groups tagged at the beginning of

year t + 1 have all elements qjr = 0 for j ≤ t (i.e., the probability of a tag being

returned from a fish before it has been tagged is 0).

2.2 Catch-at-age data

We now look at the model for catch-at-age data. Again we concentrate on a single

cohort, the same as for the tag-recapture data. A complication with catch-at-age

data is that, since the fish do not have tags, we do not know their origins. However,

we do know their ages, hence we can work out in which year they were one-year-olds.

Suppose the population size of age 1 fish at t = 0 (i.e., at the beginning of year 1)

in region r0 is Pr0. Then the probability of a fish originating in region r0 being

recaptured in region r in year t is qtr|1r0
. Thus, the probability of being recaptured

in region r during time period t regardless of its source is

qtr|1. =

∑R
r0=1 qtr|1r0

Pr0∑R
r0=1 Pr0

.

Denote the expected catch of this cohort in region r during time period t as µtr.

Then

µtr =
R∑

r0=1

qtr|1r0Pr0 .

2.3 Inference

Inference for these data is fairly trivial. Suppose we put the tag-recapture data

into a matrix n of dimension I × J , in which the data in row i are the numbers of

recaptures by region and time period from tagging group i (thus, I = RT ). The

first entry of each row is the number of unrecaptured tags, so that J = 1+RT . The
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probabilities of recapture are placed into a corresponding matrix Q. Row i of Q is

the vector q from (5) for the relevant tagging group. Each row of data is treated

independently as multinomial data — this implies that we regard sampling variation

as the only significant source of variation in the data.

The log-likelihood is (apart from an additive constant)

ltag =
I∑

i=1

J∑
j=1

nij log Qij .

If there are structural zeroes in the data, this method of computing the log-likelihood

will fail, because Qij = 0 for structural zeroes, and log Qij = −∞ then. The

likelihood for structural zeroes is 00 = 1, and the log-likelihood is 0. We can achieve

this result by the following simple device. Let

Q∗
ij =

⎧⎪⎪⎨
⎪⎪⎩

Qij if nij > 0;

0.01 otherwise.

Then

ltag =
I∑

i=1

J∑
j=1

nij log Q∗
ij .

For the catch-at-age data, we adopt a Gaussian model with known coefficient

of variation c. The reasons for choosing this model are explained in Appendices 5

and 7; briefly, the Gaussian model is intended to capture the variability that occurs

due to the catch-at-age being estimated from a small length or age sample and due

to catches from different vessels having different size/age compositions. The catches

in each region and time are assumed to be statistically independent. If the catch in

region r and time t is Ctr, the log-likelihood is (apart from an additive constant)

lcatch =
T∑

t=1

R∑
r=1

[
− log µtr − 1

2

(Ctr − µtr)
2

c2µ2
tr

]
.

The parameters are estimated by maximising the total log-likelihood

l = ltag + lcatch .
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Note that when a cohort is tagged in T consecutive years, only T−1 natural mortality

rate parameters can be estimated (this is shown in Appendix 13, and is a well-

known feature in non-spatial Brownie models). Thus, the parameters esimated are

Ftr (t = 1, . . . , T and r = 1, . . . , R), Mt (t = 1, . . . , T − 1), Pr0 (r0 = 1, . . . , R),

and πrs|t (t = 1, . . . , T , r = 1, . . . , R and s = 1, . . . , R), with the constraint that∑R
s=1 πrs|t = 1.

2.4 Overall (population-wide) fishing mortality

It is often of interest to compute population-wide fishing mortality parameters,

averaged over all regions. Let Ptr be the number of fish in the cohort in region r

at time t − 1, that is, at the beginning of time period t. The number of fish that

survive over all R regions is

R∑
r=1

Ptr exp(−Ftr − Mt) .

The overall fishing mortality parameter may be defined as

Pt exp(−Ft − Mt)

where Pt =
∑R

r=1 Ptr is the total (population-wide) abundance. This equation sug-

gests that the overall fishing mortality operates in the same way as the regional

fishing mortalities, but on the total population. Solving for Ft, we obtain

Ft = − log

(∑R
r=1 Ptr exp(−Ftr)∑R

r=1 Ptr

)
.

In practice, the expected population sizes are substituted for Ptr. The true overall

fishing mortalities are computed using the true expected Ptr values and the true

fishing mortalities, and the estimated overall mortalities use the estimated expected

Ptr values and the estimated fishing mortalities Ftr. This type of reasoning is called

a counting argument in statistical circles.

Note that a slightly different definition for the overall fishing mortality would

result if we used a counting argument on the catch, or the number of natural deaths,
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in time period t. This reflects the fact that the population dynamics have been

modelled in terms of exponential and competing natural and fishing mortality rates

(i.e., both occur simultaneously and continuously throughout the time periods).

2.5 Numerical example

In order to crystallise the nature of the data, we simulate some data from the base

model using the true parameter values listed in Table 3. There are R = 3 regions

and T = 3 years.

Table 1: Tag-recapture data from the generic base model

t′ r′ Nt′r′ unreturned returned tags
tags t = 1 t = 2 t = 3

r = 1 r = 2 r = 3 r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

1 1 1415 1012 114 0 0 136 5 4 110 16 18
1 2 1415 1008 0 102 0 12 140 10 19 105 19
1 3 1415 979 0 0 123 12 4 145 18 27 107
2 1 949 640 0 0 0 162 0 0 112 18 17
2 2 949 640 0 0 0 0 148 0 12 137 12
2 3 949 644 0 0 0 0 0 161 12 22 110
3 1 636 476 0 0 0 0 0 0 160 0 0
3 2 636 495 0 0 0 0 0 0 0 141 0
3 3 636 487 0 0 0 0 0 0 0 0 149

In Table 1, t′ and r′ are the time and region of the tagging group, and Nt′r′ is the

number of fish tagged in region r′ at the beginning of time period t′. There are 1415

fish of age 1 released in each of the 3 regions, 949 fish of age 2 and 636 of age 3. The

declining number of tags reflects the declining population size with age. Of the 1415

tags released in region 1 just prior to time period 1, 114 are returned from region 1

during time period 1. None of these can be returned from regions 2 and 3 in time

period 1, because, according to the model, these fish do not migrate to the other

regions until time period 2. In each row of Table 1 the row sums are Nt′r′ — for

example, 1415 = 1012+114+0+0+136+5+4+110+16+18 in row 1. For age 2

fish tagged just prior to time period 2, there are of course no returns in time period
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1. However, it is convenient, for programming purposes, to keep all tag-recapture

data in the same format. Similar remarks apply to age 3 fish tagged just prior to

period 3. Overall, 6381/9000=70.9% of tags are not returned.

The corresponding catch-at-age data are presented in Table 2. Here we have

used a coefficient of variation of c = 0.2.

Table 2: Catch-at-age data from the generic base model

t = 1 t = 2 t = 3
r = 1 r = 2 r = 3 r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

6161.02 7912.8 9300.83 8375.81 12591.2 15421.3 10956.3 14385.3 5665.28

Of course, theoretically, the numbers in Table 2 should be integers. In our simulated

example they are not because they have been generated using a continuous Gaussian

distribution. However, even in reality, it is possible (and common) for catch-at-age

data to be non-integers since these numbers are often scaled up from samples. Note

that we simply have the catch in each region for each year. The total catch is 90770

fish.

We simulated 100 such data sets and estimated the parameters by maximum

likelihood, assuming that the coefficient of variation in the catch-at-age data, c = 0.2,

is known. In Table 3 we report the mean and the 2.5% and 97.5% quantiles of the

estimates.

Table 3: True parameter values, mean maximum likelihood

estimates and summary statistics for 100 sets of data gener-

ated from a model in which there is tagging of a single cohort

of fish in three regions for three years

Par True 2.5% Mean 97.5% Par True 2.5% Mean 97.5%

M1 0.300 0.223 0.293 0.354 π32|1 0.050 0.014 0.049 0.089
M2 0.200 0.091 0.193 0.297 π33|1 0.900 0.853 0.901 0.943
F11 0.100 0.083 0.099 0.116 π11|2 0.800 0.752 0.798 0.868
F21 0.200 0.175 0.200 0.228 π12|2 0.100 0.057 0.103 0.140
F31 0.300 0.247 0.297 0.352 π13|2 0.100 0.057 0.099 0.136
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Table 3: continued

Par True 2.5% Mean 97.5% Par True 2.5% Mean 97.5%

F12 0.100 0.081 0.100 0.113 π21|2 0.100 0.073 0.106 0.143
F22 0.200 0.174 0.198 0.226 π22|2 0.800 0.738 0.790 0.852
F32 0.300 0.258 0.299 0.359 π23|2 0.100 0.065 0.104 0.146
F13 0.100 0.080 0.099 0.118 π31|2 0.100 0.073 0.100 0.143
F23 0.200 0.175 0.199 0.222 π32|2 0.100 0.055 0.098 0.141
F33 0.300 0.245 0.295 0.339 π33|2 0.800 0.754 0.802 0.848
π11|1 0.900 0.861 0.901 0.946 log10 P1 5.000 4.866 4.982 5.076
π12|1 0.050 0.018 0.049 0.079 log10 P2 5.000 4.846 4.998 5.092
π13|1 0.050 0.022 0.050 0.087 log10 P3 5.000 4.838 4.990 5.113
π21|1 0.050 0.017 0.047 0.072 F1 0.100 0.088 0.099 0.110
π22|1 0.900 0.856 0.904 0.950 F2 0.200 0.182 0.199 0.216
π23|1 0.050 0.018 0.049 0.087 F3 0.300 0.258 0.296 0.338
π31|1 0.050 0.016 0.050 0.084

All of the parameter estimates appear to be reasonably unbiased.

3 Model 2: pooled data from the generic spatial

Brownie model

In this case the data are generated from the generic spatial Brownie model, and

then pooled over regions. The data are analysed ignoring regions. The idea is to see

whether any substantial biases are incurred by treating the data as arising from a

single region.

3.1 Tagging data

Focus on a cohort of fish. Suppose that Ni age i fish are tagged in each of years t =

1, . . . , T , and we have the number of returns for each year. Let Si = exp(−Mi −Fi)

denote the probability of survival to the end of age i, and fi = Fi/(Mi + Fi) be the

conditional probability that the fish, if it does not survive, is caught rather than dies

naturally. Here natural mortality (Mi) and fishing mortality (Fi) depend only on
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age. For T = 3 years of releases and returns, we end up with the usual (non-spatial)

Brownie model probabilities, as set out in Table 4.

Table 4: Probabilities of tag return by year after release.

t′ Nt′. t = 1 t = 2 t = 3

1 N1 (1 − S1)f1 S1(1 − S2)f2 S1S2(1 − S3)f3

2 N2 (1 − S2)f2 S2(1 − S3)f3

3 N3 (1 − S3)f3

3.2 Catch-at-age data

For the catch-at-age data, the probabilities of catching a fish at each age are simply

taken from the probabilities in row 1 of Table 4. Since we are ignoring the spatial

structure in the data, there is no need to model the data as a mixture over R regions.

3.3 Inference

Each row of the tag-recapture data is treated as multinomial with the probabilities in

the relevant table, similar to Table 4. The catch-at-age data are treated as Gaussian

with known coefficient of variation. Note that there are essential inconsistencies

in this model, in that mixtures of multinomial are not multinomial and mixtures

of Gaussians with known coefficient of variation are not Gaussian with the same

coefficient of variation. However, the point of this exercise is to see if ignoring

the underlying spatial structure matters in practice. The parameters are estimated

by maximising the joint likelihood of both data sets. Note that this is the model

described in Appendix 5.

3.4 Numerical example

The data in Table 1, when pooled over regions, results in Table 5.
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Table 5: Pooled tag-recapture data from the generic base

model

t′ Nt′. unreturned returned tags
tags t = 1 t = 2 t = 3

1 4245 2999 339 468 439
2 2847 1924 0 471 452
3 1908 1458 0 0 450

Similarly, the corresponding catch-at-age data from Table 2, when pooled over re-

gions, results in Table 6.

Table 6: Pooled catch-at-age data from the generic base

model

t = 1 t = 2 t = 3

23374.65 36388.29 31006.82

We repeated this pooling of data sets over regions for the same 100 data sets

simulated in numerical example section for the generic base model, then estimated

the parameters by maximum likelihood using the pooled model. In Table 7 we report

the mean and the 2.5% and 97.5% quantiles of the estimates.

Table 7: True parameter values, mean maximum likelihood

estimates and summary statistics for 100 sets of pooled data,

generated from a model in which there is tagging of a single

cohort of fish in three regions for three years

Par True 2.5% Mean 97.5%

M1 0.300 0.227 0.294 0.355
M2 0.200 0.091 0.194 0.300
F1 0.100 0.089 0.099 0.111
F2 0.200 0.183 0.199 0.216
F3 0.300 0.261 0.297 0.338
log10 P 5.477 5.400 5.464 5.520
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The parameter estimates appear to be unbiased in this situation, despite ignoring

the underlying spatial structure.

3.5 Comparison of estimates from spatial and pooled data

We have investigated 18 scenarios to see how well the estimation procedure works

under varying conditions. The 18 scenarios cover releases proportional to cohort

abundance in each region versus equal releases in all regions, balanced versus unbal-

anced transitions between regions, equal versus unequal cohort abundance in each

region, and equal and unequal fishing mortalities by region.

Balanced transitions mean that there is no change to the relative abundances

of a cohort among regions; e.g., if a cohort starts out with equal proportions of age

1 fish in all regions in year 1, then the cohort will still be found in equal proportions

in all regions at age 2 after transitions have occurred at the end of year 1. We

consider scenarios with either relatively high or relatively low balanced transition

rates between all regions. Unbalanced transitions mean that the proportional distri-

bution of a cohort among regions will change with time/age. Also note that equal

or unequal fishing mortalities by region refer to within a specific year/age and does

not reflect how fishing mortality varies with age (in fact, in all 18 scenarios fishing

mortality decreases with age).

Table 8 summarizes the general features of the 18 scenarios, and Tables 9 and

10 provide the specific parameter values used in each of the scenarios.

Table 8: Summary of the general features of the 18 scenarios con-

sidered (refer to text for full explanation of column headings; note

that ∝ means ‘proportional to’)

Initial Fishing
Releases Transition rates abundance mortality

Scenario ∝ abund Equal Bal,low Bal,high Unbal Equal Unequal Equal Unequal
1 x x x x
2 x x x x
3 x x x x
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Table 8: continued

Initial Fishing
Releases Transition rates abundance mortality

Scenario ∝ abund Equal Bal,low Bal,high Unbal. Equal Unequal Equal Unequal
4 x x x x
5 x x x x
6 x x x x
7 x x x x
8 x x x x
9 x x x x
10 x x x x
11 x x x x
12 x x x x
13 x x x x
14 x x x x
15 x x x x
16 x x x x
17 x x x x
18 x x x x

Table 9: True parameter values in the first 9 of the 18 scenarios

releases proportional to abundance
balanced unbal.

low high → area 3
P=

P

�= P=
P

�= P=
F=

F

�= F=
F

�= F=
F

�= F=
F

�= F=

1 2 3 4 5 6 7 8 9
M1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
M2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
F11 0.1 0.15 0.1 0.15 0.1 0.15 0.1 0.15 0.1
F21 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2
F31 0.3 0.45 0.3 0.45 0.3 0.45 0.3 0.45 0.3
F12 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
F22 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
F32 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
F13 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1
F23 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2
F33 0.3 0.15 0.3 0.15 0.3 0.15 0.3 0.15 0.3
π12|1 0.05 0.05 0.05 0.05 0.30 0.30 0.15 0.15 0.25
π13|1 0.05 0.05 0.05 0.05 0.30 0.30 0.15 0.15 0.00
π21|1 0.05 0.05 0.08 0.08 0.30 0.30 0.22 0.22 0.05
π23|1 0.05 0.05 0.08 0.08 0.30 0.30 0.22 0.22 0.25
π31|1 0.05 0.05 0.15 0.15 0.30 0.30 0.45 0.45 0.00
π32|1 0.05 0.05 0.15 0.15 0.30 0.30 0.45 0.45 0.05
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Table 9: scenarios 1 to 9: continued

1 2 3 4 5 6 7 8 9
π12|2 0.10 0.10 0.05 0.05 0.40 0.40 0.15 0.15 0.25
π13|2 0.10 0.10 0.05 0.05 0.40 0.40 0.15 0.15 0.00
π21|2 0.10 0.10 0.08 0.08 0.40 0.40 0.22 0.22 0.05
π23|2 0.10 0.10 0.08 0.08 0.40 0.40 0.22 0.22 0.25
π31|2 0.10 0.10 0.15 0.15 0.40 0.40 0.45 0.45 0.00
π32|2 0.10 0.10 0.15 0.15 0.40 0.40 0.45 0.45 0.05
P1 100000 100000 150000 150000 100000 100000 150000 150000 100000
P2 100000 100000 100000 100000 100000 100000 100000 100000 100000
P3 100000 100000 50000 50000 100000 100000 50000 50000 100000
N11 1415 1413 2123 2154 1415 1414 2123 2154 1415
N12 1415 1413 1415 1436 1415 1414 1415 1436 1415
N13 1415 1413 708 718 1415 1414 708 718 1415
N21 949 908 1423 1384 949 944 1423 1406 759
N22 949 947 949 963 949 948 949 963 949
N23 949 988 474 495 949 953 474 473 1138
N31 636 577 954 859 636 651 954 900 413
N32 636 636 636 645 636 639 636 641 611
N33 636 704 318 347 636 624 318 308 884

Table 10: True parameter values in the last 9 of the 18 scenarios

releases ∝ to abundance releases equal
unbalanced balanced unbalanced
→ area 3 low high → area 3

P=
P

�=
P

�=
P

�=
P

�=
F

�= F=
F

�= F=
F

�= F=
F

�= F=
F

�=
10 11 12 13 14 15 16 17 18

M1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
M2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
F11 0.15 0.1 0.15 0.1 0.15 0.1 0.15 0.1 0.15
F21 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3
F31 0.45 0.3 0.45 0.3 0.45 0.3 0.45 0.3 0.45
F12 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
F22 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
F32 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
F13 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05
F23 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1
F33 0.15 0.3 0.15 0.3 0.15 0.3 0.15 0.3 0.15
π12|1 0.25 0.25 0.25 0.05 0.05 0.15 0.15 0.25 0.25
π13|1 0.00 0.00 0.00 0.05 0.05 0.15 0.15 0.00 0.00
π21|1 0.05 0.05 0.05 0.08 0.08 0.22 0.22 0.05 0.05
π23|1 0.25 0.25 0.25 0.08 0.08 0.22 0.22 0.25 0.25
π31|1 0.00 0.00 0.00 0.15 0.15 0.45 0.45 0.00 0.00
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Table 10: scenarios 10 to 18: continued

10 11 12 13 14 15 16 17 18
π32|1 0.05 0.05 0.05 0.15 0.15 0.45 0.45 0.05 0.05
π12|2 0.25 0.25 0.25 0.05 0.05 0.15 0.15 0.25 0.25
π13|2 0.00 0.00 0.00 0.05 0.05 0.15 0.15 0.00 0.00
π21|2 0.05 0.05 0.05 0.08 0.08 0.22 0.22 0.05 0.05
π23|2 0.25 0.25 0.25 0.08 0.08 0.22 0.22 0.25 0.25
π31|2 0.00 0.00 0.00 0.15 0.15 0.45 0.45 0.00 0.00
π32|2 0.05 0.05 0.05 0.15 0.15 0.45 0.45 0.05 0.05
P1 100000 150000 150000 150000 150000 150000 150000 150000 150000
P2 100000 100000 100000 100000 100000 100000 100000 100000 100000
P3 100000 50000 50000 50000 50000 50000 50000 50000 50000
N11 1409 2123 2145 1000 1000 1000 1000 1000 1000
N12 1409 1415 1430 1000 1000 1000 1000 1000 1000
N13 1409 708 715 1000 1000 1000 1000 1000 1000
N21 721 1115 1074 1000 1000 1000 1000 1000 1000
N22 935 1044 1038 1000 1000 1000 1000 1000 1000
N23 1179 688 718 1000 1000 1000 1000 1000 1000
N31 359 595 523 1000 1000 1000 1000 1000 1000
N32 592 700 677 1000 1000 1000 1000 1000 1000
N33 987 613 680 1000 1000 1000 1000 1000 1000

For each of 18 scenarios, we ran 500 simulations of the data and estimated

the parameters by maximum likelihood. For each simulation, the parameters were

estimated from applying the generic spatial model to the regional data, and then

population-wide fishing mortality and abundance estimates were calculated from the

regional estimates. Population-wide parameter estimates were also estimated from

applying the non-spatial model to the pooled data for comparison. The coefficient

of variation of the catch-at-age data was assumed to be 0.2 in both the simulations

and estimation phases. The mean
¯̂
θ of the 500 maximum likelihood estimates was

the calculated for each parameter θ. We then computed the relative bias:

100 × (
¯̂
θ − θ)

θ
.

The biases are reported in Table 11. Where the true parameter value was 0, we

decided to report the absolute bias instead. However, the absolute biases were in

fact tiny, and we have indicated such cases by ∼0.0.
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Table 11: Relative biases of the parameter estimates in the 18

scenarios

releases proportional to abundance releases equal
balanced unbalanced balanced unbal.

low high → area 3 low high → 3
P=

P

�= P=
P

�= P=
P

�=
P

�=
P

�=
P

�=
F=

F

�= F=
F

�= F=
F

�= F=
F

�= F=
F

�= F=
F

�= F=
F

�= F=
F

�= F=
F

�=
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M1 -0.8 -0.9 0.4 -1.2 -1.6 -0.7 -0.9 -0.9 0.1 -0.7 -0.5 0.0 -0.1 -0.3 -1.5 0.3 -1.1 -0.3
M2 -1.2 -0.7 -1.0 -0.6 -0.9 0.1 0.3 -1.5 -1.1 0.6 -0.2 -1.5 -0.7 -0.9 1.2 -1.7 -0.2 -0.5
F11 -0.4 0.0 0.4 -0.5 -0.6 -0.2 -0.3 0.2 0.2 -0.5 0.2 0.3 0.4 0.4 0.1 0.6 -0.6 -0.1
F21 -0.1 -0.2 -0.2 -0.2 0.2 0.1 0.1 -0.4 -0.8 0.5 -0.1 -0.1 0.0 0.4 -0.1 0.5 0.3 -0.1
F31 -0.5 -0.3 0.2 0.4 0.5 0.7 0.3 0.1 0.3 0.4 0.6 0.1 -0.5 0.1 0.3 0.0 0.1 0.0
F12 0.4 -0.1 -0.3 -0.3 -0.7 -0.1 -0.1 -0.4 0.6 -0.3 -0.7 -0.1 -0.5 -0.1 -0.4 0.4 -0.4 -1.0
F22 -0.3 0.1 0.0 -0.3 -0.7 0.5 -0.3 0.0 0.1 0.2 0.1 0.0 -0.3 0.1 0.2 0.2 0.3 0.3
F32 0.3 -0.2 -0.1 0.1 0.2 0.4 -0.2 0.1 0.4 0.3 0.2 0.1 0.3 -0.1 0.7 0.1 0.1 0.5
F13 -0.4 -0.3 0.4 1.1 0.5 -0.5 -0.1 1.2 0.2 -0.6 0.4 -1.4 0.7 0.3 0.1 0.7 -0.6 0.9
F23 -0.3 -0.1 0.1 -0.7 0.2 0.5 0.6 -0.5 -0.2 0.1 -0.2 -0.1 0.9 -0.4 0.5 0.0 -0.4 0.0
F33 -0.1 -0.3 0.0 -0.6 -0.9 1.1 0.6 0.3 0.1 0.4 0.5 -0.4 0.0 0.3 -0.2 -0.6 -0.5 0.1
π11|1 0.0 0.1 0.0 -0.1 -0.8 1.2 -0.3 -0.2 0.1 0.1 0.1 0.2 0.0 0.1 0.0 -0.2 0.2 0.2
π12|1 -1.7 -1.0 -1.3 0.7 0.8 -0.8 0.9 -0.4 -0.4 -0.5 -0.3 -0.5 -0.2 -1.9 0.0 -1.0 -0.5 -0.7
π13|1 0.8 -0.3 1.3 0.7 0.3 -0.9 0.2 1.6 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.7 0.3 0.2 1.8 ∼0.0 ∼0.0
π21|1 -1.7 -0.3 0.8 0.2 -0.8 0.8 -0.1 -0.1 0.3 1.7 -0.6 1.1 -1.2 0.1 0.3 -1.3 0.0 3.0
π22|1 0.1 -0.2 0.2 -0.1 0.5 0.4 -0.1 -0.2 -0.1 -0.4 0.3 0.0 0.0 0.1 -0.3 -0.1 -0.1 -0.2
π23|1 0.1 4.0 -2.6 0.7 0.1 -1.4 0.2 0.7 0.2 0.7 -0.8 -0.2 1.7 -1.4 0.4 1.6 0.2 -0.1
π31|1 0.7 0.1 0.4 -2.7 0.2 -0.3 -0.3 -0.6 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.5 -1.0 -0.3 -0.8 ∼0.0 ∼0.0
π32|1 -2.2 2.3 0.1 -2.2 0.6 0.5 0.2 0.1 -1.6 0.2 -2.0 -1.1 1.3 -0.1 0.3 0.6 -4.3 -2.7
π33|1 0.1 -0.1 -0.1 1.0 -0.6 -0.1 0.3 2.4 0.1 0.0 0.0 0.0 -0.4 0.2 0.0 1.3 0.2 0.1
π11|2 -0.1 0.1 -0.1 -0.2 0.1 -0.1 -0.2 -0.7 0.1 0.0 -0.4 0.1 -0.1 0.0 0.0 -0.2 -0.3 0.0
π12|2 0.5 -0.1 -0.5 -0.4 -0.4 0.3 0.6 0.8 -0.3 -0.1 1.1 -0.2 -0.6 1.1 0.3 0.3 0.9 0.1
π13|2 0.0 -0.4 2.0 4.4 0.3 -0.3 0.2 2.5 ∼0.0 ∼0.0 ∼0.0 ∼0.0 1.7 -0.3 -0.2 0.6 ∼0.0 ∼0.0
π21|2 1.1 0.0 0.6 -0.1 -0.1 0.0 -0.2 0.5 0.5 -2.6 -3.1 0.1 0.0 -0.3 -0.3 0.0 -0.2 -1.3
π22|2 -0.2 0.1 -0.1 0.1 -0.6 0.5 0.1 -0.4 0.0 0.1 -0.1 -0.5 -0.1 -0.1 0.0 -0.3 -0.1 0.0
π23|2 0.9 -0.5 0.0 -0.6 0.3 -0.3 -0.2 0.5 0.0 0.3 0.8 1.3 0.8 1.8 0.2 0.7 0.4 0.2
π31|2 0.9 1.9 -0.3 0.4 -0.1 -0.7 0.1 -0.7 ∼0.0 ∼0.0 ∼0.0 ∼0.0 0.7 -0.3 0.3 0.1 ∼0.0 ∼0.0
π32|2 -0.5 -0.7 0.9 -1.2 -0.4 -0.2 -0.2 0.8 -0.4 0.9 0.9 0.5 0.7 0.0 -0.6 -0.6 1.8 1.3
π33|2 0.0 -0.1 -0.1 0.2 1.0 1.9 0.4 -0.5 0.0 -0.1 -0.1 -0.1 -0.3 0.1 1.3 2.3 -0.1 -0.1
P1 -1.4 -1.4 -2.0 -0.8 0.7 -3.1 -1.0 -0.9 -1.2 -0.4 -1.1 -1.9 -1.0 -2.0 -0.7 -1.0 -1.3 -1.2
P2 -2.2 -1.8 -0.6 -1.3 -1.2 -1.6 -0.6 -2.1 -2.1 -1.0 -1.2 -0.9 -1.1 -0.5 -2.1 -1.3 -0.2 -0.8
P3 -1.3 -1.7 -0.3 -2.3 -2.4 -1.4 -3.2 -0.9 -1.9 -2.3 -1.7 -1.4 -1.9 -2.1 -2.6 -0.4 -2.2 -1.8

relative biases of population-wide estimates from the spatial data
M1 -0.8 -0.9 0.4 -1.2 -1.6 -0.7 -0.9 -0.9 0.1 -0.7 -0.5 0.0 -0.1 -0.3 -1.5 0.3 -1.1 -0.3
M2 -1.2 -0.7 -1.0 -0.6 -0.9 0.1 0.3 -1.5 -1.1 0.6 -0.2 -1.5 -0.7 -0.9 1.2 -1.7 -0.2 -0.5
F1 -0.3 -0.3 -0.1 -0.4 -1.0 -1.1 -0.7 -0.4 0.1 -0.4 -0.4 -0.4 -0.2 -0.2 -0.7 -0.1 -1.0 -0.6
F2 -0.4 -0.2 -0.2 -0.4 -0.5 0.1 -0.2 -0.7 -0.4 0.5 -0.2 -0.3 -0.1 0.0 -0.2 -0.2 -0.1 -0.1
F3 -0.3 -0.3 -0.2 -0.1 -0.5 0.1 -0.2 -0.4 0.1 0.4 0.2 -0.4 -0.3 -0.2 0.1 -0.4 -0.3 0.0
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Table 11: relative biases: continued

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

P -1.6 -1.6 -1.2 -1.2 -1.0 -2.0 -1.3 -1.3 -1.7 -1.3 -1.3 -1.5 -1.2 -1.5 -1.5 -1.0 -1.1 -1.2

relative biases of population-wide estimates from the pooled data
M1 -0.7 -0.8 0.5 -0.8 -1.0 -0.3 -0.5 -0.4 0.3 -0.5 -0.2 0.1 0.3 -7.6 -0.9 -14.0 -0.8 20.9
M2 -0.7 -0.6 -0.4 0.0 0.1 1.8 1.3 0.4 -0.8 1.2 0.2 -0.9 -0.3 -9.2 1.3 -45.2 0.2 37.8
F1 -0.1 0.0 0.2 -0.2 -0.1 0.0 0.0 0.3 0.4 -0.3 0.1 0.0 0.4 -14.6 0.2 -14.8 -0.5 -11.7
F2 -0.2 -0.1 0.0 -0.2 -0.2 0.4 0.1 -0.2 -0.3 0.3 -0.1 0.0 0.2 -14.0 0.1 -14.9 0.0 -2.8
F3 -0.1 -0.2 0.1 0.3 0.0 0.9 0.2 0.4 0.3 0.5 0.4 0.1 -0.1 -13.3 0.3 -18.3 -0.1 8.9
P -3.1 -2.9 -2.6 -2.2 -2.5 -3.5 -2.7 -2.7 -3.1 -2.4 -2.7 -2.8 -2.6 6.6 -2.7 3.2 -2.4 9.6

In all 18 scenarios, all of the parameter estimates obtained using the spatial

model appear to be unbiased. Although most estimates obtained from the pooled

data and non-spatial model are unbiased, there are some exceptions. First, in all

scenarios, the population-wide initial abundance estimate has a larger bias when

estimated from the pooled data than when estimated from the spatial data. Second,

for scenarios 14, 16 and 18, large biases occur in almost all parameter estimates

obtained from the pooled data; these are the scenarios for which, within a given

year, tagging is not in proportion to abundance and fishing mortalities are unequal

across regions.

The coefficients of variation are reported in Table 12. The very large values

occur when the true value of a parameter is 0.

Table 12: Coefficients of variation of the parameter estimates in the 18 scenar-

ios

releases proportional to abundance releases equal
balanced unbalanced balanced unbal.

low high → area 3 low high → 3

P
=

P

�= P
=

P

�= P
=

P

�=
P

�=
P

�=
P

�=
F
=

F

�= F
=

F

�= F
=

F

�= F
=

F

�= F
=

F

�= F
=

F

�= F
=

F

�= F
=

F

�= F
=

F

�=
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M1 13 13 13 12 12 13 13 12 12 14 12 13 14 13 14 13 13 15
M2 26 28 25 25 26 26 26 26 27 27 26 27 22 21 24 24 21 24
F11 9 7 7 6 9 8 7 6 8 7 7 6 10 9 10 9 10 9
F21 7 6 5 5 8 7 5 5 7 7 6 6 7 6 7 6 7 6
F31 9 8 7 8 10 8 8 7 10 10 9 9 7 6 8 7 7 7
F12 9 9 9 9 9 9 9 9 9 9 8 9 11 10 11 10 10 11
F22 6 7 6 6 8 8 7 7 7 7 7 6 7 7 7 7 7 7
F32 9 9 9 9 10 10 10 9 9 9 9 9 7 7 8 7 7 8
F13 9 12 12 16 10 12 13 17 9 12 12 16 10 14 11 16 11 15
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Table 12: coefficients of variation: continued

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

F23 7 9 9 11 8 10 11 14 6 8 7 9 7 9 8 11 7 8
F33 9 10 11 12 10 12 13 17 8 9 9 9 7 9 7 9 7 9
π11|1 3 3 2 2 11 10 4 5 4 4 4 3 3 3 6 7 5 5

π12|1 34 34 26 26 13 14 15 16 12 13 11 11 38 40 22 22 14 15

π13|1 34 45 27 35 14 16 17 23 2236 1119 4 22 39 52 21 28 1714 545

π21|1 34 28 25 21 14 12 14 13 31 26 32 28 29 27 18 16 37 32

π22|1 3 3 3 3 12 11 8 9 5 6 5 6 4 4 8 9 6 7

π23|1 34 46 25 36 14 16 17 21 13 16 13 15 32 41 18 21 16 19

π31|1 34 28 24 21 13 12 13 11 479 1623 312 503 21 18 11 10 318 519

π32|1 36 33 26 25 12 14 12 11 31 32 48 45 20 21 11 10 38 39

π33|1 3 2 7 6 10 12 35 48 2 2 2 2 6 6 31 39 2 2

π11|2 4 5 2 3 18 16 5 5 5 5 4 5 2 3 5 5 4 5

π12|2 21 22 27 29 10 12 17 17 16 15 13 14 31 33 18 19 13 14

π13|2 20 32 26 39 11 13 16 23 2236 1582 4 26 32 45 17 23 4 5

π21|2 21 19 27 21 10 10 15 13 33 28 30 27 27 23 16 13 35 28

π22|2 4 4 3 4 17 18 8 8 5 6 5 6 3 4 7 7 5 6

π23|2 22 29 28 36 10 11 15 19 12 17 12 16 26 35 13 17 13 17

π31|2 21 17 26 20 10 10 13 12 306 297 561 316 18 15 9 8 670 358

π32|2 21 20 26 24 11 11 13 12 29 26 38 35 17 18 9 9 31 29

π33|2 4 3 7 6 16 21 35 45 2 1 2 2 5 5 22 30 2 2

P1 13 14 13 13 21 22 15 16 13 13 12 12 15 13 16 16 13 13
P2 14 14 14 14 22 21 19 18 17 17 16 17 15 14 19 19 18 18
P3 14 15 17 19 21 21 24 26 15 16 18 21 19 18 22 26 19 19

coefficients of variation of pooled estimates
M1 13 13 13 12 12 13 13 12 12 14 12 13 14 13 14 13 13 15
M2 26 28 25 25 26 26 26 26 27 27 26 27 22 21 24 24 21 24
F1 5 6 5 6 5 8 5 7 5 7 5 5 7 7 6 7 6 7
F2 4 5 4 5 4 5 4 5 4 6 4 5 4 4 4 4 4 5
F3 7 8 7 7 7 7 7 8 8 8 7 8 6 6 6 6 5 6
P 7 7 7 7 7 7 7 7 7 7 7 7 8 7 7 7 8 7

coefficients of variation of estimates from the pooled data
M1 13 13 13 11 12 13 13 12 12 14 12 12 14 14 13 15 13 12
M2 26 27 25 24 26 24 26 23 27 27 26 26 22 23 23 41 21 17
F1 5 5 5 5 5 5 5 5 5 6 5 5 7 6 6 6 6 6
F2 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4
F3 7 7 7 7 7 7 7 6 8 7 7 7 6 5 6 5 5 6
P 7 7 7 8 7 7 7 8 7 7 7 8 8 8 7 8 8 8

There are some interesting general patterns. The fishing mortalities are more pre-

cisely estimated than the natural mortalities, and the diagonal entries of the tran-

sition matrices are more precisely estimated than the off-diagonal entries.

4 Model 3: the generic spatial Brownie model

with observers

When recapture information comes from commercial fisheries, we do not expect

100% of recaptured tags to be returned/reported, nor do we expect the reporting
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rates to be known; thus, they must be estimated. Although tag-recapture data

by themselves contain some information about reporting rates, the information is

generally weak and insufficient to distinguish non-reporting from natural and fishing

mortality without making some fairly restrictive assumptions. Thus, auxiliary data

for estimating reporting rates generally needs to collected. In this section, we expand

the generic spatial Brownie model to incorporate the estimation of reporting rates

for the situation in which observers monitor a portion of the catches. We assume

that each region has a group of boats with observers on them, and that 100% of

recaptured tags are returned from these boats.

We suppose that in each region in each time period the fishery can be divided

into G components. In component g = 1, observers are present and all tags are

returned. In the other components, a proportion λtrg of tags are returned (note

that we are allowing for the reporting rate to vary between time periods, regions

and components). For consistency, we set λtr1 = 1. We also know the proportion

of the fishery δtrg fished by each component. In practice, the proportions δtrg are

inferred from the size of the catch returned by each component. In theory, these are

not known exactly, but we argue that the error attached to the δ’s is much smaller

than other sources of variation in the data, so we treat the δtrg values as known. Of

course
G∑

g=1

δtrg = 1

for any t and r.

4.1 Tagging data

For our cohort of interest, focus on the group tagged in region r′ just prior to time

period t′. All the calculations are the same as before, except the final calculation of

the probability that the tag is returned from each component.

We simply need to modify equation (4). Thus the probability that the fish is

caught by component g during time period t in region r and the tag is returned is

qtrg = λtrgδtrgqtr . (6)
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The probability that the tag is not returned is

q̄ = 1 −
T∑

t=1

R∑
r=1

G∑
g=1

qtrg . (7)

We therefore obtain a set of probabilities:

q = (q̄, q111, q112, . . . , q11G, q121, q122, . . . , q12G, . . . , q1R1, q1R2, . . . , q1RG,

q211, q212, . . . , q21G, q221, q222, . . . , q22G, . . . , q2R1, q2R2, . . . , q2RG,

. . . ,

qT11, qT12, . . . , qT1G, qT21, qT22, . . . , qT2G, . . . , qTR1, qTR2, . . . , qTRG)

For the tagging group Gt′r′, the corresponding vector q is denoted q|t′r′, with elements

q̄|t′r′ and qtrg|t′r′. If, for example, there are R = 3 regions, T = 3 years and G = 2

groups, there will be RT = 9 separate vectors q, each with 19 elements.

4.2 Catch-at-age data

The catch-at-age data are treated slightly differently than in the base model because

we assume that only the component with observers will be aged. As such, we only

have catch-at-age data from the observer component (component 1) of each region.

The rest of the argument is the same as in Section 2.2. Denote the expected catch

of this cohort in region r during time period t from component 1 as µtr. Then

µtr =
R∑

r0=1

qtr1|1r0Pr0 .

Note that qtr1|1r0 in µtr refers to component 1.

4.3 Inference

The principles of the method of inference are the usual ones. The tag-recapture data

are treated as multinomial, and the catch-at-age data as Gaussian with known coef-

ficient of variation, c = 0.2. The parameters are estimated by maximum likelihood,

where the parameters to be estimated are the same as for the generic base model

except we now have TR(G − 1) reporting rate parameters to estimate as well.
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4.4 Numerical example

In order to crystallise the nature of the data, we simulate some data from the generic

spatial model with observers. We assume R = 3 regions, T = 3 years and G = 2

components. The true parameter values used to simulate the data are the same as

those listed in Table 3, along with δtr1 = 0.1 and δtr2 = 0.9, and λtr2 = 0.25 for all t

and r.

Table 13: Tag-recapture data from the generic spatial model

with observers

t′ r′ Nt′r′ unreturned returned tags
tags t = 1 t = 2 t = 3

r = 1 r = 2 r = 3 r = 1 r = 2 r = 3 r = 1 r = 2 r = 3
component (g)

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 1 1415 1284 11 26 0 0 0 0 17 27 0 1 1 2 16 20 1 2 4 3
1 2 1415 1287 0 0 11 20 0 0 0 3 18 29 1 3 1 4 12 21 1 4
1 3 1415 1272 0 0 0 0 16 31 0 2 1 1 14 36 3 6 5 3 7 18
2 1 949 857 0 0 0 0 0 0 9 34 0 0 0 0 9 27 1 6 1 5
2 2 949 853 0 0 0 0 0 0 0 0 18 31 0 0 1 2 14 26 2 2
2 3 949 863 0 0 0 0 0 0 0 0 0 0 19 26 2 3 2 2 9 23
3 1 636 584 0 0 0 0 0 0 0 0 0 0 0 0 16 36 0 0 0 0
3 2 636 593 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 33 0 0
3 3 636 588 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 29

In Table 13, t′ and r′ are the time and region of the tagging group, and Nt′r′ fish are

tagged in region r′ just prior to time period t′. There are 1415 fish of age 1 released

in each of the 3 regions, 949 fish of age 2 and 636 of age 3. The declining number

of tags reflects the declining population size with age. Of the 1415 tags released in

region 1 just prior to time period 1, 11 are returned from region 1 during time period

1 by component 1 (the observers), and 26 by component 2 (the non-observers), even

though component 1 represents only 10% of the fishery. Overall, 8181/9000=90.9%

of tags are not returned, substantially more than for the base model.

The corresponding catch-at-age data are presented in Table 14. Here we have

used a coefficient of variation of c = 0.2.
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Table 14: Catch-at-age data from the generic spatial model

with observers

t = 1 t = 2 t = 3
r = 1 r = 2 r = 3 r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

809.92 616.10 791.28 1246.91 837.581 1259.12 1480.48 1095.63 1438.53

The total catch is 9576 fish, considerably less than the 90770 in the base model

because our catch-at-age data merely come from component 1 of the fishery.

We simulated 500 such data sets and estimated the parameters by maximum

likelihood, assuming that the coefficient of variation in the catch-at-age data, c = 0.2,

is known. (In the base model we used only 100 simulations. The number was

increased to 500 here because the expected returns are smaller.) In Table 15 we

report the mean and the 2.5% and 97.5% quantiles of the estimates.

Table 15: True parameter values, mean maximum likelihood

estimates and summary statistics for 500 sets of data gener-

ated from a model in which there is tagging of a single cohort

of fish in all regions for three years and partial reporting of

tags by some components of the fishery

Par True 2.5% Mean 97.5% Par True 2.5% Mean 97.5%

M1 0.300 0.151 0.293 0.459 π13|2 0.100 0.030 0.098 0.176
M2 0.200 0.010 0.194 0.385 π21|2 0.100 0.029 0.100 0.182
F11 0.100 0.063 0.101 0.149 π22|2 0.800 0.684 0.798 0.896
F21 0.200 0.138 0.200 0.277 π23|2 0.100 0.031 0.102 0.191
F31 0.300 0.198 0.302 0.444 π31|2 0.100 0.031 0.100 0.188
F12 0.100 0.060 0.102 0.145 π32|2 0.100 0.030 0.101 0.182
F22 0.200 0.138 0.201 0.278 π33|2 0.800 0.698 0.799 0.911
F32 0.300 0.189 0.302 0.438 log10 P1 5.000 4.796 4.982 5.132
F13 0.100 0.064 0.101 0.149 log10 P2 5.000 4.813 4.981 5.144
F23 0.200 0.142 0.199 0.274 log10 P3 5.000 4.809 4.981 5.124
F33 0.300 0.184 0.300 0.446 λ11 0.250 0.137 0.256 0.412
π11|1 0.900 0.815 0.898 0.968 λ12 0.250 0.171 0.255 0.362
π12|1 0.050 0.000 0.053 0.128 λ13 0.250 0.179 0.253 0.348
π13|1 0.050 0.000 0.049 0.119 λ21 0.250 0.142 0.260 0.457
π21|1 0.050 0.000 0.052 0.119 λ22 0.250 0.171 0.255 0.393

A10 - 25



Appendix 10: Incorporating spatial structure using a generic movement model

Table 15: continued

Par True 2.5% Mean 97.5% Par True 2.5% Mean 97.5%

π22|1 0.900 0.812 0.895 0.972 λ23 0.250 0.188 0.255 0.364
π23|1 0.050 0.000 0.053 0.119 λ31 0.250 0.144 0.260 0.442
π31|1 0.050 0.000 0.049 0.112 λ32 0.250 0.174 0.255 0.367
π32|1 0.050 0.000 0.050 0.114 λ33 0.250 0.183 0.257 0.347
π33|1 0.900 0.810 0.902 0.980 F1 0.100 0.079 0.099 0.121
π11|2 0.800 0.698 0.802 0.895 F2 0.200 0.162 0.197 0.236
π12|2 0.100 0.033 0.099 0.184 F3 0.300 0.213 0.297 0.395

Most parameter estimates are reasonably unbiased, although the initial population

counts are slightly too small on average, and the reporting rates (λ̂s) slightly too

large.

5 Model 4: pooled data from the generic spatial

Brownie model with observers

In this model the data are generated from the generic spatial Brownie model with

observers, and then pooled over regions. The data are analysed ignoring regions.

The idea is to see whether any substantial biases are incurred by treating the data

as arising from a single region in the case where reporting rates are estimated from

observer data.

5.1 Tagging data

The model used to analyse the tagging data is essentially the same as that in Section

3.1, but with the added complication of components. Let δtg be the proportion of the

fishery at time t fished by component g, and λtg be the proportion of tags returned

by component g, where λt1 = 1. For T = 3 years of releases and returns and G = 2

components, the Brownie model probabilities of tag returns are set out in Table 16.
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Table 16: Probabilities of tag return by year after release.

t′ Nt′. component t = 1 t = 2 t = 3

1 N1 1 (1 − S1)f1λ11δ11 S1(1 − S2)f2λ21δ21 S1S2(1 − S3)f3λ31δ31

2 (1 − S1)f1λ12δ12 S1(1 − S2)f2λ22δ22 S1S2(1 − S3)f3λ32δ32

2 N2 1 (1 − S2)f2λ21δ21 S2(1 − S3)f3λ31δ31

2 (1 − S2)f2λ22δ22 S2(1 − S3)f3λ32δ32

3 N3 1 (1 − S3)f3λ31δ31

2 (1 − S3)f3λ32δ32

Note that we could simplify Table 16 by omitting all λt1 parameters since

they equal 1.

The λtg parameters (for g > 1) are estimated from the data, but the δtg

parameters (proportions of the fishery in each component) are assumed known. In

reality, we know the δ values by region (δtrg), so we need to average these sensibly

to carry out analysis of the pooled data. It is important to distinguish St here, the

pooled conditional survival probability during time t, from St in (3), the diagonal

matrix of regional survival probabilities during time t.

We suggest weighting the δtrg values by the catch-at-age data. This parallels

the way the overall δtg values would be calculated in practice. Let Ctr be the catch-

at-age from the cohort of interest reported by the observer component g = 1 during

time interval t in region r. The estimated total catch from this cohort during time

interval t in region r is therefore Ctr/δtr1. We therefore suggest the weighted value

δtg =

∑R
r=1 δtrgCtr/δtr1∑R

r=1 Ctr/δtr1

. (8)

It is immediate that
∑G

g=1 δtg = 1. Note that δt1 is a weighted harmonic mean. If

δtr1 = 0 for any t and r, then Ctr = 0, so (8) will contain 0/0 terms. There seems

to be little we can do about this, except to be alert to the possibility.

It should be emphasised that the use of (8) implies that, in general, the tag-

recapture data cannot be analysed unless catch-at-age data are available. Also, the
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δtg will be regarded as known and fixed, even though they rely on quantities (catch-

at-age values) that are subject to error. However, if δtrg does not vary with r for

given t and g, then δtg does not rely on catch-at-age data.

In many of the scenarios we shall study, δtrg does not depend on t; however,

in principle, δtg still depends on t through Ctr.

It is also important to understand the link between the λtg parameters and

their regional equivalents λtrg. This is not trivial. Essentially we have to use a

counting argument again. This leads to

R∑
r=1

Ptr(1 − Str)ftrδtrgλtrg = Pt(1 − St)ftδtgλtg . (9)

Although this can be solved explicitly for λtg, the salient point is that λtg essentially

depends, through Ptr, on all parameters of the model relating to time periods 1 to

t.

5.2 Catch-at-age data

For the pooled catch-at-age data we have only a single number Ct for each time

period for the target cohort. This represents the catch taken by the observer com-

ponent g = 1. If P is the total initial size of the cohort (at the start of time period

1), then the expected number of fish caught by component g = 1 during time period

t is

µt = PS1S2 . . . St−1(1 − St)ftδt1 .

These are P multiplied by the probabilities in line 1 of Table 16 (for the case R =

T = 3). Note that the λtg values in this line are all 1, since all tags are assumed to

be returned from the observer component.

5.3 Inference

Each row of the tag-recapture data matrix is treated as multinomial with the prob-

abilities in the relevant table, such as Table 16. The catch-at-age data are treated

as Gaussian with known coefficient of variation.
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5.4 Numerical example

The data in Table 13, when pooled over regions, results in Table 17.

Table 17: Pooled tag-recapture data from the generic spatial

model with observers

t′ Nt′. unreturned returned tags
tags t = 1 t = 2 t = 3

component (g)
1 2 1 2 1 2

1 4245 3843 38 77 52 104 50 81
2 2847 2573 0 0 46 91 41 96
3 1908 1765 0 0 0 0 45 98

Similarly, the corresponding catch-at-age data from Table 14, when pooled over

regions, results in Table 18.

Table 18: Pooled catch-at-age data from the generic spatial

model with observers

t = 1 t = 2 t = 3

2217.30 3343.60 4014.64

We repeated this pooling of data sets over regions for the same 500 data

sets simulated in the numerical example section for the generic spatial model with

observers, then estimated the parameters by maximum likelihood using the pooled

model with observers. In Table 19 we report the mean and the 2.5% and 97.5%

quantiles of the estimates.
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Table 19: True parameter values, mean maximum likelihood

estimates and summary statistics for 500 sets of pooled data,

generated from a model in which there is tagging of a sin-

gle cohort of fish in all regions for three years and partial

reporting of tags by some components of the fishery

Par True 2.5% Mean 97.5%

M1 0.300 0.156 0.294 0.459
M2 0.200 0.010 0.198 0.401
F1 0.100 0.079 0.101 0.126
F2 0.200 0.162 0.200 0.241
F3 0.300 0.216 0.302 0.411
log10 P 5.477 5.384 5.462 5.543
λ12 0.250 0.172 0.252 0.348
λ22 0.250 0.197 0.252 0.313
λ32 0.250 0.208 0.252 0.304

For this example, there do not appear to be any significant biases incurred by pooling

the data over regions.

5.5 Comparison of estimates from unpooled and pooled data

We re-examine the 18 scenarios explored in Section 3.5, augmented with 2 compo-

nents, one with and one without observers. We assume δtr1 = 0.1 and δtr2 = 0.9 (i.e.,

the proportion of observers in each region and time period is 0.1), and λtr2 = 0.25

for all t and r (i.e., the reporting rate in the component without observers is 0.25

for all time periods and regions).

For each of the 18 scenarios, we ran 500 simulations of the data and esti-

mated the parameters by maximum likelihood. For each simulation, the parameters

were estimated from applying the generic spatial model with observers to the re-

gional data, and then population-wide fishing mortality and abundance estimates

were calculated from the regional estimates. Population-wide parameter were also

estimated from applying the non-spatial model with observers to the pooled data
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for comparison. The coefficient of variation of the catch-at-age data was assumed

to be 0.2 in both the simulations and estimation phases.

The relative biases (as defined previously) are set out in Table 20. Note

that because there is only one component without observers, we have dropped the

component subscript on the λ parameters. Thus, for the spatial model, λtr refers to

the reporting rate in component 2 for year t and region r, and for the pooled model,

λt refers to the reporting rate in component 2 for year t.

Table 20: Relative biases of the parameter estimates in the 18

scenarios

releases proportional to abundance releases equal
balanced unbalanced balanced unbal.

low high → area 3 low high → 3
P=

P

�= P=
P

�= P=
P

�=
P

�=
P

�=
P

�=
F=

F

�= F=
F

�= F=
F

�= F=
F

�= F=
F

�= F=
F

�= F=
F

�= F=
F

�= F=
F

�=
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M1 -2.3 -1.6 0.1 -1.7 -2.2 0.2 -2.9 -1.8 -0.7 -2.6 -0.2 -0.9 -0.5 -1.5 -2.1 -0.3 -0.7 -0.7
M2 -2.9 -0.1 -3.6 -1.1 -0.5 -2.0 1.5 -3.4 -1.2 1.7 -5.2 -2.8 0.8 0.3 -0.7 -2.1 -2.9 -1.2
F11 0.8 0.5 0.3 -0.4 3.9 1.4 2.4 1.5 0.8 0.7 1.6 -1.4 0.5 1.2 3.4 2.8 -0.6 -0.5
F21 -0.1 0.1 1.3 -0.8 -0.3 1.0 -0.6 -0.7 1.0 -1.2 0.2 -0.6 0.5 0.9 -0.3 0.2 -1.4 0.7
F31 1.0 2.0 1.3 1.3 2.6 3.0 2.3 1.0 1.3 0.2 1.3 1.2 -0.1 -0.1 1.4 0.9 0.4 2.0
F12 1.6 0.1 1.5 2.1 1.6 3.7 2.4 3.8 2.1 -0.5 0.7 3.1 0.1 0.6 3.1 5.7 2.6 2.9
F22 0.5 0.6 -0.5 1.3 0.2 1.0 0.4 -0.5 1.0 -0.2 -0.8 0.4 0.1 0.3 -0.6 0.0 0.3 2.1
F32 0.8 -0.2 -0.3 1.4 1.8 1.2 1.1 0.1 2.0 0.3 0.2 -0.6 1.0 0.4 0.6 -0.8 -1.1 0.2
F13 0.8 1.5 -0.2 4.2 3.1 4.4 2.4 6.7 0.3 2.7 3.5 8.5 0.3 1.5 2.0 1.0 3.9 3.8
F23 -0.5 -0.5 -0.2 -1.6 2.1 2.1 -0.2 3.9 -0.1 -0.7 0.6 -0.5 1.0 -1.1 0.2 1.8 0.8 -1.7
F33 0.3 -0.2 2.0 1.5 0.5 0.6 1.2 1.2 0.4 1.9 -1.1 -0.3 0.5 0.6 -0.9 0.2 -0.3 0.3
π11|1 -0.2 0.2 -0.1 0.0 1.5 -0.5 -0.2 0.3 0.0 0.1 0.2 0.1 0.2 0.7 0.0 0.0 0.1 0.1
π12|1 5.0 -2.3 -1.1 -1.2 0.4 -1.3 -1.5 -2.6 -0.1 -1.1 -0.5 -0.6 6.8 -9.2 -1.0 -0.8 -0.6 -2.2
π13|1 -1.1 -0.6 3.7 1.1 -2.4 3.6 2.4 1.1 ∼0.0 ∼0.0 ∼0.0 ∼0.0 -9.9 -4.2 0.9 1.0 ∼0.0 ∼0.0
π21|1 4.8 -2.4 -1.6 0.9 0.4 0.3 -0.6 0.4 -5.6 4.2 3.1 -2.1 4.1 0.5 -0.9 0.7 -2.5 -1.2
π22|1 -0.6 0.1 0.2 -0.5 -0.8 -0.9 -1.3 -0.3 0.4 0.4 0.1 -0.1 -0.4 -0.4 -0.4 -0.5 0.0 -0.2
π23|1 5.4 0.6 -0.4 5.0 0.7 2.0 3.8 0.2 -0.1 -2.0 -1.0 0.8 0.7 4.2 1.9 0.4 0.4 0.7
π31|1 -2.7 3.5 -0.6 0.6 -0.1 0.4 0.6 -0.9 ∼0.0 ∼0.0 ∼0.0 ∼0.0 1.8 2.8 -0.9 -0.2 ∼0.0 ∼0.0
π32|1 -0.8 0.2 1.6 0.0 1.4 -0.3 -1.2 1.7 -0.5 -4.2 -0.3 -0.9 2.3 -2.4 0.5 0.2 -5.3 -4.6
π33|1 0.2 -0.2 -0.2 -0.1 -1.0 -0.3 2.6 -3.8 0.0 0.2 -0.1 0.0 -0.9 -0.1 1.5 0.0 0.2 0.2
π11|2 0.3 -0.2 -0.4 -0.3 2.2 -1.3 -1.0 -1.0 -0.3 -0.1 -0.2 -0.3 -0.2 0.0 -0.1 -0.3 0.1 -0.2
π12|2 -0.8 1.7 6.4 4.2 -0.8 1.0 1.3 1.6 0.6 -0.3 0.4 0.6 0.5 3.8 -1.9 0.5 -0.3 0.5
π13|2 -1.6 -0.5 0.7 1.7 -0.3 5.1 3.2 2.9 ∼0.0 ∼0.0 ∼0.0 ∼0.0 2.9 -3.7 2.5 1.0 ∼0.0 ∼0.0
π21|2 0.0 -0.6 1.0 -2.3 -0.4 0.0 -0.3 -1.0 -1.2 -0.8 -7.4 1.6 1.4 0.4 -0.5 -0.7 -4.1 -0.5
π22|2 -0.2 0.4 0.3 0.2 -0.6 0.1 -1.0 -1.8 -0.1 0.6 -0.4 0.6 -0.3 -0.4 -0.3 0.0 0.4 0.8
π23|2 1.9 -2.5 -3.9 0.5 0.7 -0.2 2.7 5.4 0.4 -1.5 2.6 -1.9 1.7 4.4 1.2 0.7 -0.4 -2.2
π31|2 -0.5 -0.8 1.8 -0.6 -1.9 -1.6 -3.0 0.7 ∼0.0 ∼0.0 ∼0.0 ∼0.0 -1.2 1.3 -0.8 -1.1 ∼0.0 ∼0.0
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Table 20: relative biases: continued

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

π32|2 1.2 -0.9 -0.5 1.9 0.8 0.6 1.6 -2.4 -1.2 1.5 -1.5 -3.0 -2.0 3.5 0.8 1.6 -1.3 5.1
π33|2 -0.1 0.2 -0.3 -0.3 2.1 4.6 6.5 7.4 0.0 -0.1 0.0 0.1 0.7 -1.0 -0.1 -2.0 0.0 -0.3
P1 -2.3 -2.6 -1.6 -2.0 -2.2 -1.0 -3.3 -2.0 -1.3 -1.4 -1.9 -1.9 -1.6 -3.0 -3.0 -3.9 -1.3 -1.4
P2 -2.4 -1.2 -1.8 -2.3 1.5 -3.2 -2.4 -2.6 -2.5 1.1 -0.6 -1.6 -0.9 -1.0 -0.7 -1.8 -0.7 -1.3
P3 -2.4 -0.7 2.4 4.5 -1.1 -0.1 8.6 9.3 -1.2 -1.3 -0.7 -0.2 0.2 3.9 4.6 14.6 -1.6 1.4
λ11 2.2 3.0 3.6 2.6 2.6 4.3 0.5 0.9 4.4 3.2 1.7 4.5 2.9 5.0 3.7 3.4 6.7 6.7
λ21 1.9 1.5 0.4 2.1 3.2 0.9 2.3 2.0 3.4 3.2 1.0 2.3 1.9 0.5 3.0 2.0 4.4 1.2
λ31 1.2 1.6 0.2 0.9 1.7 1.6 0.7 1.5 2.1 3.4 2.2 0.7 2.0 2.1 0.7 1.6 1.9 0.9
λ12 3.9 4.7 3.9 4.2 4.7 2.8 4.2 2.8 3.7 5.2 5.5 3.4 5.8 4.4 6.1 0.8 4.5 4.6
λ22 2.1 1.5 2.7 2.7 1.8 2.6 2.4 4.3 1.5 2.0 3.6 2.0 2.1 2.5 3.7 3.5 2.5 1.8
λ32 2.2 2.0 1.6 1.0 2.0 2.2 2.7 3.2 1.6 3.4 1.9 3.3 1.9 2.0 1.4 2.6 3.3 2.7
λ13 3.9 5.0 9.6 10.0 5.1 5.5 12.1 15.6 4.3 4.7 4.9 1.7 7.5 9.4 10.9 17.5 2.8 8.1
λ23 2.2 5.2 4.0 8.4 1.0 2.7 3.0 6.1 3.0 4.0 2.7 6.6 2.5 5.6 2.5 4.0 1.3 5.8
λ33 2.6 3.9 2.6 5.3 1.4 5.0 3.1 5.9 1.5 1.7 2.7 3.6 1.4 3.3 2.6 3.6 1.6 2.7

relative biases of pooled estimates
M1 -2.3 -1.6 0.1 -1.7 -2.2 0.2 -2.9 -1.8 -0.7 -2.6 -0.2 -0.9 -0.5 -1.5 -2.1 -0.3 -0.7 -0.7
M2 -2.9 -0.1 -3.6 -1.1 -0.5 -2.0 1.5 -3.4 -1.2 1.7 -5.2 -2.8 0.8 0.3 -0.7 -2.1 -2.9 -1.2
F1 -1.1 -1.6 -1.7 -1.8 -2.6 -2.5 -2.4 -2.2 -1.3 -1.7 -0.7 -1.8 -2.2 -1.9 -2.9 -3.7 -2.0 -2.2
F2 -1.3 -1.4 -1.0 -1.9 -1.3 -0.7 -1.9 -1.9 -0.7 -2.0 -1.2 -1.6 -0.9 -1.2 -2.0 -1.6 -1.6 -1.0
F3 -0.8 -1.0 -0.7 -0.6 -0.3 0.0 -0.3 -1.7 -0.3 -0.6 -1.3 -1.6 -0.7 -1.3 -0.5 -1.4 -1.6 -0.9
P -2.3 -1.5 -1.0 -1.0 -0.6 -1.4 -1.0 -0.3 -1.6 -0.5 -1.3 -1.5 -1.0 -1.2 -1.0 -0.1 -1.2 -0.9

relative biases of estimates from the pooled data
M1 -2.0 -1.3 0.6 -1.2 -0.8 -15.2 -1.8 -0.6 -0.2 -2.1 0.2 -0.3 -0.1 -9.2 -1.5 -16.0 -0.2 21.2
M2 -1.1 1.9 -1.9 0.6 3.5 -34.7 5.2 2.3 0.3 3.1 -3.3 -1.4 1.8 -7.6 0.9 -40.3 -1.5 38.1
F1 0.6 0.0 -0.1 0.3 0.9 -1.7 0.0 0.7 0.3 0.3 0.9 -0.1 -0.6 -12.6 0.4 -11.1 0.3 -9.9
F2 -0.2 0.2 0.3 -0.4 0.4 -11.5 -0.4 -0.1 0.3 -0.9 -0.1 -0.1 0.1 -13.8 -0.7 -14.6 -0.1 -2.4
F3 0.6 0.6 0.7 1.3 1.8 -14.5 1.9 1.2 1.1 0.6 0.0 0.0 0.4 -13.8 0.5 -18.2 -0.4 9.3
P -3.0 -2.3 -1.7 -2.1 -1.7 -2.6 -2.0 -1.3 -2.3 -1.4 -2.0 -2.5 -1.6 6.3 -2.0 2.2 -2.0 9.5
λ1 0.8 1.5 2.2 1.5 0.9 1.2 1.3 0.9 1.8 1.2 1.1 1.9 2.2 -0.5 2.1 -4.5 1.7 0.9
λ2 0.6 0.6 0.3 1.6 0.5 -0.3 0.9 1.6 1.2 1.4 0.8 1.1 0.5 0.2 1.3 0.9 0.7 0.8
λ3 0.7 0.9 0.0 0.1 0.4 1.3 0.4 1.0 0.3 1.4 1.1 0.8 0.6 1.7 0.1 2.0 1.0 0.8

Note that in order to calculate the relative bias of the λt estimates from the pooled

data, we needed to calculate ‘true’ λt values from the true region-specific λtr values.

This was done using equation (9).

There are several points of interest. The λ values are consistently estimated

with a small positive bias. Scenarios 6, 14, 16 and 18 yield poor estimates from the

pooled data. In scenario 6, for example, the sampling distribution of M̂2 (from the

pooled data) is quite skewed with many estimates near 0. It seems that there is not

A10 - 32



Appendix 10: Incorporating spatial structure using a generic movement model

enough information to estimate M2. Once one parameter cannot be estimated well,

others are affected also.

The coefficients of variation are reported in Table 21. The very large values

occur when the true parameter value is zero.

Table 21: Coefficients of variation of the parameter estimates in the 18 scenar-

ios
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=
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M1 27 26 25 24 26 26 26 25 24 29 25 25 29 27 29 27 29 32
M2 49 51 51 49 50 48 50 51 47 53 52 53 43 42 47 50 44 46
F11 22 19 18 16 26 23 20 17 21 19 18 16 22 21 25 23 22 21
F21 17 16 15 13 20 16 15 14 18 17 17 14 17 15 19 15 18 16
F31 22 22 20 19 23 20 19 18 24 24 24 22 18 17 19 19 20 19
F12 22 22 23 22 26 26 24 25 23 24 22 25 24 23 29 29 27 27
F22 18 17 17 18 19 18 19 20 17 18 17 17 18 19 18 19 18 18
F32 21 22 21 21 23 22 23 23 22 22 21 23 19 19 20 18 20 20
F13 21 26 30 38 27 32 39 45 22 27 29 37 27 34 34 41 26 33
F23 18 22 24 30 19 27 26 33 16 19 19 26 19 23 21 28 18 22
F33 22 23 28 31 22 29 30 36 18 21 21 24 17 23 20 25 19 21
π11|1 5 6 4 4 19 10 8 9 8 8 6 6 5 6 11 12 9 9

π12|1 60 63 47 47 24 34 29 30 24 24 19 19 68 73 41 39 26 27

π13|1 61 86 48 73 24 42 30 42 1040 433 1041 578 73 95 37 50 523 289

π21|1 57 53 44 38 23 24 27 23 60 48 57 48 53 45 30 29 70 60

π22|1 5 5 5 7 20 15 14 14 9 11 8 10 7 7 16 16 11 12

π23|1 57 81 49 69 23 36 28 37 22 30 21 28 56 72 31 39 27 33

π31|1 63 47 41 40 24 15 21 19 539 781 534 685 34 31 19 18 469 514

π32|1 62 59 46 43 25 17 22 21 59 60 84 83 36 39 18 18 69 76

π33|1 5 4 12 12 20 59 60 89 3 3 4 4 10 10 52 67 3 4

π11|2 6 8 4 5 29 11 8 10 9 9 8 8 5 6 9 10 8 8

π12|2 39 42 48 49 19 35 28 30 27 28 23 23 61 58 35 35 25 25

π13|2 39 61 48 70 19 40 30 39 711 528 1262 636 58 88 27 41 10 2236

π21|2 40 31 49 39 19 24 27 24 61 50 58 49 45 39 27 24 60 54

π22|2 7 7 6 7 29 13 14 15 9 12 9 11 6 7 12 12 9 11

π23|2 40 54 47 69 19 32 29 34 22 33 23 31 44 62 23 29 23 31

π31|2 40 31 44 38 20 17 24 21 411 302 569 371 33 26 18 15 658 386

π32|2 39 36 46 45 19 17 24 23 53 48 72 64 34 32 17 15 58 54

π33|2 7 6 13 12 29 59 65 88 3 3 4 3 9 9 43 54 3 3

P1 19 19 17 16 31 26 22 20 17 17 15 15 20 17 25 23 17 17
P2 20 19 19 20 29 30 26 26 23 24 23 25 22 20 29 31 27 26
P3 19 23 30 39 31 33 44 50 22 26 29 34 27 33 42 49 26 34
λ11 28 25 25 20 34 26 25 22 27 26 24 20 33 29 35 30 33 30
λ21 20 17 16 13 19 16 16 14 21 20 18 16 20 17 21 16 22 17
λ31 18 16 15 13 16 13 14 12 20 19 18 14 15 13 15 13 17 16
λ12 30 31 29 30 34 33 30 34 31 31 30 33 33 34 37 40 36 38
λ22 21 19 20 20 19 19 20 20 19 18 18 18 21 20 21 20 21 21
λ32 18 16 17 16 16 15 17 17 18 16 15 17 16 16 16 15 16 17
λ13 29 41 40 57 35 43 54 59 29 40 40 54 37 50 48 58 39 51
λ23 20 28 26 39 18 30 26 36 20 25 22 31 22 29 23 32 21 28
λ33 16 21 22 29 16 27 22 28 15 18 17 22 16 22 17 24 16 20

coefficients of variation of pooled estimates
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Table 21: coefficients of variation: continued

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M1 27 26 25 24 26 26 26 25 24 29 25 25 29 27 29 27 29 32
M2 49 51 51 49 50 48 50 51 47 53 52 53 43 42 47 50 44 46
F1 11 13 12 13 13 13 13 14 12 13 12 13 13 14 13 14 12 14
F2 10 11 10 11 10 10 10 11 10 11 10 11 10 11 11 11 11 11
F3 16 17 16 16 16 16 16 17 15 17 16 16 13 13 14 14 14 14
P 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 10 11

coefficients of variation of estimates from the pooled data
M1 27 26 25 24 26 30 26 25 24 28 25 25 29 28 28 30 29 25
M2 48 50 50 48 48 65 48 46 47 51 51 52 42 44 45 73 43 32
F1 12 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14
F2 11 11 10 10 10 10 10 10 10 11 10 10 10 10 11 10 11 10
F3 16 16 16 15 16 15 15 15 15 16 16 16 12 13 13 13 14 14
P 10 10 10 11 10 10 10 10 10 10 10 11 11 12 11 11 11 11
λ1 17 18 17 16 18 16 17 17 17 17 17 16 19 21 21 19 20 20
λ2 12 12 12 11 11 11 12 12 12 12 11 11 12 12 12 12 12 13
λ3 10 10 10 10 10 9 10 10 10 10 10 10 9 9 9 9 9 10

Comparing with the results in Table 12, the same general patterns are observed here

as for the models with 100% reporting rates. In particular, the fishing mortalities

are estimated more precisely than the natural mortalities, and the probabilities of

staying in a region are estimated more precisely than the probabilities of transition-

ing between regions. However, the overall level of precision of the estimates is much

poorer. For example, the coefficients of variation have approximately doubled for

all common parameters except the initial population sizes (for which the increases

are still reasonably large).

6 Model 5: including archival tagging data in the

generic spatial Brownie model

Over the last 15 years, archival tags have been developed as a more informative

alternative to conventional tags. Archival tags come in several forms, including

some that relay information to satellites, but we shall focus only on the original style

that are returned to the laboratory when the fish is caught, just like conventional

tags. However, whereas a recaptured conventional tag merely tells the researcher

where and when the fish was tagged and recaptured, an archival tag conveys the
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intermediate times and locations as well. We shall assume that these are known

without error. While this is not a very realistic assumption with regard to location,

which is estimated from ambient light measurements, it will suffice for evaluating

the maximum potential gain from augmenting a convential tagging experiment with

archival tags.

Archival tags exploit modern micro-electronics and are therefore very expen-

sive. The number of archival tags that can be deployed is small, in practice. If

archival tags were released separately from the conventional tags, we would have

to estimate fishing mortality and transition parameters specifically for the archival

tags. This would render them practically useless. In this exercise we assume that

the archival tags are released in parallel with the conventional tags. In fact, we

assume that, given a number Nt′r′ of tags released in region r′ at the beginning of

time period t′, there is a fixed proportion pA of archival tags, so that Nt′r′pA are

archival and Nt′r′(1 − pA) are conventional.

In this section, we ignore the need for observers by assuming that reporting

rates are 100%, so that we can concentrate on the effectiveness of archival tags

independent of reporting rate issues.

6.1 Archival tagging data

The probability of an archival tag not being recaptured is exactly the same as that

of a conventional tag released from the same region at the same time. Thus, the

probability is q̄, as in equation (7).

The case of recaptured tags is more interesting because the tag provides

information about where the fish was during each time period between release and

recapture. Suppose that the fish is tagged at the beginning of time period t′ and is

recaptured in time period t∗, and that it was in region rt for time period t, where

t′ ≤ t ≤ t∗. The probability of this event is

Q =

(
t∗−1∏
t=t′

Strtπt,rt rt+1

)
(1 − St∗rt∗)ft∗rt∗ .
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6.2 Inference

The parameters are estimated by maximising the likelihood. The conventional tag-

recapture data and the catch-at-age data contribute the same likelihood components

discussed for the generic base model (model 1).

For an unreturned archival tag, the contribution to the likelihood is q̄, and

for a returned archival tag, it is log Q, where q̄ and Q are derived for the appropriate

tagging region and time and recapture history.

6.3 Numerical example

We give an example of the data to flesh out the concepts. This is structurally the

same as the numerical example section for model 1, in that the true parameter

values and the total numbers of tag releases are the same, although it is a different

simulation. Let Nt′r′ denote the total tags released in region r′ at the beginning of

time period t′, and let Mt′r′ = (1−pA)Nt′r′ denote the number of conventional tags.

In this example, we assume pA = 0.05, so that only 5% of the releases are archival

tags.

The conventional tagging data are set out in Table 22.

Table 22: Conventional tag-recapture data from the generic

base model with archival tags

t′ r′ Nt′r′ Mt′r′ unreturned returned tags
tags t = 1 t = 2 t = 3

r = 1 r = 2 r = 3 r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

1 1 1415 1344 964 109 0 0 128 5 4 100 16 18
1 2 1415 1344 959 0 98 0 12 130 10 17 102 16
1 3 1415 1344 934 0 0 118 11 4 137 19 25 96
2 1 949 901 609 0 0 0 145 0 0 118 13 16
2 2 949 901 600 0 0 0 0 152 0 13 124 12
2 3 949 901 605 0 0 0 0 0 149 10 18 119
3 1 636 604 463 0 0 0 0 0 0 141 0 0
3 2 636 604 460 0 0 0 0 0 0 0 144 0
3 3 636 604 467 0 0 0 0 0 0 0 0 137
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We now turn to the archival tags. Let At′r′ = pANt′r′ be the number of

archival tags released in region r′ at the beginning of time period t′. Of course

Nt′r′ = Mt′r′ + At′r′ ,

as can be checked for this example from the appropriate entries in Tables 22 and 23.

We need to treat the unreturned tags separately from the returned. The

numbers of unreturned tags are set out in Table 23.

Table 23: Archival tag-recapture data from the generic base

model with archival tags: total tag releases and unreturned

tags

t′ r′ At′r′ unreturned
tags

1 1 71 49
1 2 71 49
1 3 71 48
2 1 48 23
2 2 48 31
2 3 48 31
3 1 32 27
3 2 32 28
3 3 32 28

For the returned tags, we know the full history of regions visited by the fish.

The first column of Table 24 gives the region that the fish was in during time period

1; the second gives the region it was in during time period 2; and the third gives

the region it was in during time period 3. A zero in column 1 means that the fish

has not yet been tagged — this, in fact, is the meaning of all leading zeroes. A

trailing zero means that the fish has previously been caught. The final column is

the number of recaptured tags, na, with the given history in the first three columns.
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Table 24: Archival tag-recapture data from the generic base

model with archival tags: history of returned tags (columns

1 to 3 specify the regions the fish were in during time periods

1 to 3 respectively)

t = 1 t = 2 t = 3 na

1 0 0 4
1 1 0 8
1 1 1 5∗
1 1 2 4∗
1 3 0 1
2 0 0 10
2 1 1 1∗
2 2 0 7
2 2 2 4∗
3 0 0 6
3 1 0 1
3 2 0 1
3 2 2 1∗
3 3 0 8
3 3 3 6∗
0 1 0 16
0 1 1 6
0 1 3 3
0 2 0 11
0 2 1 1
0 2 2 3
0 2 3 2
0 3 0 12
0 3 2 2
0 0 1 5
0 0 2 4
0 0 3 4

It should be noted that only the 21 cases marked with an asterisk yield more in-

formation than conventional tags. There are 9000 tags in total, so these represent

less than 0.3% of the total. Even of the 2625 returned tags, it is only 0.8%, so it is

difficult to imagine that these will have much impact on the estimation.

Note also that there are 71 archival tags deployed in region 1 at the start of
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time period 1. Of these, 49 are not returned (Table 23) and 4+8+5+4+1=22 are

returned (Table 24). Similar calculations apply to other times and periods.

We simulated 100 such data sets, with pa = 0.05 of tags being archival, and

estimated the parameters by maximum likelihood, assuming that the coefficient of

variation in the catch-at-age data, c = 0.2, is known. In Table 25 we report summary

statistics of the estimates.

Table 25: True parameter values, mean maximum likelihood

estimates and summary statistics for 100 sets of data gener-

ated from a model in which there is tagging (95% conven-

tional, 5% archival) of a single cohort of fish in all regions for

three years

Par True 2.5% Mean 97.5% Par True 2.5% Mean 97.5%

M1 0.300 0.212 0.296 0.357 π32|1 0.050 0.019 0.050 0.088
M2 0.200 0.105 0.194 0.307 π33|1 0.900 0.844 0.899 0.942
F11 0.100 0.087 0.100 0.118 π11|2 0.800 0.753 0.800 0.856
F21 0.200 0.176 0.200 0.231 π12|2 0.100 0.060 0.102 0.140
F31 0.300 0.253 0.296 0.346 π13|2 0.100 0.059 0.098 0.132
F12 0.100 0.081 0.099 0.118 π21|2 0.100 0.067 0.103 0.145
F22 0.200 0.175 0.198 0.225 π22|2 0.800 0.736 0.794 0.853
F32 0.300 0.251 0.298 0.337 π23|2 0.100 0.065 0.103 0.141
F13 0.100 0.084 0.100 0.122 π31|2 0.100 0.060 0.104 0.149
F23 0.200 0.176 0.202 0.229 π32|2 0.100 0.063 0.099 0.134
F33 0.300 0.260 0.299 0.355 π33|2 0.800 0.738 0.797 0.855
π11|1 0.900 0.865 0.903 0.949 log10 P1 5.000 4.877 4.995 5.104
π12|1 0.050 0.019 0.048 0.076 log10 P2 5.000 4.872 4.990 5.099
π13|1 0.050 0.022 0.049 0.082 log10 P3 5.000 4.876 4.991 5.092
π21|1 0.050 0.021 0.047 0.078 F1 0.100 0.091 0.100 0.110
π22|1 0.900 0.863 0.905 0.939 F2 0.200 0.185 0.200 0.219
π23|1 0.050 0.020 0.048 0.084 F3 0.300 0.265 0.297 0.339
π31|1 0.050 0.013 0.051 0.085

The mean, 2.5% and 97.5% quantiles of the parameter estimates are very similar to

those in Table 3, which contains analogous results except using 100% conventional

tags.
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As explained previously, we did not expect including 5% archival tags to have

much impact on the results. Thus, we repeated the exercise with 5%, 50% and 95%

of the total tag releases being archival. We increased the number of replicates to 250

in each case instead of 100 to ensure that any differences are real and not just due

to insufficient sample sizes. We do not expect the means of the parameter estimates

to differ significantly (because they are already unbiased using only conventional

tags); instead, we are interested in whether the precision of any of the estimates

is improved. Table 26 presents a comparison of the coefficients of variation of the

parameter estimates from the three scenarios.

Table 26: Coefficients of variation (×100%) of parameter es-

timates from 250 simulations using 1) 5% archival tags; 2)

50% archival tags; and 3) 95% archival tags. True parameter

values are also given.

Percent archival Percent archival
Par True 5% 50% 95% Par True 5% 50% 95%

M1 0.3 12.6 12.5 12.6 π32|1 0.05 36.9 29.2 24.5
M2 0.2 24.8 25.5 26.6 π33|1 0.9 2.8 2.3 1.9
F11 0.1 8.7 7.8 9.5 π11|2 0.8 3.6 3.1 3.3
F21 0.2 6.9 6.2 6.2 π12|2 0.1 20.2 18.0 19.3
F31 0.3 8.2 8.8 8.8 π13|2 0.1 20.8 18.4 18.6
F12 0.1 8.6 9.0 9.2 π21|2 0.1 20.4 19.5 18.0
F22 0.2 6.2 6.0 6.4 π22|2 0.8 3.6 3.4 3.0
F32 0.3 8.0 8.3 9.2 π23|2 0.1 21.6 19.3 19.0
F13 0.1 9.1 9.3 8.9 π31|2 0.1 21.5 20.6 19.0
F23 0.2 6.7 5.3 6.1 π32|2 0.1 20.2 19.4 18.4
F33 0.3 8.7 8.5 8.2 π33|2 0.8 3.5 3.3 3.1
π11|1 0.9 2.2 2.1 1.9 log10 P1 5 1.1 1.2 1.2
π12|1 0.05 33.6 27.8 23.7 log10 P2 5 1.3 1.2 1.2
π13|1 0.05 31.4 29.5 25.8 log10 P3 5 1.2 1.2 1.3
π21|1 0.05 36.6 25.5 24.8 F1 0.1 5.1 5.4 5.4
π22|1 0.9 2.7 2.3 1.9 F2 0.2 4.1 3.7 4.1
π23|1 0.05 33.4 30.0 26.0 F3 0.3 6.6 7.1 7.3
π31|1 0.05 33.9 31.0 24.3

We see that increasing the percent of archival tags leads to improvements in precision
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of all the transition probabilities, and significant improvements for some of them.

Somewhat surprisingly, the precision of the other parameter estimates is largely

unaffected.

While these findings are specific to the situation being considered, we carried

out simulations for several other situations and reached much the same conclusion.

Our investigation was not exhaustive, however, and there are perhaps situations in

which archival tags could improve the mortality and abundance estimates as well as

the transition rates.

7 Model 6: allowing for overdispersion in the tag-

recapture data in the generic spatial Brownie

model

Tag-recapture data are commonly modelled as multinomial, although in practice

they exhibit extra-multinomial variation. In the context of binomial data, the sem-

inal paper is Williams (1982). He, and subsequent authors, have discussed a variety

of models for overdispersed binomial data. The extra variation has a variety of

causes: fish swim in schools; fishing is a commercial enterprise; weather can affect

spotting ability; and so on. In short, fishing is not an exercise in random sampling.

We do not have many degrees of freedom to model overdispersion. Consider

just the tag-recapture data in the generic base model — that is, ignore the catch-

at-age data. We are estimating 23 independent parameters from 36 independent

data values. We cannot afford to use many degrees of freedom on overdispersion.

We therefore choose the most parsimonious and tractable model we can for the

overdispersion.

7.1 The Dirichlet-multinomial distribution

The Dirichlet-multinomial distribution appears to be due to Mosimann (1962), as a

model for multinomial style data with overdispersion.
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The multinomial distribution describes n trials, in which an observation in

any given trial falls into one of k categories. The probability that observation falls

into category i is pi, and the probability of data n1, n2, . . . , nk for the category counts

over the n trials is ⎛
⎜⎜⎝ n

n1, n2, . . . , nk

⎞
⎟⎟⎠ pn1

1 pn2
2 . . . pnk

k .

Note that
∑

ni = n. We will denote this distribution as Pr{n|p}, where v =

(v1, v2, . . . , vk)
′ is generic notation for a vector.

The Dirichlet distribution has been invented to describe the variation of pro-

portions that add to 1. The proportions are presumed to vary randomly, and the

probability (density) of a set of proportions p1, p2, . . . , pk is

Γ(a)∏k
i=1 Γ(ai)

k∏
i=1

pai−1
i ,

where ai > 0 for all i. Here Γ(x) denotes the Gamma function, with the well-known

property that Γ(n) = (n − 1)! when n is an integer. Also a =
∑k

i=1 ai. Denote

the parameters of the Dirichlet distribution by a = (a1, a2, . . . , ak)
′. We denote this

distribution by Pr{p|a}. If we let Pi be the random variable corresponding to the

proportion in category i, then it is easy to show that E[Pi] = ai/a. If k = 2, the

Dirichlet distribution becomes the beta distribution.

The Dirichlet-multinomial distribution is the compound distribution

Pr{n} =
∫

Pr{n|p} Pr{p|a} dp .

The integral is over all values p on the k-dimensional simplex, that is, over all values

p such that pi ≥ 0 and
∑k

i=1 pi = 1. It is easy to show that the resulting distribution

is ⎛
⎜⎜⎝ n

n1, n2, . . . , nk

⎞
⎟⎟⎠ Γ(a)

[∏k
i=1 Γ(ni + ai)

]
[∏k

i=1 Γ(ai)
]

Γ(n + a)
.

Part of the appeal of this distribution is its explicit and easily-computed functional

form. It is easy to fit the parameters by maximising the log-likelihood, for example.
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The Dirichlet-multinomial distribution generalises the beta-binomial distribution,

which is often used in statistical circles for analysing overdispersed binomial data.

It is important to emphasise here exactly what this model means. For a given

set of n trials (in our case, each trial equates to a tagged fish), the probabilities of

occurrence p are a fixed set of numbers. However, if we were to take a second set of

n trials (i.e. a second set of n tagged fish), the p would vary. Here n is the same in

each set. Note that p does not vary randomly from trial to trial within a given set.

If it did, the probability of the data would be

n∏
j=1

Γ(a)
[∏k

i=1 Γ(nij + ai)
]

[∏k
i=1 Γ(ai)

]
Γ(1 + a)

=
Γ(a)n

[∏n
j=1

∏k
i=1 Γ(nij + ai)

]
[∏k

i=1 Γ(ai)
]n

Γ(1 + a)n
,

where nij = 1 if individual j is in group i, and is 0 otherwise. This is not a realistic

model: it would be hard to capture the wholesale deviations from the multinomial

probabilities that operate on a group of individuals.

Let Ni be the random variable corresponding to the count in category i in a

Dirichlet-multinomial distribution. It is easy to show that

E[Ni] = n
ai

a
= nE[Pi] ;

Var[Ni] = nE[Pi](1 − E[Pi])
[
n + a

1 + a

]
;

Cov[Ni, Nj] = −nE[Pi]E[Pj ]
[
n + a

1 + a

]
.

The variance-covariance matrix of the Dirichlet-multinomial distribution is propor-

tional to that of a multinomial distribution — the scaling factor is (n + a)/(1 + a).

The overdispersion is greatest for small a, and reduces to 0 as a → ∞.

If we let µi = E[Pi], then we can write the Dirichlet-multinomial distribution

as ⎛
⎜⎜⎝ n

n1, n2, . . . , nk

⎞
⎟⎟⎠ Γ(a)

[∏k
i=1 Γ(ni + aµi)

]
[∏k

i=1 Γ(aµi)
]

Γ(n + a)
,

where µi (which play the role of the pi in the multinomial distribution) will be

modelled in terms of natural and fishing mortalities and transition probabilities,

and a represents overdispersion. Note that since
∑k

i=1 µi = 1, a =
∑k

i=1 aµi.
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It is useful to develop an intuitive understanding of the parameters. Consider

the case E[Pi] = 1/2. For the multinomial case, the coefficient of variation of Ni

is 1/
√

n, but for the Dirichlet-multinomial it is
√

(n + a)/(1 + a)/
√

n. For n large

(> 1000, say), the CV of the multinomial is only a few per cent. This seems unlikely

to be true for real data, and we assume that the CV of the Dirichlet-multinomial is


 1/
√

n. If we solve for a for a given n and CV, we get a = n(1−CV2)/(nCV2−1).

If we assume nCV2 
 1, then a ≈ (1 − CV2)/CV2 or CV = 1/
√

1 + a. This means

that the parameter a has a simple interpretation. An equivalent way to look at this

is to assume that a � n in practice.

This suggests a sensible value to use for a in practice. We would often want

CV = 0.1 for the tagging data. This equates to a = 99 exactly, so we might set

a = 101. It may, in fact, be better to reparameterise, so that we use 1/
√

1 + a rather

than a itself.

7.2 Simulating Dirichlet-multinomial data

Probably the simplest way to simulate Dirichlet-multinomial data is to first simulate

X1, . . . , Xk as n independent Gamma variates, in which the density of Xi is

e−xxai−1

Γ(ai)

(where ai = aµi) and then set pi = Xi/(X1 + · · ·+ Xk). Then simulate multinomial

data from the multinomial distribution with proportions (p1, . . . , pk). Note that if

µi = 0, as might happen in the context of a real problem, we simply set Xi = 0.

For a statement of the result that the pi have a Dirichlet distribution, see

Aitchison (1986), Property 3.3.

7.3 Tagging data

Suppose, as in Section 2.1, we consider a particular tagging group that generates a

corresponding vector of multinomial probabilities

q = (q̄, q11, q12, . . . , q1R, q21, q21, . . . , q2R, . . . , qT1, qT2, . . . , qTR) .
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Write this as

q = (µ1, µ2, . . . , µ1+TR) .

Write the counts as

(n1, n2, . . . , n1+TR) ,

and n =
∑1+TR

i=1 ni. If we assume that the counts are a realisation of a Dirichlet-

multinomial distribution, then their probability is⎛
⎜⎜⎝ n

n1, n2, . . . , n1+TR

⎞
⎟⎟⎠ Γ(a)

[∏1+TR
i=1 Γ(ni + aµi)

]
[∏1+TR

i=1 Γ(aµi)
]

Γ(n + a)
, (10)

where a is an overdispersion parameter.

7.4 Inference

The log-likelihood of the tag-recapture data is, apart from an additive constant,

log Γ(a) +
1+TR∑
i=1

(log Γ(ni + aµi) − log Γ(aµi)) − log Γ(n + a) .

Most programming environments provide a log Γ(x) function, so it is easy to compute

the likelihood for a given set of parameter values. Note that for a structural zero,

ni = µi = 0. But log Γ(0) = ∞, and we strike numerical problems. Unfortunately,

we cannot use a similar trick to that described in Section 2.3. Note that if ni = 0,

we have log Γ(ni + aµi)− log Γ(aµi) = 0, whether µi = 0 or not, so the simplest way

around the problem is simply to omit the data with ni = 0 from the log-likelihood.

Abramowitz and Stegun (1964), paragraph 6.1.46 on page 257, claim that

lim
x→∞xb−a Γ(x + a)

Γ(x + b)
= 1 . (11)

This suggests that we should group the log-likelihood into terms. Thus, we write

the log-likelihood as

[n log a + log Γ(a) − log Γ(n + a)]

+
1+TR∑
i=1

[−ni log(aµi) + log Γ(ni + aµi) − log Γ(aµi)]

+
1+TR∑
i=1

ni log µi . (12)
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From (11) the first two lines of (12) each → 0 as a → ∞, and hence log-likelihood

reduces to the multinomial likelihood (the final line of (12)) as a → ∞.

7.5 Numerical example

The data have the same structure as the base case, so we do not present any examples

of data sets. Note, however, that the number of tags released are the same as

presented in Table 1, namely 1415 for the one-year-olds, 949 for the two-year-olds

and 636 for the three-year-olds.

7.5.1 Low overdispersion

We commence by simulating 100 data sets with the true values presented in Table

27. The true value of a is 9999. In fact, we prefer to reparameterise a as 1/
√

1 + a,

which equals 0.01 when a = 9999. If n = 1000, the variance-inflation factor over the

multinomial is (1000 +9999)/(9999 +1) ≈ 1.01, or, in terms of standard deviations,

about 5% overdispersion. If n = 500, it is about 2.5% overdispersion, and if n =

1500, about 7.2%. This therefore represents quite modest overdispersion. The

summary statistics for the maximum likelihood estimators are presented in Table

27.

Table 27: True parameter values, mean maximum likelihood

estimates and summary statistics for 100 sets of minimally

overdispersed tag-recapture and catch-at-age data generated

from a model in which there is tagging of a single cohort of

fish in all regions for three years

Par True 2.5% Mean 97.5% Par True 2.5% Mean 97.5%

M1 0.300 0.219 0.287 0.350 π32|1 0.050 0.015 0.049 0.085
M2 0.200 0.077 0.188 0.295 π33|1 0.900 0.857 0.905 0.956
F11 0.100 0.083 0.099 0.117 π11|2 0.800 0.736 0.782 0.853
F21 0.200 0.172 0.195 0.223 π12|2 0.100 0.058 0.102 0.144
F31 0.300 0.249 0.299 0.353 π13|2 0.100 0.072 0.115 0.165
F12 0.100 0.082 0.101 0.113 π21|2 0.100 0.065 0.100 0.136
F22 0.200 0.175 0.197 0.224 π22|2 0.800 0.748 0.800 0.859
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Table 27: continued

Par True 2.5% Mean 97.5% Par True 2.5% Mean 97.5%

F32 0.300 0.260 0.300 0.361 π23|2 0.100 0.059 0.100 0.143
F13 0.100 0.083 0.099 0.116 π31|2 0.100 0.064 0.098 0.144
F23 0.200 0.168 0.190 0.214 π32|2 0.100 0.054 0.096 0.136
F33 0.300 0.239 0.289 0.334 π33|2 0.800 0.757 0.805 0.856
π11|1 0.900 0.856 0.898 0.944 1/

√
1 + a 0.010 0.000 0.000 0.000

π12|1 0.050 0.026 0.053 0.088 log10 P1 5.000 4.866 4.986 5.078
π13|1 0.050 0.012 0.049 0.081 log10 P2 5.000 4.832 4.993 5.091
π21|1 0.050 0.021 0.047 0.073 log10 P3 5.000 4.835 4.987 5.115
π22|1 0.900 0.837 0.887 0.941 F1 0.100 0.088 0.099 0.109
π23|1 0.050 0.029 0.066 0.102 F2 0.200 0.177 0.194 0.208
π31|1 0.050 0.019 0.046 0.071 F3 0.300 0.255 0.296 0.336

The parameter estimates appear to be reasonable, although some exhibit small

apparent biases, which may or may not be real. An interesting feature is that

1/
√

1 + a = 0 (corresponding to a = ∞) for all 100 trials — this makes it clear why

we reparameterised a. Essentially the small amount of overdispersion is lost.

7.5.2 Medium overdispersion

We now consider a situation with increased overdispersion. We set a = 999, equiv-

alent to 1/
√

1 + a = 0.032. For n = 500, the overdispersion is 22%, for n = 1000 it

is 41%, and for n = 1500 it is 58%. The results are presented in Table 28.

Table 28: True parameter values, mean maximum likelihood

estimates and summary statistics for 100 sets of moderately

overdispersed tag-recapture and catch-at-age data generated

from a model in which there is tagging of a single cohort of

fish in all regions for three years

Par True 2.5% Mean 97.5% Par True 2.5% Mean 97.5%

M1 0.300 0.220 0.286 0.347 π32|1 0.050 0.009 0.040 0.073
M2 0.200 0.075 0.180 0.279 π33|1 0.900 0.822 0.866 0.914
F11 0.100 0.084 0.100 0.117 π11|2 0.800 0.752 0.796 0.853
F21 0.200 0.167 0.190 0.215 π12|2 0.100 0.068 0.112 0.152
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Table 28: continued

Par True 2.5% Mean 97.5% Par True 2.5% Mean 97.5%

F31 0.300 0.247 0.295 0.349 π13|2 0.100 0.055 0.092 0.125
F12 0.100 0.088 0.105 0.119 π21|2 0.100 0.060 0.095 0.139
F22 0.200 0.173 0.197 0.225 π22|2 0.800 0.751 0.813 0.884
F32 0.300 0.264 0.309 0.366 π23|2 0.100 0.047 0.092 0.136
F13 0.100 0.081 0.097 0.113 π31|2 0.100 0.040 0.080 0.119
F23 0.200 0.163 0.179 0.200 π32|2 0.100 0.065 0.106 0.152
F33 0.300 0.236 0.283 0.327 π33|2 0.800 0.762 0.814 0.868
π11|1 0.900 0.850 0.888 0.929 1/

√
1 + a 0.032 0.000 0.005 0.022

π12|1 0.050 0.046 0.080 0.117 log10 P1 5.000 4.855 4.977 5.076
π13|1 0.050 0.009 0.032 0.063 log10 P2 5.000 4.802 4.976 5.074
π21|1 0.050 0.022 0.047 0.078 log10 P3 5.000 4.875 5.011 5.143
π22|1 0.900 0.810 0.869 0.927 F1 0.100 0.090 0.100 0.109
π23|1 0.050 0.042 0.084 0.132 F2 0.200 0.174 0.188 0.201
π31|1 0.050 0.055 0.094 0.135 F3 0.300 0.254 0.295 0.336

Some modest biases are observed in many of the parameter estimates.

7.5.3 High overdispersion

We now try an extreme case with very high overdispersion. We set 1/
√

1 + a = 0.05.

For n = 500, the overdispersion is 50%, for n = 1000 it is 87%, and for n = 1500 it

is 118%. The results are presented in Table 29.

Table 29: True parameter values, mean maximum likeli-

hood estimates and summary statistics for 100 sets of highly

overdispersed tag-recapture and catch-at-age data generated

from a model in which there is tagging of a single cohort of

fish in all regions for three years

Par True 2.5% Mean 97.5% Par True 2.5% Mean 97.5%

M1 0.300 0.188 0.258 0.322 π32|1 0.050 0.079 0.124 0.176
M2 0.200 0.146 0.244 0.345 π33|1 0.900 0.784 0.846 0.897
F11 0.100 0.046 0.059 0.075 π11|2 0.800 0.721 0.766 0.823
F21 0.200 0.157 0.181 0.205 π12|2 0.100 0.095 0.135 0.175
F31 0.300 0.273 0.321 0.380 π13|2 0.100 0.062 0.100 0.140
F12 0.100 0.091 0.109 0.123 π21|2 0.100 0.051 0.085 0.120
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Table 29: continued

Par True 2.5% Mean 97.5% Par True 2.5% Mean 97.5%

F22 0.200 0.165 0.186 0.211 π22|2 0.800 0.718 0.782 0.852
F32 0.300 0.298 0.351 0.402 π23|2 0.100 0.082 0.134 0.182
F13 0.100 0.080 0.094 0.113 π31|2 0.100 0.078 0.112 0.156
F23 0.200 0.161 0.184 0.211 π32|2 0.100 0.030 0.060 0.106
F33 0.300 0.205 0.252 0.291 π33|2 0.800 0.775 0.828 0.873
π11|1 0.900 0.879 0.912 0.949 1/

√
1 + a 0.050 0.000 0.021 0.036

π12|1 0.050 0.000 0.022 0.045 log10 P1 5.000 4.987 5.099 5.186
π13|1 0.050 0.038 0.065 0.093 log10 P2 5.000 4.757 4.941 5.041
π21|1 0.050 0.019 0.045 0.073 log10 P3 5.000 4.887 5.020 5.140
π22|1 0.900 0.876 0.931 0.961 F1 0.100 0.074 0.084 0.094
π23|1 0.050 0.000 0.024 0.057 F2 0.200 0.168 0.183 0.198
π31|1 0.050 0.010 0.031 0.059 F3 0.300 0.266 0.306 0.343

We now see considerable biases in most parameter estimates, particularly in the

natural mortalities. Oddly enough, the population sizes are estimated reasonably

well. Even in this case 1/
√

1 + a is estimated to be 0 occasionally. Overall the

maximum likelihood estimator of this parameter is very biased, with a mean of

0.021 and a 97.5 percentile of 0.036, well below the true value of 0.05.

This last point raised the question of whether the estimation would improve

if we set 1/
√

1 + a at its true value of 0.05. The results are set out in Table 30.

Table 30: True parameter values, mean maximum likeli-

hood estimates and summary statistics for 100 sets of highly

overdispersed tag-recapture and catch-at-age data generated

from a model in which there is tagging of a single cohort of

fish in all regions for three years, fixing the overdispersion

parameter, 1/
√

1 + a, at its true value

Par True 2.5% Mean 97.5% Par True 2.5% Mean 97.5%

M1 0.300 0.184 0.259 0.321 π32|1 0.050 0.082 0.125 0.177
M2 0.200 0.147 0.240 0.343 π33|1 0.900 0.779 0.838 0.893
F11 0.100 0.053 0.067 0.085 π11|2 0.800 0.713 0.757 0.809
F21 0.200 0.154 0.179 0.202 π12|2 0.100 0.097 0.138 0.180
F31 0.300 0.272 0.318 0.375 π13|2 0.100 0.067 0.105 0.144
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Table 30: continued

Par True 2.5% Mean 97.5% Par True 2.5% Mean 97.5%

F12 0.100 0.091 0.110 0.130 π21|2 0.100 0.056 0.089 0.124
F22 0.200 0.164 0.189 0.212 π22|2 0.800 0.710 0.780 0.846
F32 0.300 0.301 0.351 0.403 π23|2 0.100 0.078 0.131 0.182
F13 0.100 0.076 0.093 0.116 π31|2 0.100 0.081 0.115 0.160
F23 0.200 0.157 0.186 0.218 π32|2 0.100 0.032 0.061 0.102
F33 0.300 0.209 0.255 0.293 π33|2 0.800 0.772 0.824 0.868
π11|1 0.900 0.864 0.899 0.939 1/

√
1 + a 0.050 0.050 0.050 0.050

π12|1 0.050 0.000 0.030 0.053 log10 P1 5.000 4.955 5.067 5.158
π13|1 0.050 0.046 0.071 0.098 log10 P2 5.000 4.753 4.936 5.036
π21|1 0.050 0.025 0.050 0.078 log10 P3 5.000 4.876 5.013 5.137
π22|1 0.900 0.873 0.919 0.949 F1 0.100 0.075 0.088 0.102
π23|1 0.050 0.000 0.031 0.063 F2 0.200 0.169 0.184 0.200
π31|1 0.050 0.016 0.037 0.064 F3 0.300 0.267 0.306 0.343

It is clear that setting a at its true value results in negligible improvement.

Finally we estimated the parameters assuming that the tag-recapture data

were multinomial — that is, we ignored the overdispersion. The results are displayed

in Table 31.

Table 31: True parameter values, mean maximum likeli-

hood estimates and summary statistics for 100 sets of highly

overdispersed tag-recapture and catch-at-age data generated

from a model in which there is tagging of a single cohort

of fish in all regions for three years, assuming multinomial

recapture data (i.e., assuming no overdispersion)

Par True 2.5% Mean 97.5% Par True 2.5% Mean 97.5%

M1 0.300 0.187 0.254 0.319 π32|1 0.050 0.079 0.125 0.174
M2 0.200 0.143 0.244 0.345 π33|1 0.900 0.786 0.846 0.899
F11 0.100 0.044 0.056 0.068 π11|2 0.800 0.721 0.767 0.825
F21 0.200 0.160 0.184 0.208 π12|2 0.100 0.093 0.134 0.174
F31 0.300 0.276 0.322 0.381 π13|2 0.100 0.061 0.099 0.139
F12 0.100 0.090 0.108 0.120 π21|2 0.100 0.050 0.083 0.118
F22 0.200 0.164 0.186 0.211 π22|2 0.800 0.712 0.777 0.843
F32 0.300 0.297 0.351 0.404 π23|2 0.100 0.093 0.140 0.185
F13 0.100 0.081 0.094 0.113 π31|2 0.100 0.077 0.110 0.151
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Table 31: continued

Par True 2.5% Mean 97.5% Par True 2.5% Mean 97.5%

F23 0.200 0.161 0.182 0.209 π32|2 0.100 0.031 0.063 0.110
F33 0.300 0.203 0.250 0.289 π33|2 0.800 0.767 0.826 0.875
π11|1 0.900 0.879 0.914 0.952 1/

√
1 + a 0.050 0.000 0.000 0.000

π12|1 0.050 0.000 0.020 0.039 log10 P1 5.000 4.998 5.114 5.216
π13|1 0.050 0.037 0.066 0.096 log10 P2 5.000 4.756 4.941 5.040
π21|1 0.050 0.017 0.044 0.073 log10 P3 5.000 4.882 5.020 5.140
π22|1 0.900 0.878 0.935 0.965 F1 0.100 0.073 0.082 0.093
π23|1 0.050 0.000 0.022 0.055 F2 0.200 0.167 0.184 0.198
π31|1 0.050 0.007 0.029 0.057 F3 0.300 0.265 0.305 0.344

This also failed to improve matters.

7.6 Overdispersion: concluding remarks

The Dirichlet-multinomial model is capable of modelling overdispersion. However,

the degree of overdispersion is always underestimated by maximum likelihood. As

the degree of overdispersion increases, substantial biases are seen in some parameter

estimators. Remarkably, the population size estimates seem to be fairly reasonable,

even for high overdispersion cases.

If we focus on M̂1, we find that in Tables 3, 27, 28, and 29 the width of the

(2.5%,97.5%) interval of estimates remains fairly constant at about 0.13. However,

between the medium and high overdispersion cases (Tables 28 and 29), the mean

suddenly changes from about 0.29 to about 0.26 (recall the true value is 0.30). It

would be interesting to see if this behaviour is maintained if the level of overdisper-

sion is estimated in a less biased way.
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��� ������ �� ��� ������ "����� ,# �� ����� �! &���� ������ �� ��� &���� .��

����� /���� �� �� ���� &�� �� �	������ �� ��� ������������� �� ��� ������

&'� ������ ��� ��� ������ ������� �� ��� ������ ������� �� ���� �� O������F�

��� � ,,



�������� ��� 	�
��������� ����� ����
���� ����� ��� �������� �����
�

3��� ��� ��� ����� �� �����  � �������I�� �� �� ��� �� �� ������ �������  ��

��� �������� ������������ �� ���� ��� - ������ ������� �� ��� ������������

5�� ��� ������ &'� ������ �� ������� �� ��� ���� ��� ������ �� �������� ���
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 ��� ������� �� ������ � � ��� ��� �� ����� , �� ����������� �� ������� �� ��

����������  ��� �� ������ �#� 5�� &'�� �� �	���� ��� ����������  �$ �� ������ �
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Introduction 
 

As shown in Appendices 5, 7, 9, 10 and 11, tagging experiments have the potential to 
provide direct quantitative estimates for key parameters modelling the population 
dynamics and assessing the stock status of fishery resources. For some of these 
parameters, such as movement parameters and natural mortality rates, tagging 
experiments probably provide the only approach that can yield direct estimates. In 
addition, they provide the only viable approach for obtaining fishery-independent 
(e.g., not reliant on CPUE) estimates of population sizes and fishing mortality rate 
estimates in many fisheries (particularly where the resource is geographically 
widespread). However, for tagging experiments to be successful there are a number of 
components requiring “adequate” data (e.g., tag releases, tag returns, catch data, 
reporting rates, etc.) in order to even be able to undertake the estimation, much less to 
achieve parameter estimates with acceptable/useful levels of precision and accuracy. 
It is essential that the overall data requirements of the anticipated analyses be 
carefully considered in the design and implementation phases of the experiments. If 
these are not obtainable, then careful consideration should be given to whether the 
tagging experiments are in fact worth undertaking. In addition, while it can be rather 
straightforward to list what types of data are required, the question of “how much” is 
required for each of the different types is complex and becomes more so if there is a 
need to incorporate complex spatial/temporal population and fishery dynamics.  
 
In the design of any tagging experiment, decisions will be required on the relative 
amount of effort that should be devoted to the various components. Appendices 5, 7 
and 9 present results that examine trade-offs between number of tags released, 
precision in the catch data and/or level of observer effort for tagging experiments in 
which systematic incomplete mixing of tagged and untagged fish is not an issue and 
in which the spatially related parameters are not of interest. Similar types of results 
can be generated within the context of a spatially and/or temporally disaggregated 
tagging experiment; however, the dimensionality of the design considerations 
becomes much larger (e.g., number of tag releases in each area and time period, level 
of observer coverage and/or catch sampling in each area and time period). In addition, 
the trade-offs will generally be dependent upon the true values of the population 
parameters, such as relative abundances in each area and transfer rates between areas. 
As such, it is not productive or even feasible to present extensive results on the 
relative trade-offs in design components for general tagging experiments involving 
complex spatial/temporal components. However, the general estimation and 
modelling frameworks developed in Appendices 10 and 11 can be used to examine 
design trade-offs in any potential application in conjunction with specific hypotheses 
about the spatial/temporal dynamics for the stock and fishery. We would recommend 
that such calculations be performed prior to undertaking an experiment in order to 
improve the efficiency of the design and ensure that the experiment has sufficient 
statistical power to provide useful results. The robustness of such simulations in 
predicting actual performance will depend upon the set of hypotheses tested. For 
example, results from an actual experiment may provide unanticipated information 
about the spatial/temporal dynamics that are outside of the range tested – particularly 
when there is little previous direct information about the spatial dynamics of the 
population being tagged. 

 A12-2



Appendix 12:  Design and analysis considerations for spatial tagging experiments 
 

 
Although the detailed design trade-offs and design issues will be specific to any 
particular tagging application, we can investigate more general design questions in 
situations where spatial effects may need to be considered. We have explored a wide 
range of simulations using the spatial modelling framework presented in Appendix 11 
to gain some understanding of design issues in a spatial context. The purpose of this 
appendix is to summarize the results from these simulations and the general 
conclusions they suggest. We stress that the possible range of spatial dynamics that 
could be considered is vast and the relevance of the results need to be tied to concrete 
situations. This, combined with limits on what was feasible to explore within the 
scope of this project, resulted in our focusing on situations where the spatial and 
temporal dynamics generally resemble those for juvenile SBT (e.g., seasonal 
migrations between feeding/nursery areas with seasonally distinct fishing grounds). 
While the results provide general insights on design issues for spatially explicit 
tagging experiments, caution should be used in extrapolating any conclusions to 
situations with differing spatial dynamics or within a different experimental 
design/estimation framework.    

Simulation Methods 

Estimation Model  
The basic model used for our simulations is the spatial tag-recapture and catch-at-age 
model developed in Appendix 11. The model was designed to have spatial and 
temporal dynamics resembling the general characteristics of the current SBT fishery 
and juvenile stock. Thus, the fisheries were divided into two seasonal components – a 
summer surface fishery and a winter longline fishery. The summer surface fishery 
occurs only in one area, namely South Australia/the Great Australian Bight (GAB), 
whereas the winter longline fishery occurs in three areas distinct from where the 
surface fishery occurs (South Africa, SE Indian Ocean and the Tasman Sea).  All fish 
migrate out of the surface fishing area at the end of the summer season into one of the 
longline fishing areas, but only a fraction of the fish migrate from the longline fishing 
areas to the surface fishery area at the end of the winter season (for simplicity, we 
assume that all migrations between areas occur at the end of a season).  Movement 
rates are assumed to vary among areas and with ages (e.g., a differing percent of fish 
migrate to the summer surface fishing area with age). Another simplification in the 
migration dynamics is that we do not allow for direct migration of fish between the 
longline areas. Thus, over a course of a single year, a fish either remains within a 
single longline area or it migrates between one of the longline areas and the surface 
fishery area.  Two variations on the basic movement dynamics were considered: one 
in which movement is represented as a seasonal Markov process (i.e., a fish has no 
memory with respect to its previous migrations); and one in which there is site-fidelity 
in the movement dynamics (i.e., a fish that migrates out of a particular longline area 
will always return to that same area).  These two movement models represent two 
limits of a continuum for modelling seasonal migration.  Details of the structural 
models and the estimation frameworks are given in Appendix 11. 
 
While the seasonal spatial dynamics for SBT are most likely more complex than 
represented by these models, the overall dynamics are broadly consistent with 
information from the fisheries, conventional tagging and limited archival tagging. For 
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example, the archival tagging results suggest a high degree of seasonal migration 
between the GAB and the winter longline areas, with fish tending to spend most of 
their winters within a single longline fishing ground. This is particularly true for the 
Tasman Sea area. For the South African area, fish clearly must move through the SE 
Indian Ocean when migrating between South Africa and the GAB. However, such 
movements appear to be relatively rapid based on the limited number of archival tag 
returns to date in which fish tagged in the GAB have moved to South Africa. Also, 
two very recent archival tag returns indicate that some older juveniles that spend their 
summers off South Africa may move into the SE Indian Ocean in the following 
winter. Nevertheless, the spatial dynamics considered here should provide an 
adequate framework for considering the major design issues for SBT-like situations.   
 
Because the model was constructed to represent an SBT-like fishery situation, its 
estimation framework incorporates observer data for estimating reporting rates in the 
longline fisheries and tag seeding data for estimating reporting rates in the surface 
fishery.  The model is comprised of three independent likelihood components – one 
for the tag-return data, one for the catch-at-age data, and one for the tag seeding data 
(the observer data are incorporated into both the tag-return and catch-at-age 
components). The overall likelihood is maximized to provide estimates of the fishing 
mortality rates by area and age, natural mortality rates by age, initial abundance (i.e., 
abundance at the time of first tagging) by area, and transition rates among areas by 
age and season.  Note that the model has been developed for application to a single 
cohort of fish tagged at consecutive ages, and therefore year and age become 
equivalent terms (i.e., referring to parameters differing by age is the same as differing 
by year). Although it is possible to generalize the model to more cohorts (see 
Appendix 16), we only consider applications to data from one cohort of fish in our 
simulations.       

Simulation Scenarios  
In all our simulations, we assumed a tagging experiment with three release and 
recapture years involving a single cohort of fish.  The population and movement 
dynamics and experimental designs that we considered are described below. 

Population/movement dynamics 

For generality and ease of reference, we will subsequently refer to the GAB as area 1 
and to the South African, SE Indian Ocean and Tasman Sea areas as areas 2 to 4 
respectively.  Additionally, we will refer to the summer season as season 1 and the 
winter season as season 2. Thus, in summary, all fishing in area 1 occurs in season 1 
and all fishing in the areas 2 to 4 occur in season 2; all fish move out of area 1 at the 
end of season 1 (no other transitions between areas occur at the end of season 1), and 
fish in areas 2 to 4 may choose to move into area 1 at the end of season 2 or stay in 
their current area.    
 
The set of scenarios we explored cover a wide range of values for the spatial and 
fishery dynamics (i.e., for the area and age-specific fishing mortality rates, the initial 
abundance of fish in each area, and the age-specific transition probabilities governing 
the movements between areas).  This was done because the underlying dynamics can 
affect the properties of the resulting estimates. As such, different dynamics can have 
implications for the design of tagging experiments. We explored scenarios for each of 
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the two different movement dynamics models developed in Appendix 11 (i.e., the 
Markov movement model and the site-fidelity movement model). In general, the 
results were similar with respect to design considerations. As such, results are only 
presented for the Markov movement model, except when we explore the importance 
of having the correct movement dynamics model. For the purposes of this appendix, 
we considered Markov movement scenarios with variation in the following four basic 
dimensions for the population dynamics and defined a range of options within each of 
these dimensions: 
 

1. Fishing mortality rates (low, medium and high); 
2. Initial abundance in each area (high proportion in area 1; equal in all areas; 

100% in area 1; high proportion in areas 1 and 2); 
3. Movement from area 1 to areas 2-4 at the end of season 1 (equal proportions 

move to each area; only a small proportion move to area 2) 
4. Movement from areas 2-4 to area 1 at the end of season 2 (low for area 2 and 

high for areas 3 and 4; high for all areas). 
 
Even within this range of options, a full cross of the options would yield 48 (3x4x2x2) 
different scenarios, so for the purpose of presentation we limited the number of 
options to 16. The set of scenarios for which results are presented are described in 
general terms in Table 1 and the detailed specification of the parameter values for 
each scenario are provided in Table 2. In order to limit the range of scenarios to a 
reasonable level, the same values for natural mortality at age were used in all the 
scenarios presented here.  
 
For the site-fidelity seasonal migration model, we present results with variation in 
these same basic dimensions but for a more limited number of scenarios. These are 
defined in Table 3. 

Tagging Design and Data Collection  

In the simulations presented, we considered two strategies for the tag releases in each 
year: (1) tags released in all areas; (2) tags released only in area 1 (i.e., the GAB).  In 
any given year, tagging in area 1 always occurs at the beginning of season 1, and 
tagging in areas 2 to 4 always occurs at the beginning of season 2.  In most cases we 
kept the total number of tag releases the same (2400 per year) in order to limit the 
number of simulations to a manageable amount. The effect of differing levels of tag 
releases was examined in Appendices 5, 7 and 9 in a non-spatial context; similar 
effects would be expected in the spatial context, so we only present a few limited 
results in which the total number of releases was varied.  In simulations in which the 
total number of releases was 2400 per year and tags were released in all areas, 1500 of 
the releases were in area 1 and 300 were in each of the three remaining areas. When 
we varied the total number of releases, we used the same relative proportions in each 
area. 
 
We also examined the effect that the quality of data for estimating reporting rates and 
catch-at-age had on the results. We defined two data quality scenarios, which we refer 
to as high and low (Table 4). The high quality scenario represents a high, but 
achievable commitment to the data collection process. For example, it specifies 
observer coverage of 75%. Although this is a relatively high level, near 100% 
observer coverage exists for a number of major fisheries. The low quality scenario is 
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closer to the current data collection situation for SBT. It is in fact overly optimistic 
with respect to observer coverage for the longline fisheries as it uses a value of 10%. 
This is the current target level agreed on by the CCSBT (Anon. 2001), but observer 
coverage for the main longline fisheries has been substantially below this target 
(Anon. 2004). Moreover, in the simulations, 10% observer coverage is assumed to 
constitute a random sample of 10% of the catch. In reality, observer sampling is a 
multi-stage process with observers spending up to several months on a single vessel. 
As such, effective sample size or coverage would be less than the percent of the catch 
actually observed, particularly when observer coverage is low.  

Simulation Results and Discussion 
All of the results presented are based on 100 simulations for each scenario. We have 
summarized the results in terms of the relative bias and the coefficient of variation 
(CV). Relative bias is defined as the difference between the mean parameter estimate 
(over the 100 runs) and the true value divided by the true value, multiplied by 100 to 
be expressed as a percent.   

Is a spatial dimension necessary? 
The introduction of a spatial dimension into the experimental design will clearly 
complicate the analysis and, in most instances, the implementation of tagging 
experiments. As such a critical question in the design of such experiments is whether 
a spatial component is necessary. Clearly, if the purpose of the experiment is to get 
estimates of movement rates or area-specific population sizes and fishing mortality 
rates, then the spatial component cannot be ignored. However, if the primary purpose 
of the experiment is to provide overall population-wide estimates of the parameters of 
primary interest for stock assessment purposes (i.e., natural and fishing mortality and 
population size), then whether a non-spatial design and analysis is sufficient is worth 
considering. As such, a focus of the results presented here is to compare the 
population-wide estimates of mortality and abundance when they are derived from the 
spatial estimation model versus when they are derived from a non-spatial estimation 
model applied to data pooled over areas (see Appendix 11 for details of the two 
estimation approaches). 
 
If the spatial component is ignored, the expectation is that the resulting estimates will 
be biased if tagged and untagged fish are not completely mixed across the entire 
spatial range. The extent of bias would be expected to depend on the extent of non-
mixing and the relative differential in abundances and fishing mortality rates by 
area/season.  Tables 5-10 provide comparisons of the percent relative bias in the 
population-wide estimates derived from applying the spatial Markov model to data 
generated according to the 16 spatial Markov scenarios defined in Table 2 versus the 
estimates obtained from pooling the data spatially and applying a non-spatial model. 
Comparisons are provided for the estimates of the total initial population size (at 
age 1), the natural morality rate at ages 1 and 2, and the overall fishing mortality rates 
for some selected ages and seasons. Results are presented for the high and low quality 
data scenarios and for the two different release strategies (tagging in all areas and 
tagging only in area 1). It should be noted that in scenario 11, all fish are initially in 
area 1 in season 1, they have equal probability of transitioning into each of areas 2-4 
at the end of the season, and 100% return to area 1 at the end of season 2. In essence, 
this scenario constitutes complete mixing of tagged and untagged fish.  While 
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unrealistic in terms of SBT dynamics, this scenario was included both as a check on 
the software (i.e., estimates using the pooled data should be unbiased in this case) and 
to see if there is any loss in precision by using a spatial model when in fact complete 
mixing exists. 

Initial total population size estimate 

Focusing first on the initial total population size estimates (Table 5), the results 
confirm that ignoring the spatial dimension will result in significant biases. Thus, all 
of the scenarios show significant biases in their pooled estimates of initial total 
population size except for scenario 11, as expected. The degree of bias is roughly 
related to the extent of non-mixing, particularly for the high data quality scenarios. 
For example, although significantly different from zero, the bias in the pooled 
estimates for scenario 15 in the high data quality scenario is only 3.6%.  This scenario 
has nearly complete mixing (i.e., 85% of the initial population is in area 1 at season 1, 
fish move equally into areas 2-4 at the end of season 1 at each age, and a high and 
equal proportion return from areas 2-4 to area 1 at the end of season 2).  Thus, the 
primary difference in the capture probability for tagged and untagged fish is for those 
fish tagged at the beginning of season 1 in each year. Similarly, scenario 13 has 
relatively small bias (5.0%). The increased spatial heterogeneity in this case stems 
from the relatively low proportions of the population that migrate between area 1 and 
area 2. As the differential in the mixing proportion increases and with lower 
proportions of the initial population size in area 1, the biases in the pooled estimates 
increased to as much as 36% even with high quality data. For the low quality data 
scenarios, the biases increased substantially for the pooled estimates.  
 
It should be noted that the fishing mortality rates within each of areas 2-4 was always 
the same at any age in the scenarios presented. Having substantially different fishing 
mortality rates among these areas would also have the potential to introduce 
substantial differences in recapture probabilities and further increase biases in the 
pooled estimates, particularly with large differences in the transition rates among 
areas.   
 
In contrast to the pooled estimates, the spatially-based estimates of total initial 
population size are unbiased in the high data quality scenarios and remain essentially 
unbiased even in the low quality data scenarios1.  This result was somewhat surprising 
given that substantial biases often exist in the area-specific estimates of initial 
population size (Table 11). Even more unexpected was that tagging only in area 1 also 
yielded unbiased estimates of total initial population size, with no real loss in 
precision as long as the same total number of tags was released. However, as with 
tagging in all areas, the area-specific population size estimates were often highly 
biased with tagging in only area 1, and in many scenarios (especially those where the 
initial distribution of fish was equal in all areas instead of being concentrated in area 

                                                 
1 In a few low quality data scenarios, there is a small apparent bias of the total initial population size for 
the spatially-based estimates.  Most of this is due to the fact the true bias is less precisely estimated for 
these scenarios because the increased variance in the individual estimate of P results in larger standard 
errors for the estimates of the bias with the same number of simulations. Thus, in many cases the 
estimated bias is not significant. Nevertheless, in some cases some estimation bias may be introduced 
in the poor data quality scenarios because of small sample size effects (e.g., the number of tags returned 
may be quite low). 
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1) these biases were significantly larger than when there was tagging in all areas 
(Table 11).     
 
Overall, these simulation results indicate that if spatial heterogeneity is likely to exist 
it is important to include a spatial dimension within the analysis phase to achieve 
unbiased estimates of population sizes. In terms of the precision of the estimates, there 
appears to be little or no cost for including a spatial dimension when in fact complete 
mixing exists, as indicated by the fact that the CVs for scenario 11 were essentially 
the same for the overall spatial estimates and the pooled estimated.   

Fishing mortality rates 

A comparison of the average seasonal fishing mortality estimates from the spatial 
model (see section 3.5.3 of Appendix 11) and the corresponding pooled estimates 
from the non-spatial model provides similar general conclusions as those for the 
estimates of total initial population size (Tables 6-82). Thus, the estimates of bias in 
the average spatially-based estimates are in almost all cases insignificant (exceptions 
are discussed below), while the biases for the pooled estimates are frequently 
significant and in some cases substantial. Extremely large biases are seen in some of 
the pooled estimates at age 1 for season 1 (i.e., over 300%) (Table 6). Similarly high 
biases are not seen in the estimates at ages 2 and 3 in season 1 (not shown), although 
the bias for scenario 12 is always greater than 100%. The high biases in the age 1 
estimates in season 1 are associated with scenarios in which the initial population is 
distributed equally in all four areas. As such, these scenarios would have the largest 
heterogeneity in recapture probabilities given that fishing is only taking place in area 
1 during season 1, plus all tag releases at this point have been in area 1 and no mixing 
has occurred into other areas. As with the estimates of total initial population size, the 
results for the average fishing mortality rates were similar whether tags were released 
in all areas or only within area 1.  
 
The spatially-based estimates of average fishing mortality appear to be unbiased in all 
of the high data quality scenarios, as well as in many of the low data quality scenarios 
but with two general exceptions: (1) a consistent negative bias ranging from around 8 
to 19% is seen in the estimates of the average fishing mortality rates for season 1 in 
the scenarios with a high proportion of the population initially in area 1 (i.e., the odd 
numbered scenarios) and (2) negative biases on the order of ~10% are seen in all the 
estimates of fishing mortality rates for scenario 11. It is particularly unclear where this 
latter bias stems from, recalling that there is no spatial heterogeneity in recapture 
probabilities in scenario 11 (i.e., there is complete mixing). However, it appears that 
the bias is related to the low fishing mortality rates. In other simulations we conducted 
that were similar to scenario 11 but with higher fishing mortality rates, these biases 
decreased. When the fishing mortality rates are low, the expected number of tag 
returns is low and the biases may reflect these small sample sizes. In addition, with 
low quality data for estimating reporting rates, potential confounding exists between 
estimates of mortality and reporting rates (i.e., it is hard to distinguish whether lack of 
returns represents low fishing mortality or low reporting rates).  The fact that there is 
relatively substantial bias (23%) in the pooled estimate for the age 1 season 1 fishing 
mortality rate for this complete mixing scenario would also suggest the potential for 

                                                 
2  Note that results are shown for only 3 of the 6 age and season combinations but the general behaviour 
of the estimates was similar for those not shown. 
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confounding when the data for estimating reporting rates are poor and fishing 
mortality rates this scenario are in fact low. Interestingly, the biases in the pooled 
estimates of fishing mortality rates for other ages are all small (<3%), with the 
exception of the estimate for age 2 in season 1 where it was 9%.  

Natural mortality rates 

The results for the estimates of natural mortality also indicate the spatially-based 
estimates are generally unbiased or less biased than the pooled estimates (Tables 9-
10). As was seen in the non-spatial model results (Appendices 5 and 7), the estimates 
of natural mortality rates are often poorly estimated and the estimate for ages 2 and 
older (M2) can be biased with small number of releases. It is interesting to note that 
M2 appears to be the one parameter for which there is a cost in terms of increased 
biased for including a spatial dimension when in fact complete mixing exists (e.g., 
compare the results for scenario 11 with low data quality). The high CVs for the 
estimates for M2, particularly within the low data quality scenarios (on the order of 
55% or greater), suggest that the estimates would have low reliability. However, this 
appears not so much a matter of whether a spatial estimation framework is used, but a 
more general problem of estimating M2 within a Brownie estimation framework (i.e., 
high CVs exist for the pooled M2 estimate of scenario 11 in which no spatial 
heterogeneity exists, and also for the non-spatial M2 estimates in Appendices 5 and 7). 
M2 tends to be the least precise of the main parameters of interests. It is highly 
correlated with the estimates of fishing mortality for ages 2 and 3.  The estimate of M2 
is dependent upon the contrast between the relative return rate (number of return per 
release) for age 2 and 3 corrected for any age specific differences in reporting rates. 
As such, in situations with small numbers of returns and large uncertainty in reporting 
rates (e.g., the poor data quality scenarios and/or low fishing mortalities), it is not 
surprising that M2 is poorly estimated. Additional simulations that we conducted 
along with the results in Appendices 5 and 7 suggest that higher precision in M2 can 
be achieved through a combination of a higher number of releases, high quality data 
for estimating reporting rates, and conducting tagging experiments on multiple 
cohorts assuming that the age-specific natural mortality rates are constant across 
years.  

Reporting Rate Estimation - Data Quality  
Comparing the CVs for the parameter estimates in Tables 5-10 (as well as in Tables 
12-17, which will be discussed later) for the high and low data quality scenarios 
indicates, as expected, that there is a substantial reduction in the precision of the 
estimates when there is low quality data for estimating reporting rates and the age 
distribution of the catch. However, given the relatively large differences in the data 
quality between these two scenarios (e.g., 10% versus 75% observer coverage, and 
30% versus 10% CVs for the catch data), it was somewhat surprising that the 
differences were not even larger. For the estimates of total initial population size and 
average fishing mortality rates, the estimated CVs were relatively low in many cases, 
even under the low data quality scenarios (i.e., they had sufficient precision to be 
informative within a stock assessment/management advice context). This was 
particularly true for the estimates of the total initial population size, for which the CV 
did not exceed 21% in the scenarios with tag releases in all areas and were only 
somewhat higher (i.e., a maximum of 26%) when releases only occurred in area 1. 

 A12-9



Appendix 12:  Design and analysis considerations for spatial tagging experiments 
 

However, in most actual situations, over dispersion in the tag return and observer data 
would likely result in higher CVs (see discussion). 
 

Distribution of Tag Releases 
Comparison of the results for scenarios in which there were releases in all areas with 
those in which releases only took place in area 1 indicate that both release scenarios, 
in general, yielded similar results for the population-wide parameter estimates in 
terms of bias and precision, with perhaps a small loss in precision in some cases 
where tags were only released in area 1. This result was surprising as it was not even 
certain prior to conducting these simulations that all the parameters would be 
identifiable under such a tag release strategy. These simulations indicate that the 
distribution of tag releases is not critical and that it is not essential to have releases in 
all areas to getting meaningful estimates at the population-wide scale. However, we 
note that with alternative spatial/movement dynamics, simply releasing tags in one 
area can result in an intractable estimation problem with some parameters becoming 
unidentifiable (e.g., the generic spatial model – see Appendix 13).  As such, it is 
essential in designing a tagging experiment that the range of potential hypotheses for 
the possible spatial/movement dynamics be carefully considered to ensure that the 
distribution of tag releases will in fact allow for the intended parameters to be 
estimated. Moreover, in such cases, the relative distribution of releases among areas 
may have an implication both for the precision and bias of the population-wide 
parameter estimates. We would recommend as a matter of course that simulation 
testing be conducted prior to conducting a large-scale complex tagging experiment to 
ensure that the targeted distribution of tag releases can in fact yield estimates across 
the full range of hypotheses for the spatial dynamics of the stock and fishery. 
Nevertheless, the results presented here demonstrate that robust estimates of total 
population size do not require optimal release by area and that it may not be necessary 
to release tags in all areas.  This conclusion increases the potential usefulness of 
tagging experiments in fishery contexts since in many instances tagging in some 
areas/fisheries may be logistically problematical and/or highly expensive (e.g., in high 
seas, off-shore areas in tuna longline fisheries).  

Number of Tags Releases 
To a rough first approximation, the variance for many of the parameters of interest 
will be proportional to the number of tags returned.  As such, ideally it is important to 
ensure that sufficient tags are released so that that there are a “reasonable” number of 
expected returns from each of the release/return strata in the model. While in general, 
the mortality rates and population size estimates should be asymptotically unbiased3, 
with small sample sizes this is not necessarily the case. Some biases were evident in 
the non-spatial situation (Appendix 5) when the number of releases was small, and 
would also be expected within a spatial estimation framework.   
 
It is not possible to provide generic guidelines on what constitutes sufficient numbers 
of releases both to avoid substantial biases and to achieve reasonable levels of 

                                                 
3 Because of the way we have modelled the variance in the catch-at-age data as having a constant CV, 
the estimates of population sizes from our simulations have a small statistical bias (see Appendix 5). 
However, this would not be the expected situation for most actual applications because estimates of the 
catch variance would generally be available.  
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precision because this will be highly dependent upon both the actual population and 
fishery dynamics over time and space and the reporting rates. Nevertheless, 
consideration of the effect of differing sample sizes for the scenarios considered here 
can provide some indication of what level of releases may be required, at least within 
an “SBT-like” context. Figures 1-4 provide examples of the effects of three differing 
release levels on the bias and CV for the total initial population sizes and average 
mortality rate estimates for three of the population dynamics scenarios from Table 3. 
(Results are only shown for three scenarios so that the trends for individual scenarios 
are distinguishable). Note that the different levels of releases were simply multiples of 
the number of releases used in the results above with tagging in all areas. As would be 
expected, the biases and CVs decrease with increasing numbers of releases, and trends 
are similar to those seen in the non-spatial context (Appendices 5 and 7). In some 
cases, substantial small sample size biases exist with low numbers of releases and 
there is a marked degradation in performance in the low data quality scenarios relative 
to the high quality ones, particularly at low sample sizes. For example, the estimates 
of the total initial population sizes with a total of only 500 tag releases can have 
substantial biases of over 20% in the low data quality scenarios, with CVs of 35-40% 
(Figure 1). This compares to biases of 0-4% and CVs of 13-16% for the same 
population dynamics scenarios but with high quality data. The results suggest that 
with high quality data for estimating the catch-at-age and reporting rates, releases on 
the order of 1000 tags per year would be sufficient to obtain estimates of the initial 
population size and fishing mortality rates with CVs of ~20% or less. In contrast, with 
low quality data, not even 2400 releases per year can achieve similar levels of 
precision nor are the biases always small. The estimates of natural mortality rates are 
more poorly estimated, and to achieve CVs of less than 40% would entail releases on 
the order of 2400 per year for the high data quality scenarios and substantially greater 
for the low data quality scenarios.  The poor estimation of natural mortality was also 
seen in the non-spatial results (Appendices 5 and 7).  As discussed in Appendices 5 
and 7, the CVs on all parameter estimates from these simulations are likely to be 
underestimates. 

How important is having the right spatial/movement dynamics model? 
There are three components that to need to be represented when modelling the spatial 
dynamics of a population: (1) specification of the movement dynamics, (2) 
specification of the spatial structure, and (3) specification of the time step. 

Movement Dynamics  

In Appendices 10 and 11, we developed three different models for representing 
possible movements between areas: 

1. A box model representation of unrestricted age-specific movement/transition 
rates between all areas. 

2. A box model representation of an age-specific seasonal Markov (memoryless) 
migration process with restricted movement between some areas.  

3. A box model representation of an age-specific seasonal migration process with 
restricted movement between some areas and with site fidelity. 

Note that model 2 could be considered a subset of model 1, which also assumes 
Markovian transitions (i.e., that each transition made by a fish is independent of its 
previous transitions). It is important to emphasise that these are only three of a 
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potentially much wider class of models that could be used to represent movement 
dynamics.  
 
Model 1 without any restrictions on the transition probabilities between areas is a 
truly generic model. As long as the underlying spatial structure and time periods in the 
model are appropriate and transition probabilities are allowed to vary with age and 
year, this model is probably capable of reasonably representing most types of 
movement dynamics. However, the cost in terms of the number of parameters and 
demands for tagging in many areas is high – particularly as the number of areas and 
time periods increases. This could easily lead to intractable estimation and design 
problems. In addition, such a generic structure provides little basis for prediction, as it 
assumes no consistency in the movement dynamics with time. Thus, imposing some 
form of spatial and/or temporal structure on the transition probabilities is highly 
desirable.  The structure imposed will depend upon the population being modelled; 
however it is not unreasonable or unrealistic to expect that there are some consistent 
underlying biological processes that determine how and when animals move 
(although it may be useful or necessary to also consider environmental covariates). 
We note that assuming movement occurs according to a random diffusion process 
imposes large restrictions on the transition probabilities because the transition 
probabilities become a function of the distance between and geometry of the boxes 
used in spatial representation4. 
 
Models 2 and 3 were constructed to represent an idealized representation of SBT-like 
spatial dynamics and take advantage of known (or assumed) prior information on the 
movement dynamics of the stock to reduce the parameterization of the transition 
probabilities. The two models can have very different implications for the relative 
abundances in the different areas under differential fishing pressures. For example, 
under model 3, localized depletion can occur in one of the longline areas if fishing 
effort is localized in that area, while this would not occur under model 2 as long as the 
transition probabilities at the end of season 1 from area 1 into that area were non-zero.  
As such, it is not immediately clear whether misspecification of the underlying 
movement dynamics would produce unreliable estimates at the population-wide level. 
The site-fidelity scenarios (Table 3) were used to explore this question.  
 
Tables 12-16 compare the estimates of total initial population size and average fishing 
and natural mortality rates that were obtained for these scenarios when the correct 
underlying movement dynamics model was used in the estimation and when the 
incorrect Markov movement model was used.  Results are presented for the two tag 
release strategies (i.e., releases in all areas and releases only in area 1).  When there is 
tagging in all areas, the results suggest that the consequences of using the wrong 
movement dynamics model are relatively small except for the estimates of natural 
mortality rates (particularly M1), which had substantially greater negative biases when 
the Markov estimation model was used. There was also some tendency for the fishing 
mortality rates to be slightly biased, probably as a consequence of the biases in natural 

                                                 
4 The implication of random movement is that if density of animals per unit of space is initially equal in 
all areas then the density would remain equal with movement over time in the absence of spatial 
differences in mortality. Thus, in a box model framework, the transition probabilities would need to be 
set to achieve this. For example, in the case of two boxes, the transition rates between the two boxes 
would be inversely proportional to their sizes under a random movement assumption and only one 
movement parameter would need to be estimated. 
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mortality.  The discrepancies between models tended to be greater when tagging was 
only carried out in area 1.  
 
It is not clear to what extent these results reflect general properties of the underlying 
movement dynamics model or the particular scenarios chosen for the simulations. 
Some of the effects appear to be scenario related. For example, scenario 2 had 
considerably poorer performance than all of the other scenarios in estimating initial 
population size when tagging was only in area 1, and this was independent of which 
spatial estimation model was used (i.e., a relative bias of 22% or 37% compared to a 
maximum of 8% for the other scenarios with high quality data). When tagging 
occurred in all areas, the initial population size estimate for scenario 2 had low bias 
(i.e., less than 2%) similar to other scenarios tested. On the other hand, the poor 
estimation of natural mortality when the wrong movement dynamics model is used 
(particularly with respect to bias) appears to be a more general feature of the 
underlying movement dynamics. Thus, substantial biases in M1 are seen in all 
scenarios and these biases persist even if sample sizes are doubled (Table 17). 
Overall, these simulation results indicate that the consequences of having the 
“correct” movement dynamics model will be parameter and situation dependent. All 
of this further emphasises the need to undertake simulation testing in the design and 
analysis of complex large-scale tagging programs.  
 
It should be noted that when there was tagging in all areas the AIC statistic (Akaike 
1974) was always greater for the fit with the Markov movement estimation model 
than the fit with the site-fidelity movement model for each of the 100 simulations 
within a scenario. Moreover, in nearly all cases the difference was substantive (i.e., in 
only two simulations was the difference less than 2, and in only 1% was the difference 
less than 5). In contrast, when tagging only occurred in area 1, there was around an 
equal probability that the AIC statistic would be greater for the fit with the Markov 
movement estimation model than the fit with the site-fidelity movement model (Table 
18). There was only a slight improvement in the ability to correctly distinguish 
between the two models when the number of releases was doubled (Table 18). These 
results indicate that tag releases on the order of 2400 would provide sufficient 
statistical power to distinguish between these two movement models, but only if 
tagging occurs in all areas.    

Spatial structure 

The appropriate number of areas, their size and their location to use in defining the 
spatial structure will depend upon the biology of the species and the dynamics of the 
fishery. The aim of defining a spatial structure is to achieve equal recapture 
probabilities of tagged and untagged fish (i.e., complete mixing) within each area. The 
smaller the areas, the more likely this will be achieved. However, with increasing 
numbers of areas, the number of parameters that need to be estimated (i.e., initial 
population sizes and fishing mortality rates by area, plus transition probabilities 
between areas) increases rapidly. As such, the choice of the spatial structure will 
require balancing the achievement of a feasible/tractable estimation problem with the 
goal of obtaining complete mixing of tagged and untagged fish within each spatial 
unit. In some cases where there are major concentrations of and/or discontinuities in 
the spatial distribution of the fishing effort (such as with SBT), these provide obvious 
areas. Also, existing information on migration and movements (e.g., from archival 
and previous conventional tagging) can provide insights into appropriate spatial 
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stratification5. However, where fishing effort is more continuously distributed, the 
definition of areas will be more arbitrary. Evaluating the consequences of having the 
incorrect spatial structure is not possible in a general context.  If the selection of areas 
is a concern, the sensitivity of the results to alternative spatial structures should be 
investigated.   
 
We note that spatial effects can be mitigated in the design and implementation of tag 
releases by randomizing and distributing tagging effort. Over large scales, this is less 
feasible because actually randomizing tagging effort spatially over large scales is both 
difficult to implement and inefficient (i.e., potentially large amounts of effort spent in 
areas of low abundance or zero abundance). However, ensuring that tagging effort is 
spread out can reduce concerns about spatial effects at smaller scales.  

Time step 

The question of the appropriate time step to represent the movement dynamics is 
analogous to that of the appropriate spatial structure. Thus, within a time step, the 
probability of recapturing a tagged or untagged fish should be equal. As such, the time 
step needs to reflect both seasonal movements or migrations and temporal patterns of 
fishing effort. The time step also needs to reflect the distribution of tag releases.  It is 
important to take into account the fact that the information that allows natural and 
fishing mortality rates to be separated within a Brownie model context comes from 
the comparison of tag returns from temporally separate releases of the same cohort. 
As such, in developing the experimental design of the tag releases, there may be 
advantages in considering tagging at multiple times within a year – particularly if 
fishing is highly seasonal (see Hearn et al. 2003; Frusher and Hoenig 2001).     

General Discussion 
The results presented in this appendix indicate that including a spatial component 
within the estimation model is important to prevent biases in population-wide 
estimates unless complete mixing of tagged and untagged fish occurs. The amount of 
bias will be approximately related to the degree of non-mixing. As such, unless there 
is prior information that indicates that non-mixing is not an issue, testing appropriate 
spatially based estimators is important to ensure that robust estimates are obtained 
from Brownie-type tagging experiments. In most cases, such prior information does 
not exist, but the expectation, at least in populations with a large spatial range, would 
be that complete mixing is unlikely over the full spatial range. While this conclusion 
is not surprising given the underlying assumptions in mark-recapture estimators, it 
does have implications for the design of tagging experiments and the efforts required 
for their analysis.  
 
In terms of experimental design, the need to incorporate a spatial component in the 
analysis emphasises the need for spreading releases across the geographic range of the 
population. Although the results presented for both the Markov and site-fidelity 
movement scenarios indicate that having releases in all areas and time periods is not 
essential for a number of population dynamics scenarios, this was only achievable by 

                                                 
5 Note that in interpreting previous conventional tagging results, consideration needs to be given to the 
distribution of fishing effort and the probability of recovering tags from different areas, particularly if 
estimates of reporting rates are not available. 
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imposing some highly informative structure on the movement dynamics (e.g. no direct 
movement between longline areas). The range of spatial dynamics models that can be 
tested will depend upon the spatial/temporal pattern of releases. The broader the 
distribution of tag releases the more flexibility is possible in the analysis phase. When 
designing tagging experiments, it is critical to consider what is the appropriate range 
of spatial dynamics hypotheses/models and ensure that the release strategy will allow 
these to be explored and tested. As emphasised above, simulation testing of the design 
is important to ensure that robust estimates can be achieved, particularly in situations 
with complex spatial structures. 
 
Comparison of the results for the site-fidelity movement scenario when the wrong 
movement dynamics model is used in the estimation with results when the correct one 
is used provides an example of the enhanced value of tagging in all areas. With 
tagging in all areas, the results at the population level were relatively robust to which 
movement model was used and, moreover, it was possible to statistically distinguish 
which model was the correct underlying one. In contrast, with tagging in only one 
area, the results were sensitive to which estimation model was used and it was not 
possible to reliably distinguish which model was correct.  
 
Knowing the form of the underlying movement dynamics can have important 
management implications. For example, the site-fidelity model can lead to localized 
depletion while the Markov movement model will not. As discussed above, these two 
models represent two ends of a continuum for estimating seasonal migration.    
Furthermore, the Markov movement and site-fidelity models used here are only two 
of a potentially large number of movement dynamics model (e.g., environmental or 
localized density driven). In general, knowledge of the dynamics of fish 
movement/migration mechanisms are poor, as is the development of models for 
representing alternatives at the population-wide scale. These are questions that could 
benefit from additional research.    
 
The simulation results suggest that natural mortality rates are particularly difficult to 
estimate accurately and precisely without large numbers of releases and high quality 
supporting data for estimating reporting rates and the age distribution of the catch. 
Natural mortality rates were particularly poorly estimated in the site-fidelity scenarios 
with 2400 tag releases per year. Only when the numbers were increased to 4800 were 
reasonably reliable estimates achieved with tagging in all areas. In any actual tagging 
experiment, more than a single cohort will be tagged in any given year (since cohorts 
are usually mixed spatially and capture gear catches a range of size/age classes).  
Although it was beyond the scope of the current project to extend these simulations to 
tagging of multiple cohorts over extended numbers of years, such multi-cohort 
tagging would be expected to improve the estimation of natural mortality rates if they 
are unchanging with time. Such improvements were seen in the non-spatial context 
(Appendices 5 and 7). As such, a multi-cohort tagging program over a number of 
years may provide a more viable approach to achieving reliable natural mortality rates 
than attempting to achieve very large numbers of releases for a single cohort.  
 
Multi-cohort tagging would also offer other advantages. It would allow for additional 
estimates of initial population sizes and fishing mortality rates for more than a single 
cohort. It would also allow testing for separability of fishing mortality rates (i.e. the 
decomposition of fishing mortality into an age and year effect). Such separability 
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assumptions and their parameterization are an essential component in most catch-at-
age stock assessments. If separable assumptions were found to be applicable, this 
should improve the overall estimation performance for the remaining parameters – 
particularly given the high covariance among them.  Multi-cohort tagging would also 
provide a more viable approach for improving the area-specific parameters of the 
model. As noted above, the population-wide estimates were generally well estimated 
in the simulation results even when the area-specific estimates of population size, 
fishing mortality rates and transition probabilities were not. The full spatial model for 
a single cohort has a large number of parameters to estimate relative to the number of 
data points (i.e., the number of tag returns in each area and time period). Being able to 
use the information from multi-cohort returns for estimating the transition 
probabilities within a common time-independent framework would provide an 
approach for reducing the parameterization and could provide a powerful approach for 
gaining insights into the actual spatial dynamic processes through the testing of 
alternative model structures for the movement dynamics (e.g., the Markov versus site-
fidelity model). In this context, we note that, regardless of the underlying movement 
dynamics, there is likely to be variability among years and it may be worth 
considering developing random effects models as a more appropriate way to represent 
transition probabilities for multi-cohort tagging data. 
 
Finally, the high quality data scenarios, as expected, always provided more robust 
estimates than the low data quality scenarios. Somewhat surprising was that the 
differences in performance were not larger. With poor information on reporting rates 
we had anticipated that there might be much greater confounding between reporting 
and mortality rates than was apparent in the results. In general, the parameters in the 
low quality data scenarios remained unbiased. The CVs, while being substantially 
greater than in the high data quality scenarios, were often within what might be 
considered acceptable limits in a stock assessment context (i.e., less than 30%). 
However, we reiterate that the CVs in the simulations are likely to be more optimistic 
than what would be realised in practice due to several factors – in particular, over-
dispersion in the tag-recapture probabilities (i.e., more variability than assumed by the 
model; see discussion in Appendix 5).  One source of overdispersion in the tag-
recapture data would be differences in catchability and selectivity among vessels and 
areas.   
 
Such differences in catchability and selectivity would also result in the catch-at-age 
data having more sampling variability than if a simple random sample of the catches 
were available.  In cases where observers perform most or all of the catch sampling, 
the increased variability in the catch-at-age data is likely to be substantive at low 
levels of observer coverage (e.g., observer coverage of 10% of the total catch may 
result in sampling from only a small number of vessels/fishing trips operating in high 
seas longline fleets where a single trip may be several months or more).  Thus, when 
considering the level of effort in the design phase to put into the estimation of the age 
distribution of the catch, it is important to ensure that the actual level of sampling 
variability in the catch-at-age data is being reflected.  This will be fishery specific and 
further work is needed for almost all fisheries on how best to characterize it. In terms 
of the estimation framework developed here, this might best be done by developing a 
functional relationship between the actual observer/sampling coverage and the 
effective coverage in terms of simple random sampling.   
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Table 1: Descriptive definition of the 16 population dynamic scenarios for the Markov 
movement dynamics model simulations – see Table 2 for detailed specification of all 
parameter values. 
 
 

 
 

Scenario 

 
Fishing 

mortality 

Movement from area 1 into 
areas 2-4 at the end of 

season 1 

Movement from areas 2-4 
into area 1 at the end of 

season 2 

Initial 
Distribution 
Among areas 

1 Medium Low to area 2 and equal 3 & 4 Low area 2, high 3 and 4 85% in area 1 
2 Medium Low to area 2 and equal 3 & 4 Low area 2, high 3 and 4 Equal all areas 
3 Medium Equal to areas 2 to 4 Low area 2, high 3 and 4 85% in area 1 
4 Medium Equal to areas 2 to 4 Low area 2, high 3 and 4 Equal all areas 
5 High Equal to areas 2 to 4 Low area 2, high 3 and 4 85% in area 1 
6 High Equal to areas 2 to 4 Low area 2, high 3 and 4 Equal all areas 
7 Low Equal to areas 2 to 4 Low area 2, high 3 and 4 85% in area 1 
8 Low Equal to areas 2 to 4 Low area 2, high 3 and 4 Equal all areas 
9 Low Low to area 2 and equal 3 & 4 Low area 2, high 3 and 4 85% in area 1 

10 Low Low to area 2 and equal 3 & 4 Low area 2, high 3 and 4 Equal all areas 
11 Low Equal to areas 2 to 4 100% all areas  100% in area 1 
12 High Equal to areas 2 to 4 Low area 2, high 3 and 4  High areas 1 &2 
13 Medium Low to area 2 and equal 3 & 4 High all areas 85% in area 1 
14 Medium Low to area 2 and equal 3 & 4 High all areas Equal all areas 
15 Medium Equal to areas 2 to 4 High all areas 85% in area 1 
16 Medium Equal to areas 2 to 4 High all areas Equal all areas 
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Table 2:  Definition of the parameter values and input values for the 16 population 
dynamic scenarios for the Markov movement dynamic model simulations. M = 
natural mortality; F = fishing mortality; TR = transfer rates; P = population size at 
age 1. 
 

Parameter Scenario 
Par Age area Seas 1 2 3 4 5 6 7 8 
M 1 - - 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 
 2+ - - 0.200  0.200 0.200 0.200 0.200 0.200 0.200 0.200 

F 1 1 1 0.100 0.100 0.100 0.100 0.200 0.200 0.020 0.020 
  2 2 0.050 0.050 0.050 0.050 0.100 0.100 0.001 0.001 
  3 2 0.050 0.050 0.050 0.050 0.100 0.100 0.001 0.001 
  4 2 0.050 0.050 0.050 0.050 0.100 0.100 0.001 0.001 
 2 1 1 0.075 0.075 0.075 0.075 0.150 0.150 0.080 0.080 
  2 2 0.075 0.075 0.075 0.075 0.150 0.150 0.020 0.020 
  3 2 0.075 0.075 0.075 0.075 0.150 0.150 0.020 0.020 
  4 2 0.075 0.075 0.075 0.075 0.150 0.150 0.020 0.020 
 3 1 1 0.050 0.050 0.050 0.050 0.100 0.100 0.200 0.200 
  2 2 0.100 0.100 0.100 0.100 0.200 0.200 0.100 0.100 
  3 2 0.100 0.100 0.100 0.100 0.200 0.200 0.100 0.100 
  4 2 0.100 0.100 0.100 0.100 0.200 0.200 0.100 0.100 

TR 1 1 to 2 1 0.050 0.050 0.333 0.333 0.333 0.333 0.333 0.333 
  1 to 3 1 0.475 0.475 0.333 0.333 0.333 0.333 0.333 0.333 
 2 1 to 2 1 0.100 0.100 0.333 0.333 0.333 0.333 0.333 0.333 
  1 to 3 1 0.450 0.450 0.333 0.333 0.333 0.333 0.333 0.333 
 3 1 to 2 1 0.200 0.200 0.333 0.333 0.333 0.333 0.333 0.333 
  1 to 3 1 0.400 0.400 0.333 0.333 0.333 0.333 0.333 0.333 
 1 2 to 1 2 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 
  3 to 1 2 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 
  4 to 1 2 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 
 2 2 to 1 2 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 
  3 to 1 2 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 
  4 to 1 2 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 
 3 2 to 1 2 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 
  3 to 1 2 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 
  4 to 1 2 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700 

P 1 1 1 850000 333000 850000 333000 850000 333000 850000 333000 
  2 1   50000 333000   50000 333000   50000 333000   50000 333000 
  3 1   50000 333000   50000 333000   50000 333000   50000 333000 
  4 1   50000 333000   50000 333000   50000 333000   50000 333000 
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Table 2 (Continued). 
 

Parameter Scenario 
 Par Age Area Seas 9 10 11 12 13 14 15 16 
M 1 - - 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 
 2+ - - 0.200  0.200 0.200 0.200 0.200 0.200 0.200 0.200 

F 1 1 1 0.020 0.020 0.020 0.200 0.100 0.100 0.100 0.100 
  2 2 0.001 0.001 0.001 0.100 0.050 0.050 0.050 0.050 
  3 2 0.001 0.001 0.001 0.100 0.050 0.050 0.050 0.050 
  4 2 0.001 0.001 0.001 0.100 0.050 0.050 0.050 0.050 
 2 1 1 0.080 0.080 0.080 0.150 0.075 0.075 0.075 0.075 
  2 2 0.020 0.020 0.020 0.150 0.075 0.075 0.075 0.075 
  3 2 0.020 0.020 0.020 0.150 0.075 0.075 0.075 0.075 
  4 2 0.020 0.020 0.020 0.150 0.075 0.075 0.075 0.075 
 3 1 1 0.200 0.200 0.200 0.100 0.050 0.050 0.050 0.050 
  2 2 0.100 0.100 0.100 0.200 0.100 0.100 0.100 0.100 
  3 2 0.100 0.100 0.100 0.200 0.100 0.100 0.100 0.100 
  4 2 0.100 0.100 0.100 0.200 0.100 0.100 0.100 0.100 

TR 1 1 to 2 1 0.050 0.050 0.333 0.333 0.050 0.050 0.333 0.333 
  1 to 3 1 0.475 0.475 0.333 0.333 0.475 0.475 0.333 0.333 
 2 1 to 2 1 0.100 0.100 0.333 0.333 0.100 0.100 0.333 0.333 
  1 to 3 1 0.450 0.450 0.333 0.333 0.450 0.450 0.333 0.333 
 3 1 to 2 1 0.200 0.200 0.333 0.333 0.200 0.200 0.333 0.333 
  1 to 3 1 0.400 0.400 0.333 0.333 0.400 0.400 0.333 0.333 
 1 2 to 1 2 0.100 0.100 1.000 0.100 0.900 0.900 0.900 0.900 
  3 to 1 2 0.900 0.900 1.000 0.900 0.900 0.900 0.900 0.900 
  4 to 1 2 0.900 0.900 1.000 0.900 0.900 0.900 0.900 0.900 
 2 2 to 1 2 0.100 0.100 1.000 0.100 0.800 0.800 0.800 0.800 
  3 to 1 2 0.800 0.800 1.000 0.800 0.800 0.800 0.800 0.800 
  4 to 1 2 0.800 0.800 1.000 0.800 0.800 0.800 0.800 0.800 
 3 2 to 1 2 0.100 0.100 1.000 0.100 0.700 0.700 0.700 0.700 
  3 to 1 2 0.700 0.700 1.000 0.700 0.700 0.700 0.700 0.700 
  4 to 1 2 0.700 0.700 1.000 0.700 0.700 0.700 0.700 0.700 

P 1 1 1 850000 333000 1000000 450000 850000 333000 850000 333000 
  2 1   50000 333000             0 450000   50000 333000   50000 333000 
  3 1   50000 333000             0   50000   50000 333000   50000 333000 
  4 1   50000 333000             0   50000   50000 333000   50000 333000 
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Table 3:  Definition of the parameter values and input values for the 7 population 
dynamic scenarios for the site-fidelity movement dynamics model simulations.  M = 
natural mortality; F = fishing mortality; TR = transfer rates; P = population size at 
age 1. 
 

Parameter Scenario 
 Par Age area Seas 1 2 3 4 5 6 7 
M 1 - - 0.300 0.300 0.300 0.300 0.300 0.300 0.300 
 2+ - - 0.200 0.200 0.200 0.200 0.200 0.200 0.200 

F 1 1 1 0.100 0.100 0.100 0.100 0.200 0.200 0.200 
  2 2 0.050 0.050 0.050 0.050 0.100 0.100 0.100 
  3 2 0.050 0.050 0.050 0.050 0.100 0.100 0.100 
  4 2 0.050 0.050 0.050 0.050 0.100 0.100 0.100 
 2 1 1 0.075 0.075 0.075 0.075 0.150 0.150 0.150 
  2 2 0.075 0.075 0.075 0.075 0.150 0.150 0.150 
  3 2 0.075 0.075 0.075 0.075 0.150 0.150 0.150 
  4 2 0.075 0.075 0.075 0.075 0.150 0.150 0.150 
 3 1 1 0.050 0.050 0.050 0.050 0.100 0.100 0.100 
  2 2 0.100 0.100 0.100 0.100 0.200 0.200 0.200 
  3 2 0.100 0.100 0.100 0.100 0.200 0.200 0.200 
  4 2 0.100 0.100 0.100 0.100 0.200 0.200 0.200 

TR 1 1 to 2 - 0.050 0.050 0.333 0.333 0.333 0.333 0.333 
  1 to 3 - 0.475 0.475 0.333 0.333 0.333 0.333 0.333 
 1 2 to 1 2 0.100 0.100 0.100 0.100 0.100 0.100 0.100 
  3 to 1 2 0.900 0.900 0.900 0.900 0.900 0.900 0.900 
  4 to 1 2 0.900 0.900 0.900 0.900 0.900 0.900 0.900 
 2 2 to 1 2 0.100 0.100 0.100 0.100 0.100 0.100 0.100 
  3 to 1 2 0.800 0.800 0.800 0.800 0.800 0.800 0.800 
  4 to 1 2 0.800 0.800 0.800 0.800 0.800 0.800 0.800 
 3 2 to 1 2 0.100 0.100 0.100 0.100 0.100 0.100 0.100 
  3 to 1 2 0.700 0.700 0.700 0.700 0.700 0.700 0.700 
  4 to 1 2 0.700 0.700 0.700 0.700 0.700 0.700 0.700 

P 1 1 1 850000 333000 850000 333000 850000 333000 450000 
  2 1   50000 333000   50000 333000   50000 333000 450000 
  3 1   50000 333000   50000 333000   50000 333000   50000 
  4 1   50000 333000   50000 333000   50000 333000   50000 
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Table 4: Definition of the parameter values used in the high and low quality data 
scenarios for estimating tag reporting rates and catch-at-age. 
 

Parameter High Quality Low Quality
Reporting rate (all areas and seasons) 0.75 0.25 
Observer cover (in areas 2-4, season 2) 0.75 0.19 
Catch CV (all areas/fisheries) 0.10 0.30 
Number of seeded tags (area 1)  300   50 
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Table 5: Comparison of the relative bias and coefficient of variation in the initial 
population size for the total spatial (Spat) and pooled (Pool) estimates for the 16 
population dynamics scenarios defined in Table 2 for the Markov movement 
dynamics model simulations, and for the high and low data quality scenarios defined 
in Table 4. 
 

Tagging All areas Tagging only area 1 
Bias CV Bias CV 

 
Data 

Quality 

Pop. 
Dynamic 
Scenario 

 
True 
value Spat Pool Spat Pool Spat Pool Spat Pool 

1 10.0 -0.4 6.5 6.2 8.2 -0.6 5.8 6.3 6.9
2 13.3 -2.3 18.9 17.0 19.2 6.0 19.0 22.8 17.6
3 10.0 -0.7 10.9 6.4 8.0 -1.3 12.2 5.5 6.6
4 13.3 -3.9 14.9 6.6 7.1 -2.7 17.7 6.7 7.8
5 10.0 -0.3 15.1 5.1 6.4 0.1 17.4 5.1 5.9
6 13.3 -0.7 29.6 5.3 6.1 -0.9 30.9 5.8 7.0
7 10.0 0.5 32.5 8.1 9.5 -0.1 32.5 7.2 9.2
8 13.3 1.2 36.8 9.1 10.2 1.7 36.3 8.8 9.6
9 10.0 0.3 10.5 8.2 10.5 0.3 12.0 9.1 9.8
10 13.3 -0.8 16.5 7.5 8.8 5.0 17.6 17.1 8.4
11 10.0 0.7 0.4 7.0 8.6 -1.2 -0.7 6.6 7.2
12 10.0 -1.1 28.1 5.1 6.4 -1.2 31.2 10.2 6.9
13 10.0 -0.3 5.0 6.2 7.6 -1.3 4.4 6.1 6.9
14 13.3 -2.3 15.9 18.8 20.6 -3.3 13.1 16.1 16.9
15 10.0 -0.8 3.6 6.4 7.9 -1.4 4.4 5.8 6.4

High 

16 13.3 -2.7 8.8 6.1 7.1 -2.7 10.3 6.2 7.3
1 10.0 -2.9 11.7 15.4 18.4 -0.7 13.3 18.0 22.5
2 13.3 -1.9 21.6 18.6 19.2 4.2 19.9 24.3 16.9
3 10.0 1.0 23.8 17.4 23.6 -1.4 22.3 17.6 21.0
4 13.3 -5.5 22.2 15.9 17.7 -5.4 21.7 17.3 19.4
5 10.0 -4.3 21.5 15.5 17.8 -6.8 20.6 14.1 16.2
6 13.3 -6.1 32.7 17.3 19.0 -6.5 35.3 16.1 16.2
7 10.0 0.5 36.3 21.5 28.5 1.4 41.1 23.0 28.1
8 13.3 -4.7 33.4 18.8 21.6 -5.5 35.4 24.2 27.9
9 10.0 3.5 22.8 16.9 20.8 5.8 23.5 20.1 19.9
10 13.3 -2.1 20.5 20.9 23.8 4.0 23.3 26.2 24.9
11 10.0 2.0 9.9 19.6 26.8 -3.6 5.8 19.3 23.0
12 10.0 -7.3 34.2 16.3 17.8 -7.0 39.7 18.6 19.7
13 10.0 -3.1 9.8 15.1 19.2 -1.6 11.9 16.4 20.6
14 13.3 -4.2 15.7 18.3 19.3 -3.1 14.7 17.3 15.9
15 10.0 -1.2 14.0 16.6 22.3 -4.0 12.3 16.6 19.0

Low 

16 13.3 -5.7 15.0 15.3 17.3 -6.7 14.3 15.8 17.7
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Table 6:  Comparison of the relative bias and coefficient of variation in the fishing 
mortality rate for age 1 in season 1 for the average spatial (Spat) and pooled (Pool) 
estimates for the 16 population dynamics scenarios defined in Table 2 for the Markov 
movement dynamics model simulations, and for the high and low data quality 
scenarios defined in Table 4.  
 

Tagging all areas Tagging only area 1 
Bias CV Bias CV 

 
Data 

Quality 

Pop. 
Dynamic 
Scenario 

 
True 
value Spat Pool Spat Pool Spat Pool Spat Pool 

1 0.084 -1.4 20.9 10.1 10.9 -2.8 19.7 10.0 8.4
2 0.024 -5.0 325.9 35.4 34.2 -7.8 342.8 36.4 33.4
3 0.084 -1.2 19.9 9.1 10.3 -2.0 21.1 11.4 8.2
4 0.024 3.2 322.5 10.5 9.7 0.0 326.5 11.8 7.8
5 0.167 -1.3 20.4 9.1 7.4 -0.4 22.0 9.7 6.4
6 0.046 0.2 336.9 10.4 8.1 2.2 341.4 11.0 6.9
7 0.017 -3.2 24.9 11.5 20.9 -1.3 22.5 10.9 18.3
8 0.005 -2.5 343.2 12.0 21.5 0.5 338.3 12.9 17.5
9 0.017 -2.9 16.8 12.1 21.3 -2.6 16.9 12.3 18.4
10 0.005 0.3 310.7 11.9 24.5 -3.3 309.9 19.1 19.1
11 0.020 -4.0 -1.1 12.3 18.7 -2.5 0.4 11.0 17.6
12 0.085 0.3 137.6 8.7 8.9 -2.8 19.7 10.0 8.4
13 0.084 -1.5 21.2 10.2 10.1 -1.7 19.7  9.9  8.0 
14 0.024 -4.9 331.1 35.5 35.0 -0.7 338.1  34.4  32.8 
15 0.084 -1.3 17.0 9.0 11.0 -2.5 18.0  10.9  7.8 

High 

16 0.024 1.9 316.1 10.1 11.3 -0.3 320.2  11.5  8.2 
1 0.084 -10.9 26.2 27.5 32.7 0.6 140.4 15.2 7.7
2 0.024 -2.7 348.5 34.9 39.0 -10.1 28.6 25.6 32.3
3 0.084 -18.2 30.0 30.7 37.4 -4.1 349.5 39.2 27.7
4 0.024 0.7 337.1 36.8 34.2 -13.7 27.7 35.7 30.0
5 0.167 -8.2 29.0 31.3 30.5 -2.5 354.2 32.3 31.9
6 0.046 -2.1 371.6 34.4 34.4 -5.4 39.8 31.4 35.1
7 0.017 -8.6 29.3 35.1 55.3 -1.5 371.6 31.9 29.0
8 0.005 2.5 331.0 33.8 49.8 -11.3 38.2 32.1 53.1
9 0.017 -13.8 17.2 34.9 53.2 2.3 340.2 39.3 39.9
10 0.005 -3.5 339.6 35.1 47.9 -19.5 20.8 34.1 40.4
11 0.020 -18.8 23.6 30.6 52.8 -3.7 336.3 34.6 43.7
12 0.085 -1.6 156.0 31.6 27.5 -7.8 20.7 37.4 46.0
13 0.084 -10.6 27.9 27.9 34.9 -9.3 28.0  24.9  33.3 
14 0.024 -0.7 362.2 34.0 46.2 0.1 348.7  35.1  27.8 
15 0.084 -17.1 27.1 29.7 37.6 -11.3 25.5  35.3  27.2 

Low 

16 0.024 -1.2 334.6 33.3 36.1 -1.7 345.5  33.3  32.4 
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Table 7: Comparison of the relative bias and coefficient of variation in fishing 
mortality rate for age 2 in season 2 for the average spatial (Spat) and pooled (Pool) 
estimates for the 16 population dynamics scenarios defined in Table 2 for the Markov 
movement dynamics model simulations, and for the high and low data quality 
scenarios defined in Table 4.  
 

Tagging All areas Tagging only area 1 
Bias CV Bias CV 

 
Data 

Quality 

Pop. 
Dynamic 

 
True 
value Spat Pool Spat Pool Spat Pool Scenario Spat Pool 

1 0.075 -0.2 3.6 6.1 6.0 -3.8 5.3 11.9 7.7
2 0.075 -2.1 8.2 19.0 20.5 -11.4 11.4 28.3 22.2
3 0.075 -0.6 6.2 7.2 6.6 2.8 12.0 20.2 7.5
4 0.075 0.2 6.1 7.2 6.6 1.7 11.2 21.1 7.3
5 0.150 -0.3 4.8 5.9 5.8 4.3 10.0 20.1 7.1
6 0.150 -0.1 5.4 6.2 5.8 5.4 10.6 19.3 6.0
7 0.020 -1.5 8.5 9.4 8.9 2.0 18.3 23.7 9.8
8 0.020 -0.7 9.5 8.8 8.8 4.3 18.9 23.2 9.7
9 0.020 -0.4 6.5 7.7 9.9 -2.2 10.2 11.3 9.3
10 0.020 0.0 5.2 7.4 8.4 -6.8 8.9 24.1 10.4
11 0.020 -2.8 0.4 6.6 8.3 -2.7 1.1 7.8 7.9
12 0.150 0.0 4.7 7.2 5.6 6.6 8.9 30.8 6.4
13 0.075 -0.6 2.5 6.5 6.5 -2.1 3.6 8.4 7.9
14 0.075 -2.3 5.8 20.0 20.1 -3.9 9.0 20.2 21.4
15 0.075 -0.2 3.3 6.4 6.9 0.2 5.5 8.6 7.7

High 

16 0.075 -0.4 2.7 6.4 6.6 -1.0 4.5 8.6 7.3
1 0.075 -2.3 6.7 14.9 16.7 -8.2 7.4 20.8 20.0
2 0.075 -6.9 0.0 19.0 19.1 -14.0 3.2 25.8 19.4
3 0.075 -4.9 4.4 14.9 14.9 -2.9 9.4 22.9 15.3
4 0.075 -3.4 4.2 20.8 20.5 3.9 11.9 30.4 22.0
5 0.150 -2.3 6.5 16.7 16.3 -0.1 10.7 21.5 18.1
6 0.150 -0.9 6.1 15.4 14.7 -2.4 10.3 24.4 17.5
7 0.020 -1.6 16.6 23.5 27.4 -4.4 21.5 29.4 33.1
8 0.020 0.1 14.2 23.7 25.9 -0.1 23.6 28.6 28.0
9 0.020 -5.4 6.1 26.6 30.6 -10.7 8.6 24.5 28.0
10 0.020 -3.7 9.7 22.4 26.0 -9.2 13.7 30.7 29.2
11 0.020 -10.5 0.2 22.3 27.9 -7.5 -1.0 25.2 25.8
12 0.150 -0.5 6.0 15.8 14.6 8.0 9.9 39.4 14.5
13 0.075 -2.4 4.4 17.0 18.6 -5.1 4.5 21.9 20.5
14 0.075 -5.4 1.2 17.2 18.5 -6.8 3.9 21.4 20.1
15 0.075 -6.8 0.3 16.7 16.1 -6.0 4.8 18.9 18.6

Low 

16 0.075 -4.6 2.4 16.4 19.6 -2.5 6.4 20.0 21.0
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Table 8:  Comparison of the relative bias and coefficient of variation in the fishing 
mortality rate for age 3 in season 2 for the average spatial (Spat) and pooled (Pool) 
estimates for the 16 population dynamics scenarios defined in Table 2 for the Markov 
movement dynamics model simulations, and for the high and low data quality 
scenarios defined in Table 4.  
 

Tagging All areas Tagging only area 1 
Bias CV Bias CV 

 
Data 

Quality 

Pop. 
Dynamic 
Scenario 

 
True 
value  Spat Pool  Spat Pool  Spat Pool Spat Pool 

1 0.10 -1.7 4.0 10.1 9.4 -5.6 9.2 19.9 12.4
2 0.10 -4.6 4.5 23.7 21.7 -13.0 13.3 35.4 27.5
3 0.10 -1.7 7.0 12.4 10.6 6.4 18.3 38.4 12.9
4 0.10 -0.1 7.3 11.1 9.1 5.7 18.1 41.8 10.4
5 0.20 0.0 6.1 9.0 6.8 11.6 15.8 37.5 7.7
6 0.20 -1.7 6.2 8.9 7.4 11.5 17.0 33.6 8.7
7 0.10 -4.0 22.0 12.8 8.9 6.8 52.2 46.6 10.0
8 0.10 -2.1 26.6 13.5 9.2 11.7 57.2 42.2 9.9
9 0.10 0.2 17.7 9.9 8.6 -4.0 31.1 20.9 10.3
10 0.10 0.0 17.6 10.7 8.9 -8.7 29.5 35.5 11.1
11 0.10 -3.8 0.1 9.2 8.7 -8.6 -0.2 11.1 8.7
12 0.20 0.1 5.3 10.1 7.0 15.9 14.9 50.6 8.6
13 0.10 -3.1 1.7 10.8 9.6 -3.9 5.5 15.9 12.7
14 0.10 -2.6 4.3 23.7 21.7 -3.0 11.7 32.2 28.3
15 0.10 -0.5 4.0 11.8 11.1 -1.0 8.5 16.5 13.4

High 

16 0.10 -1.0 3.8 9.6 9.3 -2.3 8.6 15.3 10.6
1 0.10 -0.4 9.1 21.5 20.6 -6.0 14.9 26.4 24.0
2 0.10 -7.4 3.1 21.8 19.7 -14.6 10.2 31.6 26.0
3 0.10 -4.4 4.9 21.7 19.3 3.5 17.3 32.2 23.5
4 0.10 3.1 13.9 21.2 22.1 17.7 27.3 45.4 24.4
5 0.20 0.2 9.4 21.4 17.7 2.6 16.3 33.9 19.5
6 0.20 1.1 7.3 19.6 17.0 1.1 16.2 36.3 20.0
7 0.10 -0.8 26.6 23.7 18.9 3.6 58.5 40.1 22.9
8 0.10 -0.2 28.2 24.6 19.9 8.3 68.7 39.7 25.3
9 0.10 -3.8 16.6 23.3 21.5 -7.5 30.8 26.7 23.4
10 0.10 -2.1 20.0 24.2 19.3 -7.1 37.1 37.0 22.8
11 0.10 -12.1 -2.6 20.6 20.5 -14.8 -2.0 24.7 23.0
12 0.20 0.7 7.2 20.7 16.5 9.3 15.4 45.8 20.1
13 0.10 -1.8 7.4 20.1 20.1 -1.7 11.6 27.5 23.7
14 0.10 -6.7 1.5 20.8 20.2 -6.8 7.2 30.2 26.8
15 0.10 -4.9 2.6 21.6 19.7 -6.5 7.2 25.8 24.6

Low 

16 0.10 0.4 10.0 21.4 21.8 0.0 15.6 27.7 25.1
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Table 9:  Comparison of the relative bias and coefficient of variation in natural 
mortality rate for age 1 for the spatial (Spat) and pooled (Pool) estimates for the 16 
population dynamics scenarios defined in Table 2 for the Markov movement 
dynamics model simulations, and for the high and low data quality scenarios defined 
in Table 4.  
 

Tagging all areas Tagging only area 1 
Bias CV Bias CV 

 
Data 

Quality 

Pop. 
Dynamic 
Scenario 

 
True 
value Spat Pool Spat Pool Spat Pool Spat Pool 

1 0.30 0.5 12.8 28.4 26.9 -3.4 9.9 30.8 22.1
2 0.30 -7.7 9.6 55.0 45.9 -7.9 8.7 48.7 35.6
3 0.30 0.5 31.8 27.5 19.2 1.8 32.5 39.9 15.4
4 0.30 -8.5 25.0 28.0 19.7 -6.3 24.8 47.4 17.7
5 0.30 4.2 31.4 22.0 17.4 5.0 29.2 32.7 14.6
6 0.30 0.4 28.8 20.9 15.0 4.1 26.4 30.2 13.0
7 0.30 1.7 64.1 33.9 18.2 3.1 58.2 48.5 15.5
8 0.30 5.4 69.0 29.8 15.8 13.7 62.4 41.1 13.9
9 0.30 0.4 14.1 31.9 28.9 -0.5 14.2 29.8 22.8
10 0.30 -3.3 13.6 32.0 27.1 -6.0 15.1 31.7 21.6
11 0.30 -0.4 1.8 27.8 26.9 -1.0 0.1 24.6 22.8
12 0.30 0.4 27.2 20.9 14.8 0.6 25.5 29.0 11.7
13 0.30 1.1 7.9 28.2 27.2 -1.2 6.1 27.7 22.4
14 0.30 -8.4 4.4 55.5 46.8 -6.5 4.5 49.0 37.5
15 0.30 0.3 7.1 25.7 22.7 -2.1 7.0 21.7 17.6

High 

16 0.30 -7.8 0.2 25.4 23.1 -9.2 0.7 25.7 21.3
1 0.30 1.1 16.1 50.9 43.8 -1.0 14.8 52.9 38.9
2 0.30 -10.4 7.5 53.0 43.1 -11.4 7.4 44.8 35.1
3 0.30 3.0 34.4 49.4 36.1 0.0 33.2 53.7 30.0
4 0.30 -9.6 23.3 58.1 42.4 -5.1 25.0 51.3 32.7
5 0.30 -5.6 26.6 48.0 35.0 -9.8 19.3 50.1 33.1
6 0.30 -8.6 20.3 57.5 42.1 -7.1 22.4 55.5 35.4
7 0.30 1.9 58.5 51.8 30.4 4.6 58.6 52.9 27.6
8 0.30 -7.3 48.3 64.3 39.6 -9.3 45.9 63.3 32.7
9 0.30 5.9 25.0 47.0 38.2 2.0 24.3 44.7 32.2
10 0.30 -7.0 14.6 55.3 45.9 -14.5 15.4 52.6 33.6
11 0.30 3.2 10.9 39.3 37.2 -3.7 5.1 39.1 33.8
12 0.30 -6.9 24.4 47.9 35.6 -5.2 22.7 49.6 32.6
13 0.30 1.3 10.5 49.2 43.6 1.7 11.7 46.3 38.6
14 0.30 -12.4 1.1 53.9 45.5 -9.5 2.2 45.1 37.5
15 0.30 -3.7 7.5 46.6 41.7 -8.3 6.3 47.7 37.6

Low 

16 0.30 -17.2 -3.5 57.6 50.8 -17.0 -2.4 51.1 40.2
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Table 10:  Comparison of the relative bias and coefficient of variation in natural 
mortality rate for ages 2 and older for the spatial (Spat) and pooled (Pool) estimates 
for the 16 population dynamics scenarios defined in Table 2 for the Markov 
movement dynamics model simulations, and for the high and low data quality 
scenarios defined in Table 4.  
 

Tagging all areas Tagging only area 1 
Bias CV Bias CV 

 
Data 

Quality 

Pop. 
Dynamic 
Scenario 

 
True 
value Spat Pool Spat Pool Spat Pool Spat Pool 

1 0.2 -6.6 9.9 42.7 34.4 -16.9 22.8 62.9 31.8
2 0.2 -6.6 14.3 69.1 54.7 -12.4 32.8 90.0 53.3
3 0.2 -4.9 16.0 42.5 32.4 -3.0 44.2 77.1 28.2
4 0.2 -0.9 16.4 36.2 27.8 -6.9 44.2 79.1 24.2
5 0.2 -3.1 10.7 29.0 22.6 1.5 34.4 62.2 18.1
6 0.2 -6.4 10.1 28.4 22.4 4.0 37.4 53.4 19.3
7 0.2 -13.1 60.0 44.3 19.6 -9.9 119.3 84.7 14.0
8 0.2 -8.3 70.1 41.9 16.8 -0.9 125.4 71.5 13.0
9 0.2 1.4 53.7 35.4 20.5 -12.9 76.0 60.0 18.1
10 0.2 0.1 55.4 35.6 19.7 -21.2 74.9 60.6 18.3
11 0.2 -12.1 -4.6 35.1 31.4 -25.9 -3.9 45.9 30.4
12 0.2 -2.2 10.4 26.1 21.1 -3.8 35.2 65.0 20.7
13 0.2 -10.5 4.1 45.2 35.8 -14.8 14.0 58.8 34.6
14 0.2 -6.6 8.9 64.8 55.4 -7.4 24.2 78.6 56.8
15 0.2 -3.0 9.9 41.5 34.2 -4.2 22.7 50.7 32.7

High 

16 0.2 -1.6 12.1 32.6 29.0 -7.1 24.9 51.4 28.2
1 0.2 -3.1 18.6 62.2 50.6 -14.8 31.8 78.1 49.3
2 0.2 -10.8 9.6 68.0 54.3 -15.4 26.5 78.9 55.4
3 0.2 -12.4 7.2 82.2 64.7 1.0 38.4 80.9 56.9
4 0.2 2.5 22.9 64.7 54.0 16.7 51.8 73.6 46.2
5 0.2 -1.9 17.0 56.7 43.9 -2.7 37.6 69.5 41.0
6 0.2 -3.0 8.8 53.7 47.2 -15.2 24.7 78.4 47.4
7 0.2 0.6 72.3 66.9 39.4 -1.4 122.9 85.2 29.2
8 0.2 2.9 78.6 63.9 32.9 10.6 135.9 80.5 27.6
9 0.2 -7.2 45.9 68.3 40.4 -11.1 68.1 77.2 36.4
10 0.2 -1.0 56.3 61.3 33.8 0.2 78.2 68.8 32.8
11 0.2 -36.1 -17.1 70.1 52.9 -44.3 -15.0 98.2 61.1
12 0.2 -4.1 9.6 53.0 42.5 -12.8 28.3 74.6 41.6
13 0.2 -6.9 14.5 64.2 52.4 -8.6 23.9 71.6 50.8
14 0.2 -15.3 2.9 69.3 56.8 -12.5 17.9 79.8 58.7
15 0.2 -17.1 0.2 83.0 67.1 -19.4 16.2 90.6 65.0

Low 

16 0.2 -1.2 17.7 63.6 55.3 -6.3 29.5 76.5 52.2
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Table 11:  Relative bias in the area-specific estimates of the initial population size for 
the 16 population dynamic scenarios defined in Table 2 for the Markov movement 
dynamics model simulations, and for the high and low data quality scenarios defined 
in Table 4.  
 
 

Tagging all areas Tagging only area 1 
Bias in estimate for area Bias in estimate for area 

 
Data 

Quality 

Pop. 
Dynamic 
Scenario  1  2  3  4  1 2 3 4 

1 -4.4 0.9 22.8 42.2 -4.7 89.2 -11.8 -9.9 
2 -2.2 1.4 -0.7 -7.8 -2.4 81.0 -23.9 -30.6 
3 -2.3 9.2 7.1 9.2 -3.9 29.4 22.7 -12.1 
4 0.5 -8.4 -0.3 -7.2 -2.9 20.6 -7.5 -20.9 
5 -1.1 4.5 17.7 -8.8 -1.0 27.7 -3.2 -6.7 
6 0.3 1.3 -2.6 -2.0 0.7 17.7 -18.5 -3.7 
7 -9.0 48.3 71.9 42.1 -5.2 69.4 2.6 14.8 
8 -2.9 4.1 1.1 2.3 -0.2 77.0 -40.5 -29.4 
9 -7.7 12.0 52.2 72.6 -5.8 109.7 19.5 -23.9 
10 4.0 -0.1 -8.2 1.1 1.8 81.0 -29.7 -33.1 
11 -11.7 - - - -12.1    
12 -0.1 -1.7 -8.7 2.5 -1.7 -1.4 2.5 2.4 
13 -4.9 9.1 22.0 45.8 -4.5 53.8 -11.4 7.9 
14 -2.7 6.2 2.1 -14.7 -2.0 28.6 -8.8 -30.9 
15 -2.1 5.6 2.5 11.1 -3.7 9.3 13.6 12.4 

High 

16 0.6 2.3 -7.5 -6.2 -3.1 -4.8 -2.5 -0.2 
1 -21.4 47.6 172.2 84.9 -20.3 201.2 90.0 39.8 
2 -5.4 6.8 -12.3 3.2 -6.8 62.4 -23.5 -15.1 
3 -24.8 195.2 158.9 88.4 -25.3 255.2 84.1 62.7 
4 -2.2 -5.9 -6.1 -7.9 -7.5 28.2 -21.0 -21.3 
5 -20.3 88.8 53.2 117.8 -23.7 143.0 46.9 77.3 
6 -10.7 -3.7 0.1 -10.3 -8.9 23.1 -22.7 -17.4 
7 -22.2 157.7 126.2 102.8 -23.4 248.6 80.2 96.4 
8 10.4 -2.4 -19.5 -7.4 0.1 28.8 -34.8 -16.1 
9 -18.1 62.5 175.0 139.1 -24.8 291.2 123.3 123.4 
10 2.1 9.2 -8.9 -10.9 0.8 91.6 -33.0 -43.3 
11 -35.4 - - - -33.8 - - - 
12 -15.0 -6.8 42.3 7.4 -19.3 -1.4 18.9 27.6 
13 -21.0 60.0 141.7 93.7 -19.8 143.3 88.9 72.7 
14 -5.6 3.6 -13.3 -1.6 -6.7 23.1 -10.7 -18.3 
15 -24.1 142.4 127.2 115.5 -24.9 110.4 99.0 133.9 

Low 

16 -2.6 3.3 -14.2 -9.2 -6.6 -6.0 -6.4 -7.7 
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Table 12: Comparison of the relative bias and coefficient of variation in the total 
initial population size estimates from applying the site-fidelity (S) and Markov (M) 
spatial estimation models to the 7 site-fidelity scenarios defined in Table 3, and for the 
high and low data quality scenarios defined in Table 4. 
   

Tagging all areas Tagging only area 1 
Bias  CV Bias  CV 

 
Data 

Quality 

Pop.  
Dynamic 
Scenario 

  
True 
value  S  M  S  M  S M S M 

1 10.0 -0.4 -1.2 6.2 6.1 3.7 8.3 12.3 12.8 
2 13.3 -0.5 -1.7 18.3 17.9 22.4 37.3 53.9 31.3 
3 10.0 -0.9 -1.7 6.6 6.6 -1.4 -1.1 6.1 5.9 
4 13.3 -3.6 -4.4 6.1 6.1 -2.8 -2.7 6.5 6.8 
5 10.0 -0.2 -1.2 5.1 5.1 0.2 0.2 4.9 5.2 
6 13.3 -1.0 -1.8 4.9 4.9 -0.5 -0.4 5.4 5.5 

High 

7 10.0 -1.5 -3.7 5.2 5.2 -1.8 0.3 12.8 16.2 
1 10.0 -3.8 -4.5 16.9 16.7 4.3 11.8 32.1 26.8 
2 13.3 -3.1 -4.8 19.4 19.3 16.7 27.1 54.3 31.9 
3 10.0 -1.4 -2.4 17.4 17.2 -3.1 -1.7 18.3 18.6 
4 13.3 -5.8 -6.0 18.2 18.4 -5.6 -4.2 18.7 19.7 
5 10.0 -5.2 -7.1 15.2 14.9 -6.0 -5.6 18.7 17.6 
6 13.3 -7.4 -8.8 16.2 16.1 -8.6 -6.9 15.3 15.3 

Low 

7 10.0 -6.3 -9.3 16.9 17.4 -10.0 -3.2 21.5 20.4 
 
 
 
Table 13:  Comparison of the relative bias and coefficient of variation in the estimates 
of natural mortality rate at age 1 from applying the site-fidelity (S) and Markov (M) 
spatial estimation models to the 7 site-fidelity scenarios defined in Table 3, and for the 
high and low data quality scenarios defined in Table 4.   
 

Tagging all areas Tagging only area 1 
Bias  CV Bias  CV 

 
Data 

Quality 

Pop.  
Dynamic 
Scenario 

  
True 
value  S  M  S  M  S M S M 

1 0.30 -0.3 -26.1 27.9 37.6 -25.7 -40.0 57.4 80.9 
2 0.30 -8.5 -28.8 56.8 66.1 -10.8 -19.9 52.0 61.9 
3 0.30 -2.7 -23.4 29.7 37.5 -12.4 -32.0 74.0 105.8 
4 0.30 -9.6 -30.9 28.2 37.4 -25.4 -44.4 88.3 124.9 
5 0.30 4.3 -13.6 22.3 26.9 -2.3 -15.3 54.9 79.3 
6 0.30 -1.7 -19.4 20.6 25.6 -8.5 -21.3 60.7 82.1 

High 

7 0.30 -0.6 -21.4 21.3 27.6 -0.6 -9.4 34.2 47.1 
1 0.30 -0.2 -20.6 49.9 59.7 -19.0 -36.0 73.0 92.1 
2 0.30 -11.2 -33.8 52.8 68.9 -15.9 -22.5 52.0 52.6 
3 0.30 -1.3 -19.0 52.4 62.6 -18.5 -44.5 79.5 113.8 
4 0.30 -14.3 -30.8 61.7 74.7 -23.4 -43.5 93.7 103.3 
5 0.30 -8.2 -24.4 49.2 59.2 -27.1 -49.7 80.7 112.4 
6 0.30 -11.4 -25.3 58.1 66.4 -34.7 -52.3 93.5 112.8 

Low 

7 0.30 -9.3 -27.0 48.9 59.4 5.1 -15.4 45.8 61.0 
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Table 13:  Comparison of the relative bias and coefficient of variation in the estimates 
of natural mortality rate at ages 2 and older from applying the site-fidelity (S) and 
Markov (M) spatial estimation models to the 7 site-fidelity scenarios defined in Table 
3, and for the high and low data quality scenarios defined in Table 4. 
 

Tagging all areas Tagging only area 1 
Bias  CV Bias  CV 

 
Data 

Quality 

Pop. 
 Dynamic 
Scenario 

  
True 
value  S M  S  M  S M S M 

1 0.20 -6.4 -15.0 42.1 48.1 -12.2 -22.6 59.5 66.8 
2 0.20 1.2 -16.9 62.6 76.9 0.4 -10.7 78.0 85.2 
3 0.20 1.0 -10.7 40.6 47.0 2.5 -13.3 46.9 58.4 
4 0.20 0.2 -9.6 33.7 38.3 10.2 -4.3 39.7 46.0 
5 0.20 -3.1 -13.1 26.7 30.0 -4.1 -13.4 32.0 40.5 
6 0.20 -1.9 -12.7 25.9 28.7 0.8 -9.8 34.3 38.0 

High 

7 0.20 -1.8 -12.3 24.9 29.4 -1.1 -20.2 33.6 48.5 
1 0.20 4.0 -12.2 56.5 67.6 -4.6 -12.0 78.7 79.2 
2 0.20 -4.2 -23.9 62.9 77.9 -8.3 -21.7 76.3 83.7 
3 0.20 -11.0 -27.3 73.0 88.1 -7.4 -16.2 74.8 87.9 
4 0.20 6.2 -12.8 62.9 73.1 -9.5 -12.1 81.3 79.1 
5 0.20 1.2 -18.6 54.5 66.8 -2.9 -12.8 62.5 66.8 
6 0.20 -2.8 -23.9 55.9 69.0 -5.3 -20.7 67.2 75.6 

Low 

7 0.20 -3.5 -25.7 48.7 63.8 -13.3 -26.8 67.9 73.8 
 
Table 14: Comparison of the relative bias and coefficient of variation for the estimates 
of average fishing mortality rates at age 1 in season 1 from applying the site-fidelity 
(S) and Markov (M) spatial estimation models to the 7 site-fidelity scenarios defined 
in Table 3, and for the high and low data quality scenarios defined in Table 4. 
 

Tagging all areas Tagging only area 1 
Bias  CV Bias  CV 

 
Data 

Quality 

Pop. 
 Dynamic 
Scenario 

  
True 
value  S M  S  M  S M S M 

1 0.084 -1.3 -2.5 10.1 10.1 -7.3 -12.3 14.8 15.9 
2 0.024 -5.4 -6.2 37.8 37.3 -9.1 -24.9 47.0 46.7 
3 0.084 -1.1 -1.8 8.8 8.9 -2.7 -4.5 12.5 12.5 
4 0.024 2.9 2.1 10.2 10.2 -1.2 -2.6 13.0 13.2 
5 0.167 -1.4 -1.8 9.0 9.2 -1.0 -1.8 9.8 10.9 
6 0.046 0.3 -0.1 10.5 10.4 0.9 -0.1 11.5 12.0 

High 

7 0.085 0.9 1.5 8.6 8.5 2.0 0.0 17.6 20.5 
1 0.084 -9.3 -9.6 27.3 27.9 -12.0 -19.3 28.9 30.8 
2 0.024 -0.9 -0.7 35.9 36.0 -5.2 -19.8 46.6 44.2 
3 0.084 -15.8 -16.6 29.5 29.5 -12.1 -15.9 35.4 35.9 
4 0.024 0.5 -0.4 35.8 35.8 -2.5 -5.6 34.8 34.6 
5 0.167 -7.7 -7.2 29.9 30.5 -5.6 -8.4 30.8 32.1 
6 0.046 -1.4 -0.9 33.2 32.8 -1.1 -4.6 32.2 32.4 

Low 

7 0.085 -2.7 -1.1 31.1 31.6 2.0 -8.0 36.8 39.4 
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Table 15: Comparison of the relative bias and coefficient of variation for the estimates 
of average fishing mortality rate at age 2 in season 2 from applying the site-fidelity 
(S) and Markov (M) spatial estimation models to the 7 site-fidelity scenarios defined 
in Table 3, and for the high and low data quality scenarios defined in Table 4. 
 

Tagging all areas Tagging only area 1 
Bias  CV Bias  CV 

 
Data 

Quality 

Pop.  
Dynamic 
Scenario 

  
True 
Value  S  M  S  M  S M S M 

1 0.075 -0.3 -7.2 6.4 6.6 -12.1 -20.8 21.8 27.9 
2 0.075 -3.3 -9.6 17.7 17.6 -12.1 -31.3 38.0 44.7 
3 0.075 -0.4 -6.4 6.3 6.4 -0.5 -8.9 21.6 25.0 
4 0.075 0.2 -5.6 6.6 6.5 -1.8 -9.3 21.8 25.1 
5 0.150 0.1 -4.8 5.4 5.5 0.5 -3.8 19.9 26.6 
6 0.150 0.1 -4.8 5.7 5.7 0.2 -4.6 21.0 26.7 

High 

7 0.150 0.2 -3.4 6.5 6.7 7.1 5.1 26.6 37.0 
1 0.075 -1.0 -7.4 16.8 17.4 -11.5 -24.3 27.9 33.5 
2 0.075 -4.4 -10.6 17.7 18.1 -13.0 -29.8 37.0 36.2 
3 0.075 -3.4 -9.1 16.1 16.6 -5.1 -16.1 27.0 28.3 
4 0.075 -3.7 -9.8 18.8 19.0 -3.3 -12.0 33.6 33.7 
5 0.150 -1.1 -5.8 14.0 14.3 -4.4 -14.7 28.1 30.3 
6 0.150 -2.5 -7.6 13.1 13.4 -7.1 -17.6 27.1 27.8 

Low 

7 0.150 -1.1 -4.6 17.9 17.9 17.9 0.3 35.1 40.8 
 
Table 16: Comparison of the relative bias and coefficient of variation for the estimates 
of average fishing mortality rate at age 3 in season 2 from applying the site-fidelity 
(S) and Markov (M) spatial estimation models to the 7 site-fidelity scenarios defined 
in Table 3, and for the high and low data quality scenarios defined in Table 4. 
  

Tagging all areas Tagging only area 1 
Bias  CV Bias  CV 

 
Data 

Quality 

Pop. 
 Dynamic 
Scenario 

  
True 
Value  S  M  S  M  S M S M 

1 0.100 -2.3 -9.2 10.2 10.8 -14.2 -24.3 26.8 33.5 
2 0.100 -4.4 -11.7 20.4 21.5 -11.1 -33.4 44.5 47.3 
3 0.100 -0.2 -7.2 11.5 11.8 0.9 -10.9 28.4 33.3 
4 0.100 -0.1 -6.7 9.4 9.7 1.3 -9.7 27.2 32.1 
5 0.200 -0.1 -6.1 7.3 7.4 0.9 -5.0 25.8 35.2 
6 0.200 -0.9 -7.0 7.9 7.8 0.7 -6.5 25.6 34.1 

High 

7 0.200 0.4 -6.7 7.9 8.3 10.6 1.1 33.3 49.2 
1 0.100 2.1 -5.9 22.3 22.4 -9.2 -22.9 34.3 40.8 
2 0.100 -4.2 -12.2 19.1 19.0 -12.3 -32.5 43.2 40.9 
3 0.100 -4.4 -11.3 21.2 21.3 -3.9 -16.5 31.8 35.3 
4 0.100 3.7 -4.7 22.3 21.4 -0.4 -9.5 42.7 43.4 
5 0.200 -0.8 -7.7 17.7 17.8 -4.6 -17.8 34.7 37.7 
6 0.200 -0.2 -7.6 17.6 17.9 -2.7 -18.2 37.4 39.5 

Low 

7 0.200 -2.5 -10.7 21.3 21.0 21.6 -11.4 36.1 44.4 
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Table 17:  Comparison of the relative bias and coefficient of variation for the 
estimates of natural mortality rate at age 1 for the site-fidelity (S) and Markov (M) 
spatial estimation model for the 7 population dynamics scenarios defined in Table 3, 
and for the high and low data quality scenarios defined in Table 4, but with the twice 
the number of tag releases than in the basic simulations (i.e., same results as Table 12 
except using 4800 total tag releases instead of 2400).   
  
 

Tagging all areas Tagging only area 1 
Bias  CV Bias  CV 

 
Data 

Quality 

Pop.  
Dynamic 
Scenario 

  
True 
value  S  M  S  M  S M S M 

1 0.30 -5.6 -33.4 21.9 32.1 -24.4 -39.8 48.1 64.3 
2 0.30 -6.7 -33.7 37.5 53.6 -8.0 -13.8 40.4 42.6 
3 0.30 0.9 -23.1 21.0 28.3 -11.0 -34.8 73.9 112.1 
4 0.30 -5.3 -29.2 20.1 27.2 -6.5 -32.8 69.4 108.0 
5 0.30 1.2 -18.9 14.7 18.5 -13.3 -24.2 60.9 87.5 
6 0.30 1.0 -19.0 14.8 18.7 -15.4 -25.2 63.2 85.9 

High 

7 0.30 0.1 -23.2 15.6 20.7 3.2 -4.3 27.9 42.9 
1 0.30 -1.1 -27.2 35.9 48.0 -31.3 -46.2 68.8 82.0 
2 0.30 -10.5 -36.1 42.1 56.2 -12.9 -18.7 40.6 44.5 
3 0.30 -7.3 -29.4 42.9 54.1 -17.7 -43.9 81.2 102.7 
4 0.30 -8.7 -30.8 42.8 55.4 -20.9 -45.5 85.1 98.0 
5 0.30 -7.6 -27.2 35.3 46.3 -26.0 -47.3 82.5 110.2 
6 0.30 -6.3 -24.0 34.8 42.5 -19.0 -45.2 72.9 111.3 

Low 

7 0.30 -4.8 -26.0 36.4 47.7 2.3 -20.2 41.6 54.6 
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Table 18:  Percent of simulations within each scenario for which the value of the AIC 
statistic for the site-fidelity spatial estimation model exceeded that for the Markov 
estimation model for the 7 population dynamics scenarios defined in Table 3 with 
tagging only in area 1, and for the high and low data quality scenarios defined in 
Table 4. 
 

 
Number of Releases  

 
Data 

Quality 

Pop.  
Dynamic 
Scenario 2400  4800 

1 41 52 
2 42 48 
3 57 63 
4 47 62 
5 62 77 
6 64 74 

High 

7 81 98 
1 43 44 
2 47 36 
3 32 48 
4 38 47 
5 41 61 
6 45 59 

Low 

7 48 58 
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Figure 1: Examples of the relationship between number of tags released and the bias and CV for the estimates of total initial population size for 
the high and low quality data scenarios. Shown are results for population dynamics scenarios 7 (solid line), 8 (dotted line) and 9 (dashed line) 
defined in Table 2 (for the Markov movement model). 
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Figure 2: Examples of the relationship between number of tags released and the bias and CV for the estimates of natural mortality at age 1 for 
the high and low quality data scenarios. Shown are results for population dynamics scenarios 7 (solid line), 8 (dotted line) and 9 (dashed line) 
from Table 2 (for the Markov movement model). 

 A12-36



Appendix 12:  Design and analysis considerations for spatial tagging experiments 
 Bias with Low Data Quality

-16

-12

-8

-4

0

4

0 500 1000 1500 2000 2500

Total Number of Tags Released

B
ia

s

CV with Low Data Quality

0

10

20

30

40

50

0 500 1000 1500 2000 2500

Total Number of Tags Released
C

V

CV with High Data Quality

0

10

20

30

40

50

0 500 1000 1500 2000 2500

Total Number of Tags Released

C
V

Bias with High Data Quality

-16

-12

-8

-4

0

4

0 500 1000 1500 2000 2500

Total Number of Tags Released

B
ia

s
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Examples of the relationship between number of tags released and the bias and CV for the estimates of average fishing mortality rate at 
age 3 in season 2 for the high and low quality data scenarios. Shown are results for population dynamic scenarios 7 (solid line), 8 (dotted line) 
and 9 (dashed line) from Table 2 (for the Markov movement model). 
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Figure 4: Examples of the relationship between number of tags released and the bias and CV for the estimates of  average fishing mortality rate 
at age 1 in season 1 for the high and low quality data scenarios. Shown are results for population dynamic scenarios 7 (solid line), 8 (dotted line) 
and 9 (dashed line) from Table 2 (for the Markov movement model). 
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����� �� ������ �		�� �	 ���	���� �� ����� �� ���� ���� ����! ��
 �	���� ���������!

����� �� ����� �� ���� ���� ���� ��
 ������� &��� ���� ��� � 	����� ������ �� �	�!
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�
��� 	� ���� �������� �	���� ��������� ��
 ������ ���������

�� ���� ���� ���� �	 �"������� �� ������� ���� ���� ���� ���� '� ��	� ����	������

����� ���������	 ��� �
��������� �� ��
��	 ���� ��� ������	 ( �� ���) �� ��� �*���

�� ������� ��� ����� �� �������� ����	! �� ������� ��� ����� �� �����	� ����	!

��
 �� ������� �� ��� ������	 ���		 ������� �� ���� ��� ������� '� ��	� ���	�
�� �

���������� ��
�� �� ����� �� �

������� ������ �� �	� �	 �����
� #������! �� ���	�
��
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������������ �� ��
��	 ���� + ������	�
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��� ��� ������� ��� ��������� �����
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��� ����� � 	����� ������ �� �	� �	 �����
 �� ��� ������	

�� ���	 � ��
 -� ��� ������ ��������� �	 � ���	���� � ! ��
 ��� �	���� ���������

�� ���� �����
 � �� ������ � �	 ���� #�� � �	� ����� �� ��� ��������� �� ���� �����


� �� ������ �! ��� ���
������� ����������� �� 	������ ������ ���� �����
 � �	 ��� .

���$�� � ���%� � ����	������� �	� �	 ����� $������ ���� 
��	 ��������% ����

���
������� ����������� ��� . ����$� / ���%� 0������� ������� ������	 ����	 ��

��� ��
 �� ���� ���� �����
� ��� ����������� �� � �	� 	������ �� ������ � �� ��� ��
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��� � -
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����� ��� ��� ����	 �� �����
 �	�1 ���	� �� ��� � �����
 �� ���� �����
 � ��

������ � ��� � �	� �� ���� �����
 � �� ������ - ��� - �	� �����
 �� ���� �����
 - ��

������ � ��
 ��� - �	� �����
 �� ���� �����
 - �� ���� �����
 -� '��� � �����
 �	�

�	 �����! �� ��� �
������! ���� ��� ��� �����! ����� �� ��� ��� ������� ����	 ��

������	 ��� �		���� ���2 ��������� ����	! �� ��� �������� ��� ����������� �� ���

�����	 ���� ���� ���� �����
 ��
 ������ ��� �	� �� ���� ����� ���	 ����
	 � 3� 3

������ � ! �� ����� � 4	
 �5 �	 ��� ����������� �� � ��� ����� ���� �����
 ���� 	 ��


����� ���� �� 6��� 	 . � �����	���
	 �� ��� �! ������ � 	 . - �� ��� �! ������ - 

	 . � �� ��� -! ������ � ��
 	 . 3 �� ��� -! ������ -� 7� ��� �	� �����
 �� ��� � ��

������ �! ��� ���� ��
�� �	 	 . $�� �%- / �� 7�������� ��� ��� ����� ����	! � . �

�����	���
	 �� ���� �! ������ � � . - �� ���� �! ������ - � . � �� ���� -! ������ � 
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��	�� � � �� � � � � � �� � � � � � �� � � � � � �� � � �

� �� � �� � � �� � � �� ��� ������� � �������� ������� ������ ������ �������

� �� � �� � � �� � � �� � ��� ������� ������ ������ ������� �������� �������

� �� � �� � � �� � � �� � � ��� ������� �

� �� � �� � � �� � � �� � � � ��� �������

����� ��� 	���� �)���� ���������	1 � ! ���! ���! ���! ���! �� ��
 ���

��� ������ � ��	 �8 ������	! �� ����� 9 ��� 	������� :����	� 6������! 9 ��� ���

	������� :����	! ��
 	� �
������������ �� ; ���������	 ���� 9 �"�����	 �	 �� ���	�

��		�����

�� ����� �
������������! �� �
��� � 	����
 ��������� ��� �������� <� =

����	 ����  �	 �
���������! �����  �	 � ��������� �� 	��� ����������� �� ������
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��� � �
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-� #��� ������	 � $�
 �% ��
 � $�
 3%! $�� ���%��� ��
 $�� ���%���! � ����� ��


���$�� ��%�

�� 7����� ����� ��
 ���$�� ��%! � ����

3� #��� ��� ��
 �����! � ���

>� #��� ��� ��
 ����� $�!�%! �� ��
 ����

8� #��� ������	 � $-
 �% ��
 � $-
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 $�� ���%���! � ���$�� ��%
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 ������

;� 7����� ����� ��
 ���$�� ��%! � ����

9� #��� ��� ��
 �����! � ���

?� #��� ��� ��
 ����� � $-
 -%! �� ��
 ����

��� #��� � ! $�� ���%��� ��
 $�� ���%���! � ��� ��
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��
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	 �� ����1 ���� �	! ��� . ���$��� � ���%! ������ ���� ���$�� � ���%� @���

����� ����� ��� 9 �"�����	 ��� 9 �)����	! ����� ��� ���� ; ��
����
��� �"��

����	� #�������� ��� 	��� 	���	 �	 ������	��! ��� ���������	 ��! ���! ���! �� ��


�� ��� �
���������� ��� "�������	 $�����%��� ��
 $�� ���%��� ��� �
���������! ��

���	� ��� "�������	 ��� ��� ����� �� ������� ��� ����� ���������	 ��! ��� ��


���� A� ���	�! �� �� )���! ��� �������! ���� �� . ���-! �� ���� ��������� ����

�� . �$��% ��� 	��� )���� ������� �$�%! ���� ��� ���������	 ��� �
����������

��� � 3
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� �� � �� � � �� � � �� � � � ������������������� ������� ������������������� �������

� ������������������� ������� � ������������������� �������

� �� � �� � � �� � � �� � � � ������������������� ������� ������������������� �������

� ������������������� ������� � ������������������� �������

� �� � �� � � �� � � �� � � � ����������� ������� ����������� �������

� �� � �� � � �� � � �� � � � ����������� ������� ����������� �������

&��� ���� �� ���� 	������� ������
 ��� ��������� ��� ����	����� ������������	 ���

���� �� �

����� �� ����� 	�	�����	 $��% �� ��
����� ����� ����� ���� �����
 ��� �����

	����� ���) �����! ��
 �� ��	� 	��� ��� ������� ��
 ���� ������	 ��� ���� ����	������

��	 �� �	 �������
 �� ����� ��
 �� �� ������ �� ���	 ���������� $������� � 	�����

������%! ���� ��
 ��� ��� ���������� ������
�
! 	� ���� ��� ����	����� ������������	

���
 �� ����������
 �	 
����
��� �� ��� $������% �� ���� �����
 $������%�

'� ��� �
������ ��� ; ���������	 �
���
 ���
 ���
 ���
 ����� ��
 ����� �	 �������

'� ��� ���� ��� �

������� ���������	 �� �
������1 ���
 ���
 ����� ��
 ������ ���

����� ���� ���	� ��� �� �
������
 �	 ��� �	 ����
���� �	 �������

7���� ��� ��
 ��� ��� �����
� )����! �� ��� ��������� ���� ���� � $�
 >% ��


� $3
 >%� 6���� �����$� � ���%��� ��
 �����$�� ���%��� ��� ���� �
���������� ��)���

����� �����! �� ��� �
������ � . ������������ �������� 	������ ���	����� �� � $�
 8% ��


� $3
 8%! �� ��� �
������ � . ������������ �� �	 ����
���� ���� ����� . $���%�$���%!

��
 ���� ����� . $�����%�$�������%� 6���� ���� ��� �
���������� �� �	 ����
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��� � >
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�
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 ��� ����� ��
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Appendix 14: Estimating tag shedding parameters from 1990s SBT tagging data 

Abstract 

 Tags are often shed from tagged fish, so that when a fish is recaptured the 

fisher cannot know that it has been tagged and cannot report it, which biases the 

results from analyses of the data. Tag shedding rates are mainly assessed from double-

tagging experiments using the fraction of recaptured tagged fish that have shed one 

tag.  We review the literature on methods for estimating tag shedding parameters from 

such experiments.  We outline two methods for using shedding parameter estimates 

subsequently in tagging models for estimating mortality rates: (1) each fish caught 

with one or more tags is multiplied by a weighting factor that allows for the number 

of fish that have shed both tags, and this scaled up data can be input as data into a 

mortality model, or (2) the estimated shedding parameters may be directly 

incorporated into the structure of a mortality model.  The second method has 

theoretical and practical advantages over the first.  In an alternative approach, we 

develop an integrated model that is an extension of the instantaneous mortality rates 

model (i.e., Brownie model) that simultaneously estimates mortality and shedding 

parameters.  

Independent of mortality considerations, we analyse southern bluefin tuna tag-

return data from double-tagging experiments conducted in the 1990s to estimate 

individual shedding rates associated with each tagger (17 in total), as well as common 

shedding rates from data pooled over all taggers.  The shedding model allows for 

shedding immediately after tagging and also continuous shedding over time.  The 

model fitted to the data from individual taggers gave a significantly better fit than the 

model fitted to data pooled over all taggers.  Furthermore, the fraction of tagged fish 

estimated to have lost both tags ranged among taggers from about 1% to 14%, 

indicating that differences among taggers’ need to be taken into account when 

incorporating shedding into mortality models.  In order to reduce the complexity of 

having to incorporate shedding rates from 17 individual taggers into the mortality 

model, we used model selection to pool data from taggers into 6 groups with similar 

shedding rates that gave a more parsimonious fit than the individual tagger model. 
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Introduction 

 Tagging experiments depend on accurate estimates of the number of tagged 

fish that are recaptured in order to be able derive reliable estimates of mortality rates 

and/or abundance. However, tags may shed from fish due to inadequately attached 

tags, tag failure, allergic rejection, accidental snagging, active removal by the fish, 

predators biting off the tag, or the attachment site becoming infected.  Fish that have 

shed all their tags prior to recapture will generally be indistinguishable from fish that 

were never tagged; as such, the actual number of tagged fish recaptured will be 

underestimated.  The number of recaptured fish that have shed all their tags needs to 

be estimated and accounted for when analysing tag-return data or else the mortality 

rates estimates will be biased.  Accounting for tag shedding should be considered an 

essential component of any complete analysis of tag-return data.   

To estimate the tag shedding rate, Beverton and Holt (1957, pp. 202-208) first 

suggested the technique of analysing the proportion of recaptured fish that have shed 

one tag in a double-tagging experiment.  Double-tagging experiments are the primary 

approach used for estimating shedding rates and extensive work has been done on the 

problem of modelling and estimating shedding rates from such experiments 

(Kirkwood and Walker 1984; Barrowman and Myers 1996; Cadigan and Brattey 

2003).  In the current appendix, several models and methods for estimating tag 

shedding rates from double-tagging experiments are briefly reviewed and the double-

tagging data for southern bluefin tuna (SBT)  from the tagging experiments conducted 

in the 1990s are analysed. The results provide an indication of the level of tag 

shedding that might be expected in future tagging experiments and that should be 

allowed for in the design of such experiments. The tag shedding estimates are also 

used in the analysis of the 1990s SBT tag-return data presented in Appendix 15.  It 

should be emphasized that the main reason for estimating shedding rates is generally 

so that unbiased estimates of mortality rates and/or abundance can be obtained from 

analyses of tag-return data (or at least estimates with acceptably small biases). 

 

Methods 

The use of double tagging to estimate shedding rates requires assumptions 

additional to those for a normal tag-return experiment (Hearn et al. 1991), namely: 
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1. Tags attached to a fish are a random sample from the tags used in an experiment. 

2. Natural mortality, migration, catchability, and reporting of tags by finders are 

independent of the number of tags attached to a fish. 

A third assumption is also needed in most models used to estimate tag shedding rates: 

3. The shedding of any tag occurs independently of the shedding of other tags, 

including whether or not the other tag on a fish is still attached.  

Tag shedding can be considered to be comprised of two components: (1) immediate 

tag loss (e.g. from improperly attached tags) and (2) shedding that occurs over time. 

Immediate Tag Loss 

Gulland (1963) and Russell (1980) considered the case where two tags, of 

types A and B, were attached to each fish, which are assumed to have independent 

probabilities of shedding. We follow their derivations, but initially we assume that all 

shedding occurs immediately after release. Let the retention probabilities of type A 

and B tags be QA and QB, respectively. A type A tag could be a tag placed on a fish’s 

right side and a type B tag could be an identical tag placed on its left, as is the case 

with SBT tagging experiments. Although the tags may be identical, the shedding rates 

of these tags may not be the same because of differing inclinations/access of the two 

sides of the fish to the tagger at the time of tagging. Then the probabilities of a tagged 

fish retaining both A and B tags, A tag only, B tag only, and neither tag are QAQB, 

QA(1-QB), (1-QA)QB, and (1-QA)(1-QB), respectively.  If r* previously tagged fish are 

recaptured, then the expected number of these fish in each tag category are r*QAQB, 

r*QA(1-QB), r*(1-QA)QB and r*(1-QA)(1-QB). The corresponding numbers of fish 

observed in each category are , , and  (the number of fish that have lost both 

tags is not observed). Equating the expected and observed values yields estimates of 

the proportions shed, viz, 

ABr Ar Br

  ( ) ( ).1
1ˆ

AB

B
r
r

BAB

AB
A rr

rQ
+

=
+

=      (1a) 

This makes intuitive sense – if we consider only recaptures that have a B tag (i.e. 

those from either category  or ), then  is the proportion of fish that have 

retained their A tag.  Similarly, 

ABr Br AQ̂
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( ) ( )
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and if  then  A BQ Q Q= =

   
( )( ) ( )2

1ˆ
0.5 1 A b
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AB
r r

AB A B r

r
Q

r r r +
= =

+ + +
 .   (2) 

 

The estimated number of tagged fish that were recaptured, including those that 

have lost both tags, is derived from   

( ) ( )* ,ABE r E r Q Q= A B   

i.e.,   .ˆˆˆ*

BA

AB

QQ
rr =         (3) 

 

Define the weighting factor, W, as the number that needs to be multiplied by the total 

number of tagged fish recaptured with tags (i.e. rAB  + rA + rB) to estimate the total 

number of recaptured tagged fish r*, i.e.  

   (* ˆˆ )AB A Br W r r r= + + .     (4) 

 

From (4), the estimated number of recaptured tagged fish that lost both tags is 

, and the estimated fraction of tagged fish that lost both tags is ( )( ˆ 1AB A Br r r W+ + − )
ˆ1 1 W− .   

Equating (3) and (4) and simplifying gives 

   
( )

1ˆ
ˆ ˆ 1 A B

AB AB

r r
A B r r

W
Q Q

=
+ +

.     (5) 

 

Substituting from (1a) and (1b) and simplifying yields 

   ,ˆˆˆˆ
1ˆ

BABA QQQQ
W

−+
=  

and if QA = QB = Q, then 

   
( )2

1 1ˆ
ˆ ˆ ˆ ˆ2 2

W
Q Q Q Q

= =
− −

.     (6) 
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This weighting factor can be used in equation (4) to estimate r*, the actual number of 

recaptured tagged fish including those that shed both tags prior to recapture.   

Time-Dependent Tag Loss 

 We now consider the case where tags continue to shed over time; i.e., the 

retention probability (Q) is a function of time.  Beverton and Holt (1957) investigated 

the situation where tags are assumed to have an immediate component of shedding 

and a long-term constant proportional rate of shedding.  In this case, the proportion of 

tags retained as a function of time since release, τ, is 

   ( )Q e ττ ξ −Ω=        (7) 

where parameter ξ is the fraction of tags immediately retained (i.e. proportion 1 - ξ are 

immediately shed) and parameter Ω is the continuous shedding rate.  Other functional 

forms for the retention probability can be used (e.g., Kirkwood 1981); however, they 

will not be considered in this appendix. 

 Kirkwood and Walker (1984) developed a method of estimating shedding 

rates from a double-tagging experiment with exact times of recapture, which they 

applied to data from Australian salmon.  Here we describe their method in a slightly 

more general way, allowing for an arbitrary time-dependent shedding rate and for the 

two tags to shed at different rates.  Each tag on a fish is assumed to shed 

independently of the presence or absence of the other tag.  

Given that a fish is still alive, let the probabilities of tag A and tag B being 

retained at time τ after release (time-at-liberty) be QA(τ) and QB(τ), respectively. 

These functions will incorporate parameters to be estimated from the double-tagging 

data.  For example, QA(τ) and QB(τ) may have the form of equation (7), in which case 

there will be four shedding parameters to be estimated: ξA, ΩA, ξB, and ΩB. Consider 

the ith caught tagged fish which is recaptured after time-at-liberty τ i. The probabilities 

that it has both tags, tag A only, tag B only, or no tags are QA(τ i)QB(τ i), QA(τi)(1-QB(τ 

i)), QB(τ i)(1-QA(τ i)), and (1-QA(τ i))(1-QB(τ i)), respectively. However, a fish shedding 

two tags cannot normally be identified, so the probabilities conditional on a fish 

retaining at least one tag are  
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 ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )( )
( ) ( ) ( ) ( )

( ) ( )( )
( ) ( ) ( ) ( )

if both tags are still attached

1
if tag A only is still attached

1
if tag B only is still attached

A i B i

A i B i A i B i

A i B i
i i

A i B i A i B i

B i A i

A i B i A i B i

Q Q
Q Q Q Q

Q Q
p

Q Q Q Q

Q Q
Q Q Q Q

τ τ
τ τ τ τ

τ τ
τ

τ τ τ τ

τ τ
τ τ τ τ

⎧
⎪ + −⎪
⎪ −⎪= ⎨ + −⎪
⎪ −⎪
⎪ + −⎩

   

A maximum likelihood approach is used to estimate the shedding parameters.  

The combined likelihood for all returns (those with both tags, tag A only and tag B 

only) is  

( )
1

r

i i
i

L p τ
=

= ∏ ,   

where r is the number of fish for which one or more tags were returned. Note that 

provided the release procedures are kept uniform, the likelihood is a function of time-

at-liberties only, and is independent of release times, even though recapture rates 

between release times may change. The shedding parameters are estimated by 

maximizing the likelihood (L), and statistical inferences are made in the normal way. 

These matters are examined further in Kirkwood and Walker (1984), Xiao (1995) and 

Barrowman and Myers (1996).  

The estimated shedding parameters can then be used to estimate the weighting 

factor for a tagged fish recaptured after time at liberty τi .  In particular,  

   ( )
( ) ( ) ( ) ( )

1ˆ
ˆ ˆ ˆ ˆi

A i B i A i B i

W
Q Q Q Q

τ
τ τ τ

=
+ − τ

,  

where ˆ
AQ  and  are the estimated retention functions (using the estimated shedding 

parameters).   Also, if we assume that Q

ˆ
BQ

A(τ) = QB(τ) = Q(τ), then  

( )
( ) ( )( )

1ˆ
ˆ ˆ2

i

i i

W
Q Q

τ
τ τ

=
−

,     (8) 

 which is analogous to equation (6).  So for each tagged fish recaptured after time at 

liberty τi,  tagged fish are presumed to have been recaptured instead of one.  

This uses assumption (2), that tagged fish have the same probability of being 

recaptured and their tags returned regardless of how many tags they still have 

( )iW τˆ
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attached.  The sum of all the ’s will then give an estimate of the total number of 

tagged fish that were recaptured, including those that lost both tags (analogous to r* in 

the previous section on immediate tag loss).   

( )iW τˆ

Incorporating Shedding Rates into the Mortality Models  

Shedding rates are generally of interest because they are needed in order to get 

unbiased estimates of mortality rates from analyses of tag-return data.  There are two 

basic approaches for incorporating shedding rate estimates into mortality models 

(Wetherall and Yong 1981; Wetherall 1982): (1) estimate the tag shedding parameters 

independently (using a method such as one of those described above) and then use 

these estimates in subsequent analyses that estimate mortality rates (i.e., two-stage 

modelling), or (2) incorporate tag shedding parameter estimation into an integrated 

model that simultaneously estimates mortality rates and shedding rates (i.e., integrated 

modelling).  

Two-Stage Modelling Approach 

We first examine the two-stage modelling approach. This approach depends 

on the assumption that shedding of tags from fish are independent of mortality rates, 

which means the latter parameters do not need to be considered when estimating 

shedding rates (note that this assumption is generally made in the integrated 

modelling approach as well).  We describe two approaches for how shedding 

parameter estimates can be used in subsequent mortality rate analyses.   

The first two-stage approach is to adjust (scale up) the observed recapture data 

for the number of recaptured fish that had lost both tags, and then input these adjusted 

recapture data into the model for estimating mortality rates.  The adjusted recapture 

data are calculated using the estimated weighting factor(s), as described in the 

previous sections (e.g. equations (6) and (8)). We call this the two-stage weighting 

option.  For example, it is used in the exact-time model of Leigh et al. (2005).  

The second two-stage approach is to adjust the mortality model rather than the 

data; that is, to incorporate shedding parameters into the mortality model equations 

and then substitute the estimated shedding parameters into the model. We call this the 

two-stage mortality and shedding model. For example, consider an instantaneous 

mortality rates model for estimating mortality rates in which the instantaneous fishing 
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mortality rate, F, is assumed to differ with year, and the instantaneous natural 

mortality rate, M, and the shedding parameters are assumed to remain constant over 

years.  For simplicity, we also assume that tag reporting rates are one (incorporating 

reporting rate estimation is discussed briefly in the Discussion).  At the start of year i, 

suppose that Ni fish are double tagged.  If the retention function, Q(τ), is the same for 

both tags and has the form of equation (7), then the proportion of fish with at least one 

tag after time τ , is  

( ) ( )2 22 2Q Q e e 2τ ττ τ ξ ξ−Ω −− = − Ω

f

f

j

j

. 

Then, the expected number of fish recaptured with at least one tag (i.e., that could be 

identified as being tagged fish) for release year i and recapture year j  is 

 

( )2

1 1
2

2 i   

2 i   

i j j

j j

i j k j k
k i k i

N u u i

N u S u S i

ξ ξ

ξ ξ
− −

= =

⎧ ′ ′′− =
⎪
⎨ ⎛

′ ′ ′′ ′′
⎞

− <⎪ ⎜ ⎟
⎝ ⎠⎩

∏ ∏
   (9) 

 
where   

jF M
jS e− − −Ω′ =  

2jF M
jS e− − − Ω′′ =  

( )1j
j j

j

F
u S

F M
′ ′= −

+ + Ω
 

and   ( )1
2

j
j j

j

F
u S

F M
′′ ′′= −

+ + Ω
. 

 

Note that  and jS ′ jS ′′  cannot strictly be interpreted in the usual way as survivorship 

functions, nor can  and  be strictly interpreted as exploitation functions.  The 

estimates of the shedding parameters ξ and 

ju′ ju ′′

Ω  can be inputted into these equations 

and the analysis can then proceed as usual (e.g., a multinomial likelihood can be set 

up for the recapture data and maximized to obtain mortality rate estimates).     

Both two-stage approaches (adjusting the data or adjusting the model) as 

described so far use the shedding parameter estimates as if they contain no 

uncertainty, and therefore the uncertainty in the mortality rate estimates will be 

underestimated.  In the two-stage mortality and shedding model, the variance and co-
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variance estimates of the estimated shedding parameters can be carried into the model 

through an additional likelihood term (see Appendix 15), and then the standard 

approach of using the inverse Hessian can be used to provide realistic uncertainty 

estimates for all parameters.  There is not an equivalent approach for the two-stage 

weighting option; however, various methods can be used to account for the 

uncertainty in the shedding parameter estimates, such as using bootstrapping or 

Bayesian methods (these methods can also be used with the two-stage mortality and 

shedding model).   

Integrated Modelling Approach 

Integrating the estimation of shedding parameters directly into the mortality 

rate model provides an alternative to the two-stage modelling approach.  Beverton and 

Holt (1957) used the method of moments with a model that incorporated the 

estimation of both shedding and mortality rates (assumed to be constant over years) to 

analyse data from a double-tagging experiment with a single tagging event. Wetherall 

(1982) extended this approach to use maximum likelihood estimation.  We now show 

how to incorporate the estimation of tag shedding rates into the instantaneous 

mortality rates model, which we call the integrated mortality and shedding model.  

The two-stage mortality and shedding rates model described in the previous section 

only considered the total number of observed recaptures (i.e., it did not distinguish 

recaptures with one or two tags); this model formulation does not provide enough 

information to estimate shedding parameters directly from the model.  Thus, for the 

integrated model we need to bin the recapture numbers not only by year of release and 

year of recapture but also by whether one or two tags were retained.  We again 

assume that fishing mortality is year-dependent, that natural mortality and shedding 

rates are constant over years, and that reporting rates are equal to one.  The tag 

retention function is assumed to be the same for both tags and to have the form of 

equation (7). Thus, after time τ , the proportion of tagged fish with one tag is  

( ) ( )( ) 2 22 1 2 2Q Q e eτ ττ τ ξ ξ−Ω −− = − Ω

2

 

and the proportion with two tags is  

( )2 2Q e ττ ξ − Ω= . 
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Suppose that Ni fish are double tagged at the start of year i, then the expected 

number of fish recaptured in year j with one tag is 

 

( )2

1 1
2

2 i   

2 i   

i j j

j j

i j k j k
k i k i

N u u i

N u S u S i
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⎪
⎨ ⎛
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⎝ ⎠⎩

∏ ∏
  (10) 

 

and the expected number of fish recaptured with two tags is 

 
2

1
2

if  

if  

i j
j

i j k
k i

N u i j

N u S i j

ξ
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−

−
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⎩

∏
    (11) 

 

where and  are defined the same as in equation (9) for the two-stage 

mortality and shedding model.   

,,, jjj uSS ′′′′ ju ′′

For clarity, Table 1 contains the expressions for the expected number of 

recaptures for an experiment with three release years and three recapture years.  The 

observed recaptures are binned over years of release and recapture and also tag 

retention category (i.e., whether one or two tags were retained), so that they 

correspond with the expected recapture expressions given above.  The recapture 

numbers corresponding to a given release year (i.e., those from all recapture years 

with one tag or two tags) are multinomial so that the likelihood for all recaptures from 

all release years is the product of multinomials, similar to any Brownie-type model 

except expanded to include more categories for tag retention type.  The likelihood can 

be maximized to estimate the shedding and mortality parameters and their standard 

deviations, using, for example, the maximum likelihood SURVIV software (White 

1983).  Note that the estimates of the shedding parameters obtained from the 

integrated model are not expected be the same as those obtained from the independent 

shedding analysis because the integrated model uses recovery data binned over years 

whereas independent shedding models generally use exact times of recovery (e.g., the 

method of Kirkwood and Walker (1984)).   

In our presentations of both the two-stage mortality and shedding model and 

the integrated mortality and shedding model, we assumed reporting rates were 100%.  
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If this is not the case and we have an estimate of the reporting rate, jλ , in each 

recapture year j from a prior independent analysis, then reporting rates can be 

incorporated into the mortality model by multiplying all terms for the expected 

number of recoveries in year j by jλ .   As with the two-stage shedding and mortality 

model, the variance and co-variance estimates of the estimated reporting rates can be 

carried into the model through an additional likelihood term (see Appendices 9 and 

15).  Alternatively, reporting rate estimation can be integrated into the mortality 

model.  The way in which this is done depends on the method used to gather 

additional information for estimating reporting rates. For some methods (e.g., planted 

tags), the data can be considered independent of the tag-return data being used to 

estimate mortality rates and a likelihood can be developed for the reporting rate data 

and simply multiplied to the likelihood for the tag-return data (see Appendix 12).  For 

other methods (e.g., based observers), the data is not independent of the tag-return 

data and the likelihood for the tag-return data needs to be modified to incorporate the 

reporting rate data (see Appendix 7). 

Variation in Shedding Rates Between Tagging Operators 

Some tagging operators (taggers) may not be as efficient in attaching tags as 

others, which can lead to biases if data pooled over taggers are analysed (Hearn et al. 

1991). For example, suppose tagger x has 81 of his tagged fish returned with two tags 

and 18 returned with one, whereas tagger y has 36 of his tagged fish returned with two 

tags and 48 returned with one. If there is no long-term shedding and all tags have the 

same probability of being shed, then from equation (2), we estimate Qx = 0.90 and Qy 

= 0.60 (i.e., 10% of tagger x’s tags have been shed and 40% of tagger y’s).  Then, 

using equations (4) and (6), the estimated numbers of fish that have shed both tags are 

1 (i.e., ( ) ( )(81 18 1 0.9(2 0.9) 1+ − )− ) and 16 for x and y respectively, which total 17 

altogether. However, if the data are pooled (117 fish returned with two tags and 66 

with one tag), then we estimate Q = 0.78 (i.e., 22% of tags being shed), and the 

estimated numbers of fish that have shed both tags are 5 and 4.3 for x and y 

respectively, which total 9.3 altogether. Hearn et al. (1991) concluded that such biases 

may be markedly reduced by having taggers as similar as possible (e.g. by 

implementing a standard protocol) and by improving the efficiency of all taggers. 

New taggers should be properly trained and their work monitored. Results from 
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taggers should be compared with each other, and especially with those from 

experienced taggers; however, to be able to perform statistical tests comparing 

taggers’ data, each tagger needs to have tagged a goodly number of fish.  

 One way to analyse return data from fish tagged by multiple taggers is to split 

it into tagger-associated subsets and estimate the shedding parameters for each subset 

by the exact-time method of Kirkwood and Walker (1984).  A subset could be an 

individual tagger or a group of taggers assumed or shown to be similar in terms of 

shedding rates.  Once shedding parameters have been estimated for each tagger 

subset, they can be incorporated into mortality models using either of the two-stage 

methods previously discussed.  For the two-stage weighting option, a weighting factor 

Wk(τi)  can be calculated for each subset k using the estimated shedding parameters for 

that subset.  Each recaptured fish is then multiplied by its tagger-associated weighting 

factor, Wk(τi), to allow for the number of fish that have lost both tags (Wk(τi) ≥ 1.0).  

These adjusted recapture numbers are then used as data in the mortality model.  For 

the two-stage mortality and shedding model, the expected number of recaptures given 

in equation (9) need to be duplicated for each tagger subset (i.e., we need to replace Ni 

with Nki, ξ  with ξk, and Ω  with Ωk) and, correspondingly, the data need to be broken 

down by tagger subset.  The estimates of the shedding parameters for each tagger 

subset can then be inputted into these equations before proceeding with the mortality 

rate analysis.  

Alternatively, the estimation of shedding rates for different taggers can be 

directly incorporated into the mortality model, which we call the integrated mortality 

and tagger-specific shedding model. For example, suppose there were two taggers (or 

tagger subsets), 1 and 2, operating for three years. Then duplicate the cells in Table 1 

for each tagger, but replacing Ni with Nki, ξ  with ξk, and Ω  with Ωk for taggers k = 1, 

2. This can become very complex if there are many taggers and/or the number of 

recaptures from taggers is small.  As such, it is beneficial to pool data from taggers 

with similar shedding rates to the greatest extent possible.   

 
Analysis of Southern Bluefin Tuna 1990s Tag-Recapture Data 

 In this appendix, we use the 1990s SBT tagging data to estimate shedding 

rates only (i.e., we do not incorporate the estimates into mortality models). Our 
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purpose is to gain an understanding of shedding rates and determine the best way to 

incorporate the estimates into a mortality model. 

We selected data from the double-tagged fish that were deemed to be suitable 

for estimating shedding rates. We excluded data from fish that were found dead, tags 

that were reported but not recovered, tags found on beaches, tagged with an archival 

or planted tag, or badly tagged. We also excluded data with recovery year uncertain or 

recovery month uncertain within a year. Where the recovery day was uncertain within 

a month, we excluded the datum if the fish was at liberty for less than 270 days. If 

tagged fish were captured and re-released (e.g. by CSIRO taggers) we only analyse 

data from the last capture (which sometimes may be the recapture for which the fish 

was re-released). Juvenile SBT are commonly caught and placed into farm cages for 

fattening up;  these fish are not inspected for tags prior to being placed into the cages, 

so we use the data associated with the time that the fish are removed from the cages 

and inspected for tags. We assume that fish shed tags at the same rate before and after 

they are placed into cages. The purpose is to estimate the probability of a fish losing 

both tags before it is recaptured and found. One may plant double-tagged fish in cages 

to independently evaluate the shedding of tags from fish in cages, but such an 

experiment needs to be carefully designed and its cost effectiveness evaluated. 

Furthermore, tag shedding in a cage may be higher for freshly tagged fish than for 

tagged fish that had their tags attached for a considerable period of time because of 

the crowded conditions in the cage and contact with cage netting.  

Data sets associated with a tagger were only analysed if there were 30 or more 

acceptable recaptures in the set; this was true for 16 taggers. The data associated with 

the remaining taggers were pooled into a set we called “tagger” Z.  Table 2 gives the 

total numbers of recaptures and the numbers of those with one or two tags attached 

for each tagger, as well as the fraction of recaptures with only one tag for all data and 

for times at liberty more than 9 months. To each tagger’s data we applied the method 

of Kirkwood and Walker (1984) to estimate shedding parameters for that tagger.  We 

used equation (7) for the retention function and we assumed the function was the 

same for both tags.  Seber and Felton (1981) indicate that this assumption is likely to 

make little difference to the estimation of the number of unseen fish that shed both 

tags; however, we later investigate this issue. We tried three variations on the 

retention function: first, we assumed that shedding is immediate and has no 
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continuous component, so that Ω from equation (7) is set to zero and ξ only is 

estimated; second, we assumed that only continuous shedding occurs, so that ξ is set 

equal to one and only Ω is estimated; third, we assumed that both parameters are free.  

In all cases, we applied the logical limitations that ξ ≤ 1 and Ω ≥ 0 (i.e. shed tags 

cannot spontaneously re-attach themselves to fish).  We refer to these as shedding 

models 1, 2 and 3, respectively.  We then used Akaike’s (1973) information criterion 

(AIC) to determine which of the three shedding models provided the best fit to each 

tagger’s data. 

The results from the model that best fitted the data for each tagger are 

presented in Table 3 (standard deviations were estimated for the parameter estimates 

using the inverse Hessian matrix).  Shedding model 1 fitted best to data of one tagger, 

shedding model 2 fitted best to data of nine taggers and model 3 fitted best to data of 

seven taggers. We used the estimated shedding parameters for each tagger to estimate 

a weighting factor, W(τi),  for each recapture associated with that tagger, where τi is 

the time at liberty for the recapture.  We then calculated an average weighting factor, 

Wa, for each tagger as the average over all W(τi)’s for that tagger. The estimates of Wa 

ranged considerably between taggers from 1.011 to 1.156 (Table 3).  In other words, 

the fraction of tagged fish estimated to have lost both tags (calculated using the 

approximate formula 1 1 aW− ) ranged between taggers from 1.1% to 13.6%.  

We also fit the three shedding models to the data pooled over all taggers and 

the parameter estimates (referred to as the pooled parameter estimates) from the best 

fitting model are given in the last row of Table 3. The AIC for the pooled model fit is 

much larger than the sum of the AIC values from the individual tagger model fits 

(Table 3), rejecting the hypothesis that shedding rates are the same among all taggers.  

To evaluate the consequences of pooling data from all taggers, we calculated the 

number of recaptured fish estimated to have lost both tags for each tagger using the 

pooled parameter estimates and using the tagger’s individual parameter estimates, 

then took the difference, which we define as the bias.  These biases are presented in 

Table 3 as Bias 1, and we see that the bias can be substantial for some taggers.  

Although evidence suggests it is not reasonable to assume common shedding 

rates for all taggers, it may be possible to identify groups of taggers with similar 

shedding rates.  We fitted models to data pooled over groups of taggers and used AIC 

to determine groups with statistically similar shedding rates.  Details are given in 
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Annex A to this appendix.  We identified 6 groups as follows: Group A ≡ (5, 46), 

group B ≡ (7, 8, 53, 76), group C ≡ (3), group D ≡ (1, 2, 4), E (52, 77, 71) and group F 

≡ (47, 82, 99, Z).  For each group, the estimated shedding parameters and their 

variance-covariances are listed in Table 4.  The probability of a tagged fish losing 

both its tags as a function of its time at liberty is compared for the 6 tagger groups 

(Figure 1).  The biases in the number of recaptured fish estimated to have lost both 

tags for each tagger using the group-specific shedding parameter estimates versus 

using individual parameter estimates were calculated (Bias 2 in Table 3); the biases 

are greatly reduced compared to when common shedding parameters over all taggers 

were used.  In Appendix 15, we input the group-specific shedding parameter estimates 

and their estimated variances and covariances to a mortality model for SBT; i.e., the 

two-stage mortality and shedding model is applied. 

Finally, we analysed the taggers’ data to determine if estimates of the 

shedding differed between the two tags. For SBT we label the two tags on a fish as 

“primary” and “companion”, because the primary tag may not be associated with a 

particular side of a fish as some of the taggers are left-handed.  For each tag type the 

shedding function used was equation (7), where parameters ξ1 and Ω1 refer to the 

primary tags and ξ2 and Ω2 refer to the companion tags. The best fit model to each 

data set was determined by the least AIC.  We found differences in shedding rates 

between primary and companion tags for 10 taggers. In no case did the four parameter 

model give the best fit. In six cases it was found that ξ1 = ξ2 gave the least AIC, and in 

four cases Ω1 = Ω2 gave the least AIC. The resultant shedding parameter estimates, 

negative log-likelihood and AIC are given in Table 5. Also listed in Table 5 is the bias 

in the estimated number of recaptured tagged SBT that have lost both tags using the 

shedding parameters from Table 3 instead of Table 5; the largest absolute bias for any 

tagger is 2.   

 
Discussion 

 Taking account of shedding rate differences between primary and companion 

tags made little difference to the estimated numbers of SBT that lost both tags (Table 

5). This is in agreement with the finding of Seber and Felton (1981). As such, we 

conclude that it is sufficient when analysing the SBT tagging data to only consider tag 
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shedding models that assume shedding rates are the same for primary and companion 

tags. 

There are substantial and statistically significant differences in shedding rate 

estimates between SBT tagged by various taggers. This is not surprising given the 

range of values observed among taggers for the fractions of recaptured tunas with one 

tag – from 15.7% for tagger 46 to 51.1% for tagger 47 when all recaptures are 

considered, and similar when only recaptures with times at liberty more than 9 months 

are considered (Table 2). The average weighting factors ranged from 1.011 for tagger 

46 to 1.156 for tagger 47 (Table 3), which strongly suggests that shedding rates of 

individual taggers need to be taken into account when estimating mortality rates for 

SBT from the tag-return data.  Incorporating individual shedding parameters for the 

17 taggers into the mortality model would get very complicated since the data would 

need broken down into a large number of cells and the number of parameters to be 

estimated would be large.  To reduce this complexity, we pooled data from taggers 

with similar shedding rates into 6 groups using AIC (see Annex A). Any bias due to 

this pooling of data into groups is small (Bias 2, Table 3) compared with the numbers 

of fish involved.  

The probability of both tags being shed from a fish increases with time (see 

Figure 1), and therefore the number of recaptured tagged fish expected to have lost 

both tags will increase with time.  This means that potential biases from ignoring 

individual tagger differences in shedding rates will likely progressively increase as the 

times of liberty used in the analysis increase (e.g. parameter estimates that are based 

on only the first year of returns would be less affected since the actual number of fish 

that had shed both tags would be more similar among taggers than for long terms at 

liberty).  If shedding rates are high, it may be valid to truncate the data analysed on 

the basis of time at liberty and age, depending on the specifics of the analysis (e.g. 

“the chop option” of Latour et al. 2001, page 737). Such truncation is usually easily 

implemented and the results can be compared with analyses of the full data set.   

It should be emphasized that estimating shedding parameters is generally not 

an end in itself, but to facilitate the estimation of mortality rates. The ideal is to use 

the integrated mortality and shedding model, but this can be complex and impractical 

if there are many taggers with different shedding rates.  The two-stage weighting 

option is probably the simplest but has theoretical problems; e.g., the weighted data 

may not yield a maximum likelihood solution for the mortality estimates and the 
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variance-covariance matrix cannot be used to derive standard errors. The two-stage 

mortality and tagger-specific shedding model, for which a tagger dimension is added 

into the mortality model but the shedding parameters are estimated independently,  

seems like a more parsimonious approach and is theoretically and practically 

satisfactory, especially if the data are pooled into tagger groups of like data. 

Additionally, shedding information collected from sources other than the tagging 

experiment designed for mortality estimation can be readily incorporated into the 

independent shedding model; whereas it is more complex, and perhaps not even not 

possible, to incorporate this extra shedding information into the integrated model. 

Tag shedding can substantially increase the uncertainty associated with 

estimates of mortality and abundance derived from tagging programs, particularly if 

shedding is high and/or poorly estimated. As such, it is critical that tag shedding be 

taken into account in the design phase. This includes ensuring that appropriate tagging 

techniques are used which will minimize the level of tag shedding and that sufficient 

data are collected to allow for reasonable estimation of the shedding rate.  In most 

situations we would recommend that all fish be double tagged to allow for robust 

modelling of tag shedding (particularly when there are large numbers of taggers).  It is 

also important to account for tag shedding when considering the number of tags to be 

released and the trade-off between resources devoted to the number of releases and 

other components of the tagging experiment (e.g. recovery activity, observer effort, 

catch estimation, etc).  If this is not done, the expectation about the precision of 

parameter estimates that can be achieved will be over-optimistic.   
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Figure 1.  Comparison among the 6 tagger groups of the probability of a tagged fish 

having lost both its tags as a function of its time at liberty.   
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Table 1.  Recapture probabilities for a multi-year double-tagging experiment in which 

Ni double-tagged fish are released at the start of each year i (i = 1,2,3). Probabilities of 

recapture are given for fish with one tag or two tags for years j (j=1,2,3), and are 

expressed in terms of year-dependent fishing mortality rates (Fj), constant natural 

mortality rate (M), the proportion of tags initially retained (ξ ), and the continuous tag 

shedding rate (Ω).  
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Table 2.  Summary of recaptures by tagger for the 1990s southern bluefin tuna double-

tagging data.  For each tagger, the numbers of acceptable recaptured fish with primary tag 

only attached, companion tag only attached, and the total (i.e. with primary, companion or 

both tags attached) are given.  The fraction of fish with one tag only attached are also given 

for each tagger using: i) all recaptures, and ii) only recaptures after 9 months at liberty. Data 

are pooled for taggers with less than 30 acceptable returns (“tagger” Z). 

        

Tagger   Prim.  Comp.  Fraction with 1 tag 

Code      Only    Only  Total  All data   >9 mth  

  1             69         41   411       0.268      0.302 
  2             41         19   182       0.330      0.337 
  3           192       145 1368       0.246      0.257 
  4             55         78   479       0.278      0.309 
  5           208       210 2465       0.170      0.180 
  7             76         77 602       0.254      0.274 
  8             15         16     161       0.193      0.292 
46               6           2     51       0.157      0.190 
47           128         95   436       0.511      0.515 
52             29         30   167       0.353      0.362 
53             88         68   642       0.243      0.244 
71               6           6     39       0.308      0.333 
76             32         10   160       0.263      0.272 
77             26         19   112       0.402      0.405 
82             15           3     64       0.281      0.438 
99             18         14     64       0.500      0.500 
 Z              25         14 113       0.345      0.405 

Total     1029       847 7516       0.250      0.272 
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Table 3.  Results from the best fitting model to data from each tagger.  Shown are 

estimates of the tag shedding parameters (ξ  and Ω ), their estimated standard 

deviations (SD), negative log-likelihoods (-LL), AIC values, and average weighting 

factors (Wa). Also listed are the biases in the estimated number of fish that lost both 

tags from using shedding parameters estimated from (1) data pooled over all taggers 

and (2) data pooled into six tagger groups (see Table 4) instead of using tagger-

specific shedding parameters.  Data for all taggers with less than 30 acceptable returns 

have been pooled as tagger Z. 

 

 

       Bias Tagger 

Code 

Immediately 

retained

fraction ξ

 

SD(ξ ) 

Continuous 

shedding 

rate Ω SD( Ω ) -LL AIC
 

Wa 1 2

  1 0.9452 0.031 0.0589 0.019 308.1 620.3 1.033 -2 5 
  2 1.0000 - 0.0834 0.012 145.7 293.5 1.053 -2 2 
  3 1.0000 - 0.0672 0.004 951.3 1904.7 1.026 6 0 
  4 1.0000 - 0.0987 0.010 344.2 690.5 1.044 -9 -2 
  5 0.9727 0.007 0.0387 0.004 1364.7 2733.4 1.012 34 0 
  7 0.9760 0.019 0.0550 0.010 430.8 865.7 1.030 6 -1 
  8 0.9634 0.018 0.0512 0.016 94.4 192.8 1.021 1 0 
46 1.0000 - 0.0435 0.016 24.7 51.3 1.011 1 0 
47 0.9236 0.050 0.1436 0.026 447.1 898.2 1.156 -54 0 
52 0.9310 0.049 0.0911 0.032 144.1 292.1 1.066 -6 -1 
53 0.9532 0.025 0.0439 0.012 457.7 919.4 1.022 6 1 
71 1.0000 - 0.1293 0.042 30.3 62.6 1.052 -1 0 
76 0.8489 0.023 0.0000 - 121.2 244.4 1.023 0 -1 
77 1.0000 - 0.1111 0.019 106.6 215.2 1.081 -5 0 
82 1.0000 - 0.1876 0.050 44.4 90.8 1.061 -3 0 
99 1.0000 - 0.1892 0.039 65.9 133.8 1.132 -7 -1 
Z 1.0000 - 0.1654 0.030 92.7 187.3 1.096 -8 1 

Total  5173.9 10395.8  -43 3 

Pooled 0.9788 0.005 0.0657 0.003 5300.6 10605.2 1.029   
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Table 4. Estimates of the fraction of tags immediately retained (ξ ) and the continuous 

shedding rate ( Ω ), their variances and co-variances for data pooled into tagger 

groups. Group A ≡ (5, 46), group B ≡ (7, 8, 53, 76), group C ≡ (3), group D ≡ (1, 2, 

4), E ≡ (52, 77, 71) and group F ≡ (47, 82, 99, Z). 

 

Tagger 

group 

No. tags 

returned

Immediately 

retained 

fraction ξ

Var(ξ) 

(×10-4)

Continuous 

shedding 

rate Ω

Var(Ω) 

(×10-4)

Cov(ξ, Ω) 

(×10-4) 

A 2516 0.9737 0.442 0.0391 0.188 0.224 

B 1565 0.9608 1.403 0.0492 0.390 0.597 

C 1368 1.0000 - 0.0672 0.157 - 

D 1072 1.0000 - 0.0925 0.345 - 

E 318 0.9342 16.050 0.0885 5.330 7.750 

F 677 0.9666 4.950 0.1601 2.560 2.430 

Pooled 7516 0.9788 0.220 0.0657 0.088 0.106 
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Table 5.  Results when differences between primary and companion tags are 

accounted for; results only shown for taggers where the AIC is less than that in Table 

3. The estimates of the fraction of tags immediately retained (ξ ) and the continuous 

shedding rates ( ), negative log-likelihoods (-LL), and AIC are listed. Also listed is 

the bias in the estimates of the number of fish that lose both tags when differences 

between primary and companion tags are not accounted for (i.e., as in Table 3).  

Ω

 

Continuous 

shedding rates Tagger 

code 

Prim. 

tag 

only 

Comp. 

tag 

only 

Total 

tags 

Immediately 

retained 

fraction ξ        Ω1        Ω2 -LL AIC Bias

2 41 19 182 1.0000 0.0552 0.1095 141.49 286.99 1

3 192 145 1368 1.0000 0.0585 0.0757 947.97 1899.94 1

4 55 78 479 1.0000 0.1130 0.0837 342.32 688.65 1

46 6 2 51 1.0000 0.0222 0.0644 23.54 51.08 0

82 15 3 64 1.0000 0.0700 0.2865 40.00 83.99 2

xx 25 14 113 1.0000 0.1259 0.2010 91.12 186.23 0

 

Immediately 

retained fractions Tagger 

code 

Prim. 

tag 

only 

Comp. 

tag 

only 

Total 

tags ξ1 ξ2

Continuous 

shedding 

rate Ω -LL AIC Bias

1 69 41 411 0.9765 0.9051 0.0556 304.38 614.75 1

47 128 95 436 0.9577 0.8675 0.1374 444.51 895.02 2

53 88 68 642 1.0000 0.9604 0.0561 457.04 918.08 -1

76 32 10 160 0.9219 0.7867 0.0000 115.16 234.32 1
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Annex A 
To pool similar tagger data sets, we first ranked the tagger data sets 1 to 17 

according to increasing continuous shedding rate (Ω) estimates from the model where 

no immediate shedding was assumed (i.e. ξ = 1.0).  This ranking was used in 

preference to ranking according to immediate shedding (1−ξ ) because the immediate 

shedding rate did not differ greatly among taggers and was often estimated to be zero.  

When pooling data sets from taggers we assumed that taggers with data sets near each 

other in the ranking were more likely to be similar. This strategy was used to reduce 

the number of possible groupings, which is impractically large for 17 taggers.  We 

started by comparing the lowest two ranked taggers, 46 and 5.  The AIC of the model 

fitted to the pooled data from these two taggers was smaller than the sum of the AICs 

from the model fitted to the two individual tagger data sets, therefore pooling was 

accepted. The resultant pooled set was then compared with the next ranked set, 7, and 

pooling was rejected, as were the next four sets when we stopped the search. The 

pooled set of 46 and 5 is called group A. We then compared the next two ranked sets, 

7 and 53, which were accepted. The next ranked set, 3, was rejected. Then in order, 8 

was accepted, 2 was rejected, 76 was accepted, and four more were rejected. Thus the 

pooled set of 7, 8, 53 and 76 is called group B. We continued in this fashion to form 

four more groups C to F.  This procedure was used to form initial groups.  We then 

tried variations on these groups and found in a few cases that a tagger bettered 

belonged to a different group.   

We finally decided on the following six tagger groups: Group A ≡ (5, 46), 

group B ≡ (7, 8, 53, 76), group C ≡ (3), group D ≡ (1, 2, 4), E (52, 77, 71) and group F 

≡ (47, 82, 99, Z).  For each group the shedding parameters estimates and their 

estimated variances and covariance are listed in Table 4 of the main appendix.   

To establish that this grouping is adequate, we present four arguments. Firstly, 

for a generic tagger group G,  the corresponding negative log-likelihood (-LLG) and 

AIC (AICG) are listed in Table A1. Also listed for each group is the sum of the AICs 

from Table 3 for all individual taggers belonging to the group (i.e., AICi
i G∈
∑ ).  The 

pooled data is deemed to be a better fit if AICG  − AICi
i G∈
∑ ≤ 0.0; i.e., if the pooling 

leads to an overall AIC reduction. This condition is met for all groups (Table A1).  

Note that group C is not comprised of pooled data as it consists of data from only one 
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tagger.  

Secondly, using AIC we tested for significant differences in shedding rates 

between any two taggers within a group.  In only one case (for taggers 47 and 82 of 

group F) was the AIC from the pooled model greater than sum of the two AICs from 

the individual tagger models; the difference in the AIC was only 0.148, and the 

statistical significance from a likelihood ratio test was estimated as p = 0.143 (χ2 = 

2.148, df  = 1).  

Thirdly, we checked if AIC could identify any sub-groups within a group. In 

only one case was the AIC difference less than zero, (i.e. –0.228) for sub-groups (47, 

99) and (82, Z) of group F, which is weak evidence for breaking F into two groups. In 

this case the statistical significance using a likelihood ratio test was estimated as p = 

0.136 (χ2  = 2.228, df  = 1).  We decided to accept the grouping of sets in F, despite 

the slight infringement of the AIC.  We investigated possible biases due to its 

acceptance and found it to be negligible. 

Fourthly, we investigated all cases where AIC indicated that a tagger could 

possibly belong to another group.  For example, we might accept adding tagger 7 to 

group C since the AIC from pooling group C and tagger 7 is smaller than the AIC for 

group C plus the AIC from tagger 7.  However, in all such cases, the increase in AIC 

from removing the tagger from its current group was larger than the decrease in AIC 

from the new grouping.  For example, adding tagger 7 to group C means removing 

him from group B, which results in two new groups that have a larger total AIC than 

the original two groups.   
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Table A1.  Model fitting results from pooling data into six tagger groups.  Shown are 

the  negative log-likelihood (-LLG) and AICG  for the model fitted to the pooled data 

for each group, the sum of the AICs from the models fitted to data from individual 

taggers within a group ( from Table 3), and the change in AIC due to pooling 

a group’s data. Note that group C comprises data from only one tagger (3). 

AICi
i G∈
∑

 
Tagger 

group -LLG AICG

AICi
i G∈
∑ AICG − AICi

i G∈
∑

A 1390.050 2784.100 2784.728                  -0.628 

B 1105.180 2214.360 2222.244                  -7.884 

C 951.329 1904.658 1904.658                   0.000 

D 800.379 1602.758 1604.198                  -1.440 

E 280.894 565.788 569.962                  -4.174 

F 651.272 1306.544 1310.052                  -3.508 

Total 5179.104 10378.208 10395.842                -17.634 
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Introduction 

Data from conventional tagging experiments have become increasingly important in 

assessing the stock status of southern bluefin tuna (SBT) because they provide one of 

the few viable alternatives to catch-per-unit-effort data for estimating mortality rates 

and abundance.  Extensive tagging programs have been carried out on juvenile SBT 

during various periods from the 1960s to present.  Although some analyses of the tag-

return data from these experiments have been conducted, especially for the 1990s 

data, a comprehensive analysis of the data taking into account all of the major 

potential sources of heterogeneity has not been completed because of the lack of a 

comprehensive modelling framework.   

 

Polacheck et al. (1996, 1997, 1998) analysed the 1990s SBT tag-return data using 

Brownie models to provide estimates of fishing and natural mortality rates; however, 

in all of these analyses, tag shedding was assumed to be minimal enough that it could 

be ignored and reporting rates were assumed to be known without error.  Recent 

analyses of the double-tagging data for SBT suggest that tag shedding can be 

substantial for some taggers (Appendix 14), so estimates of mortality rates and 

abundance obtained ignoring shedding are likely to be biased.  Also, reporting rates 

are one of the more uncertain inputs in the tag-return models, so assuming they are 

known without error gives overly optimistic estimates of the variance of the parameter 

estimates.   

 

The 1990s tag-return data have also been included in many of the integrated stock 

assessments for SBT (e.g., Kolody and Polacheck 2001; Polacheck et al. 2001).  Like 

the analyses mentioned above, these stock assessments also assume that tag shedding 

is negligible and that reporting rates are known without error.  Furthermore, the multi-

year nature of the tagging data has not been fully exploited in the assessment models, 

as none of them incorporate a Brownie-type estimator for the tagging data.  Instead, 

they tend to use attrition models that only allow for total mortality to be estimated and 

not the breakdown into fishing and natural mortality. 

 

In the current appendix, we draw upon the non-spatial methods developed and 

presented throughout this report to construct a rigorous model for analysing the 1990s 
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SBT tag-return data.  We use as a base model the combined Brownie and Petersen 

model described in Appendix 5, which integrates catch at age data with tag-return 

data in order to provide joint estimates of mortality rates (both fishing and natural) 

and abundance.  More specifically, we use the modified version of the model 

described in the ‘Application to southern bluefin tuna’ section of Appendix 5 that 

allows for an initial period of non-mixing in the tag-return probabilities.  This model 

assumes reporting rates are known without error, so we add an additional component 

to the model to take into account uncertainty in the reporting rate estimates.  We also 

modify the tag-return probabilities as outlined in Appendix 14 to allow for 

instantaneous and continuous tag shedding.  In a similar manner to the reporting rate 

estimates, we add an additional component to the model to take into account 

uncertainty in the estimates of the tag shedding parameters.   The model is applied to 

SBT data collected from 1991 to 1997 to provide estimates of fishing mortality rates, 

natural mortality rates, and initial abundance for a number of cohorts.     

 

Materials and Methods 

 Southern bluefin tuna data 

Four sets of data on southern bluefin tuna are used as input to the model: tag-return 

data from tagging experiments conducted from 1991 to 1997; estimates of tag 

reporting rates for years 1991 to 1997; estimates of tag shedding rates for six groups 

of taggers; and catch at age data from the commercial fisheries from 1991 to 1997.  

Further details about each data set are given below. 

 

Tagging operations were carried out by CSIRO Marine Research from 1991 to 1997 

in which juvenile SBT were caught, tagged, and released primarily in the coastal 

waters south of Western Australia and South Australia.  Tagged fish were 

subsequently recaptured in the commercial fisheries and tags returned to CSIRO along 

with the date and location of recapture.  A complete description of the tag-return data, 

including the tagging protocol, sampling procedures, method of age determination, 

and data screening processes, can be found in Appendix 4.  Table 1a provides a 

summary of the 1990s tag-return data by cohort, age of release and year of recapture.  

Note that we have constrained our analysis to releases for ages 1 through 3. While 
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there were a small number of age 4 and 5 releases (<300 in total), these were not 

included in our analyses (and are not included in Table 1) because the number for any 

cohort was too small to provide meaningful estimates.  The data are presented in 

terms of cohorts of fish to be consistent with the way that the model is developed and 

presented.     

 

Estimating reporting rates for SBT is complicated because of limited data and because 

the complex nature of the SBT fishery, which comprises multiple components with 

varying reporting rates.  Some limited observer data and tag seeding data exist, and 

these data have been used along with a number of alternative assumptions to provide 

year- and age-specific estimates of reporting rates for SBT from 1991 to 1997 (see 

Appendix 19 for details).  A large number of alternatives have been provided but the 

reporting rate estimates used in our primary analysis (given in Table 1b) correspond to 

the reporting rates presented in Table 5a, option 8, of Appendix 191.  This is 

considered the ‘most plausible’ option because it is the most highly information-based 

(Anon. 2005).  These reporting rate values differ from those presented in Appendix 5 

because they correspond to a different option and because the reporting rate estimates 

were updated in 2005 after the analysis in Appendix 5 had been completed.    

 

Essentially all SBT tagged in the 1990s were double-tagged. Data on the number of 

tagged fish that were recaptured with only one tag still attached versus both tags still 

attached were used to estimate shedding rates for SBT (Appendix 14).  Tags were 

assumed to have an immediate component of shedding and a long-term constant 

proportional rate of shedding.  Specifically, the proportion of tags retained as a 

function of time since release, τ, was assumed to be ( )Q e ττ ξ −Ω= , where ξ is the 

fraction of tags immediately retained (i.e. proportion 1 - ξ are immediately shed) and 

 is the continuous shedding rate.  The shedding parameters were assumed to be Ω

                                                 
1 The reporting rate estimates in Appendix 19 were prepared in 2005 for the CCSBT, for which it was 

decided that the discarded catch of small SBT recorded by the Japanese longline fishery in 1995 and 

1996 should not be included in the catch at age data.  For our current analysis, we prefer to include the 

estimated non-surviving portion of the discarded catches (Preece et al. 2001) in the catch data.  As 

such, the reporting rate estimates presented in Table 1b of the current appendix differ very slightly in 

these two years from those presented in Table 5a of Appendix 19.   
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independent of age or year; however, they were found to differ significantly between 

taggers.  Six groups of taggers with similar shedding rates were identified.  Estimates 

of the instantaneous and continuous shedding parameters for the six tagger groups are 

given in Table 1c, along with standard errors and correlations for the estimates (these 

are all taken from Table 7a of Appendix 14).  Note that because shedding rates were 

found to differ between groups of taggers, the probability of a tag being returned 

depends in part on the tagger group.  As such, the model requires the release and 

recapture data in Table 1a to be broken down by tagger group as well as by cohort and 

release age; for brevity, we have not presented the data at this level of detail. 

 

SBT are caught by a number of different fishing fleets and countries and the catch 

information available for each component differs considerably; thus, compiling total 

catch numbers by age is a complicated process.  The catch at age data used in our 

analysis are taken from the catch at age data used in the 2004 stock assessments for 

SBT conducted by CSIRO.  The only differences are:  

1) Significant numbers of small SBT were caught and released by Japanese longline 

vessels in 1995 and 1996, and we have chosen to include the estimated non-

surviving portion of the discarded catches in our catch data, whereas the data used 

in the assessments did not (Preece et al. 2001; Preece et al. 2004).  

2) The catch at age data for the assessments were compiled by calendar year (starting 

January 1) whereas for our analysis we compiled the data by ‘fishing’ year, 

defined as starting November 1, to be more consistent with the major fishing 

seasons for SBT.   

More information about the fishery components and the processing and compiling of 

the catch data can be found in Appendix 4.  Table 1d summarizes the total SBT catch 

data by cohort and year for 1991 to 1997.  These numbers differ slightly from those 

presented in Appendix 5 because the catch data were updated for the 2004 stock 

assessment, after the analysis in Appendix 5 had been completed.  

The model 

The model consists of four independent likelihood components, one for each of the 

tag-return data, the reporting rate estimates, the tag shedding estimates, and the catch 

data.    Each of these likelihood components is described in detail below; however, 

before proceeding we introduce the notation that is used throughout the components. 

 A15-5



Appendix 15:  Estimation of mortality rates and abundance for SBT using data from 1991 to 1997 

 

Data to be inputted into the model: 

K = number of tagged cohorts 

kA = minimum age of tagging (and also minimum age of returns) for cohort k  

kB = maximum age of tagging for cohort k 

kI = maximum age of returns for cohort k 

T = number of tagger groups 

, ,k t aN = number of age a fish from cohort k tagged and released by tagger group t 

, , ,k t a iR = number of tags returned from age i fish from cohort k that were tagged at age 

a by tagger group t 

,k iC = number of age i fish caught from cohort k 

Cυ = coefficient of variation of the catch data (common across ages and cohorts) 

,k̂ iλ = estimated reporting rate for tagged fish caught at age i from cohort k 

λσ = standard error of the estimated reporting rates (common across ages and cohorts) 

ˆ
tξ = estimated immediate tag shedding rate for tagger group t 

tξσ = standard error of ˆ
tξ  

ˆ
tΩ = estimated continuous tag shedding rate for tagger group t 

tσΩ = standard error of  ˆ
tΩ

tρ = correlation between ˆ
tξ  and ˆ

tΩ  

 

Parameters to be estimated in the model: 

iM = instantaneous natural mortality rate for age i fish  

,k iF = instantaneous fishing mortality rate for age i fish from cohort k (excluding fish 

tagged at age i) 
*
, ,k t iF = instantaneous fishing mortality rate for age i fish from cohort k tagged by 

tagger group t at age i  (i.e. for newly tagged fish in their first year of tagging) 

, kk AP = population size of cohort k at age  (the minimum age of tagging for cohort k) kA

,k iλ = reporting rate for tagged fish captured at age i from cohort k 
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tξ = immediate tag shedding rate for tagger group t 

tΩ = continuous tag shedding rate for tagger group t 

 

Note that we allow fishing mortality (F) to differ between both ages and cohorts, 

whereas we only allow natural mortality (M) to differ between ages.   

 

Underlying the tag-return and catch likelihoods are the general population dynamics 

equations commonly used in fisheries, expressed in terms of exponential and 

competing natural and fishing mortality rates.  In particular, for a cohort of animals of 

a given age, the expected number of animals that survive to the next age and the 

expected number caught are expressed by 

 

 ( ), 1 , ,expk i k i k i iP P F M+ = − −  (1) 

and 

 ((,
, , ,

,

1 expk i
k i k i k i i

k i i

F
C P F

F M
= − −

+
))M−  (2) 

 

,k iP  is the population size of cohort k at age i, and all other notation is as defined 

above. 

 

First consider the tag-return component of the model.  Analogous to the application to 

SBT in Appendix 5, we modify the likelihood for a standard Brownie model to allow 

for fishing mortality to differ between tagged fish in the year of tagging and untagged 

fish in that same year (following the model presented in Hoenig et al. 1998).  This is 

to allow for the fact that newly tagged fish will not be fully mixed with the untagged 

population immediately after tagging, and for the fact that tagging generally occurs 

during the fishing season so tagged fish are only vulnerable for part of the season.  We 

assume that tagged and untagged fish are fully mixed by the year following release 

(all tagging of SBT occurred between November and April so this allows several 

months for mixing to occur).  In addition, we modify the tag-return likelihood to 

allow for group-specific estimates of tag shedding parameters.  In particular, we 
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revise the return probabilities in the same manner as outlined in Appendix 14 

(equation 9).   

 

Taking into consideration tag shedding, tag reporting rates, and different return rates 

for newly tagged fish, the probability of a tag being returned from an age i fish from 

cohort k that was tagged at age a by tagger group t and has retained at least one tag is 

  

   

( )
( )

2
, , , , ,

2
, , , , , , , , , , , ,

1 1
2

, , , , , , , , , , , , ,
1 1

2

2 1

2 1

t k t i t k t i k i

k t a i t k t i k t a t k t i k t a k i

i i

t k t i k t a k t m t k i k t a k t m k i
m a m a

u u i a

p u S u S i a

u S S u S S i aτ

ξ ξ λ

ξ ξ λ

ξ ξ λ

∗ ∗

∗ ∗

− −
∗ ∗

= + = +

⎧
⎪ ′ ′′− =
⎪
⎪ ′ ′ ′′ ′= −⎨
⎪
⎛ ⎞⎪ ′ ′ ′ ′′ ′′ ′′

= +

− > +⎜ ⎟⎪⎝ ⎠⎩
∏ ∏

  

where  

( ), , ,expk t i k i i tS F M′ = − − −Ω  

( ), , ,exp 2k t i k i i tS F M′′ = − − − Ω  

( ),
, , , ,

,

1k i
k t i k t i

k i i t

F
u S

F M
′ ′= −

+ + Ω
 

( ),
, , , ,

,

1
2

k i
k t i k t i

k i i t

F
u S

F M
′′ ′′= −

+ + Ω
 

( ), , , ,expk t i k t i i tS F M∗ ∗′ = − − −Ω  

( ), , , ,exp 2k t i k t i i tS F M∗ ∗′′ = − − − Ω  

( ), ,
, , , ,

, ,

1k t i
k t i k t i

k t i i t

F
u S

F M

∗
∗ ∗

∗
′ ′= −

+ + Ω
 

( ), ,
, , , ,

, ,

1
2

k t i
k t i k t i

k t i i t

F
u S

F M

∗
∗ ∗

∗
′′ ′′= −

+ + Ω
. 

 

Note that we allow fishing mortality for newly tagged fish ( ) to differ not only 

between ages and cohorts, but also between tagging groups.  This is necessary 

because different tagging groups will tag fish at different locations and different times 

during the season (and some tagging groups may not tag any fish in a particular year); 

thus, the probability of fish tagged by a particular tagging group being caught in the 

*F
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same year it was tagged will depend in part on the tagging group.  Note that these  

parameters are nuisance parameters and are of little interest relative to the overall 

dynamics of the stock. 

*F

 

If tag returns are assumed to be independent, then the number of returns at age 

(including those not returned) corresponding to releases from a particular cohort at a 

particular age by a particular tagger group will be multinomial with probabilities as 

given above.  Thus, the likelihood for all the returns at age data, over all cohorts, 

tagger groups and ages of release, is  

  (3) ( )
, , , , ,

, , ,
, , , , , , , ,

1 1

1
k k k

k

kI

k t a k t a iB I IK T
i ak t a i

R k t a k t a i k t a i
i ak t a A i a

N R
R

L p p =

== = = =

−⎧ ⎫
⎪ ⎪⎛ ⎞⎛ ⎞⎪ ⎪= Κ −⎨ ⎬⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎪ ⎪
⎪ ⎪⎩ ⎭

∑
∑∏∏∏ ∏

where 

 , ,
, ,

, , , , , , , ,
1

!

! !
k k

k t a
k t a I I

k t a i k t a k t a i
ii a

N

R N R
==

Κ =
⎛ ⎞

−⎜ ⎟
⎝ ⎠

∑∏
. 

 

Note that  is a constant that can be left out when maximizing the likelihood.  , ,k t aΚ

 

Next consider the reporting rate estimates.  The procedure used to produce these 

estimates did not provide associated standard error estimates, so we assume that the 

reporting rate estimates have a common and known standard error and explore the 

effect of varying this value.  The reporting rate estimates ( ,k̂ iλ ’s) and their assumed 

standard error ( λσ ) are brought into the model as data through an independent 

likelihood term.  We assume that , ,
ˆ

k i k i k ix n ,λ=  is the number of tags reported at age i 

from cohort k,  and that ,k ix  is binomial with probability ,k iλ  and sample size .  

Note  can be thought of as the sample size required to achieve the level of 

precision in the reporting rate estimate 

,k in

,k in

,k̂ iλ  specified by λσ .  Using the variance 

formula for a binomial distribution, we know that 

 ( ) ( ), ,
,

,

1ˆ k i k i
k i

k i

Var
n

λ λ
λ

−
= . 
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We also know that  

 

( ) 2
,k̂ iVar λλ σ= , 

 

so setting these equal we can solve for the sample size as 

( ) ( ), ,, ,
, 2 2

ˆ ˆ11 k i k ik i k i
k in

λ λ

λ λλ λ

σ σ

−−
= ≈ . 

 

Thus, the likelihood for the reporting rates can be specified as 

 

 
( ) ( ), , ,,

, ,
1 , , ,

!
1

! !

k

k

IK
k i k i k ik i

k i k i
k i A k i k i k i

n xxn
L

x n xλ λ λ
= =

−
=

−∏∏ −  (4) 

 

where 
( ),

, 2

ˆ ˆ1k i k i

k in
λ

λ λ

σ

−
=

,

, and , ,
ˆ

k i k i k ix n λ= . 

 

 

For the tag shedding data, we take a similar approach as for the reporting rates and 

bring the group-specific tag shedding parameter estimates and their estimated 

standard errors and correlations into the model as data through an independent 

likelihood term.  We assume that the two estimates for a given tagger group, t̂ξ  and 

, have a bivariate normal distribution.  Thus, the likelihood for the tag shedding 

data over all tagger groups is  

ˆ
tΩ

 

 
( ) ( ) ( ){ }2 2

, 22
1

1 1exp 2
2 12 1

T

t t t t t
t tttt

Lξ
ξ

ξ ρ ξ
ρπσ σ ρ

Ω
= Ω

⎛ ⎞
⎜ ⎟′ ′ ′ ′= − −
⎜ ⎟−− ⎝ ⎠

∏ Ω + Ω  (5) 

 

where t̂
t

tξ

tξ ξ
ξ

σ
−

′ =  and 
ˆ

t t
t

tσΩ

Ω −Ω
′Ω = . 
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Following the arguments presented in Appendix 5, we have chosen to model the error 

in the catch data as Gaussian with a constant coefficient of variation across ages and 

years/cohort.  The coefficient of variation, denoted by Cυ , is intended to encompass 

both process error, which results from fishing being a random process, and sampling 

error, which results from the age distribution of the catch being determined by taking 

a sample, estimating the ages of fish in the sample (either from lengths or from direct 

aging of hard parts), and using the estimated age frequencies of the sample to 

represent the total catch. We assume that Cυ  is known because, as discussed in 

Appendix 5, it cannot be estimated reliably.  Assuming the catch data are independent 

between cohorts and ages, the likelihood for the catch data is 

 

 
( )

( )
( )

2

, ,

1 ,,

1 1exp
22

k

k

IK
k i k i

C
k i A C k iC k i

C E C
L

E CE C υπ υ= =

⎛ ⎞⎛ ⎞−⎜ ⎜= −
⎜⎜ ⎝ ⎠⎝ ⎠

∏∏ ⎟⎟
⎟ ⎟

 (6) 
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( ), ,expk i k i iS F= − − M  

( ),
, ,

,

1k i
k i k i

k i i
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u S

F M
= −

+
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The overall likelihood is given by the product of the four likelihood terms, namely 

 

 ,Total R CL L L L Lλ ξ Ω= × × ×  (7) 

 

Multiplying the likelihood terms together is only a valid procedure if the likelihoods 

are independent of each other.  The assumption of independence between the tag-

return and the catch likelihoods may not be met if during the process of sampling the 

catch data, tags are found and returned; however, we assume that tags are removed at 

the time of catch, prior to catch sampling.  Moreover, if the catch sample is relatively 
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small, then the expected number of tags in the sample will be so small that the 

independence assumption will not be seriously violated.  Independence between the 

tag shedding and tag-return likelihoods should be a valid assumption – even though 

the tag shedding estimates were obtained using the tagging data, the shedding 

estimates only use information on the number of recaptures with one tag versus two, 

and this information should have no bearing on the mortality rate estimates obtained 

from the tag-return likelihood.  Independence between the reporting rate likelihood 

and the tag-return likelihood would be true if the reporting rate estimates were based 

on independent tag seeding data.  Alternatively, if reporting rates were estimated 

using observer data, then their estimation would be incorporated directly into the tag-

return and catch likelihoods (see Appendix 7).  Unfortunately insufficient data from 

any one source meant that we had to use a complex method for constructing reporting 

rate estimates for SBT, combining estimates from tag seeding data and from observer 

data and using some rather ad hoc assumptions.  As such, it is unlikely that the 

reporting rate likelihood is independent of the other likelihoods (since dependence 

between the observer data and other data sets has not been accounted for).  

Nevertheless, we do not expect the violation to be serious, nor do we expect the 

results, namely the mortality rate and abundance estimates, to be appreciably affected.  

 

The overall likelihood  can be maximized (or, more commonly done in practice, 

the negative log of the likelihood can be minimized) to give estimates of the unknown 

model parameters (listed at the start of the section).  However, it must be noted that 

not all of the natural mortality parameters can be estimated.  Information for 

estimating M

TotalL

i comes from tagging a single cohort at consecutive ages; in particular, 

from the differential between the expected returns at age 1i +  of fish from the cohort 

released at age i and those released the next year at age 1i + .  Thus, in an experiment 

in which n consecutive ages of fish from a particular cohort are tagged, estimates can 

only be obtained for  natural mortality rate parameters (regardless of the number 

of recapture years).  For the SBT data being considered, we have a maximum of three 

consecutive release ages, so we can only estimate two age-specific natural morality 

rates.  In the application to SBT presented in Appendix 5, we addressed this issue by 

assuming that 

1n −

2iM M=  for , but this is probably not the most realistic 

assumption for SBT.  Natural mortality is generally assumed to decrease with age for 

2i ≥
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SBT, at least over the young ages we are considering, so in the current analysis we 

chose to model natural mortality as a linear function of age, and we parameterized the 

function in terms of natural mortality at the youngest age and the oldest age of returns.  

For example, if the youngest and oldest returns being included in the model are ages 1 

and 5 respectively, then we let  

( )5 1
1 1

5 1i
M M

M M i
−

= + −
−

 

where 1M  and 5M  are the two parameters to be estimated. 

 

The model fitting was performed using the commercially available software AD 

Model Builder (Otter Research Ltd., P.O. Box 2040, Sidney BC, V8L 3S3, Canada).  

The software provides point estimates of the parameters as well as variance estimates 

calculated using the inverse negative Hessian matrix.   

 

To evaluate model fits, we computed ‘standardized’ residuals for the return data and 

catch data.  Ordinary residuals are difficult to interpret because the variance differs so 

much between observations within each data set.  For the Gaussian catch data, we 

defined a standardized residual as 

 , ,

,

ˆ

ˆ
k i k i

C k i

C C

Cυ

−
 

where  is the fitted catch value.  If the assumption that the catch data are 

independent Gaussian with coefficient of variation as specified is reasonable, then we 

expect the standardized residuals have a standard normal distribution (so 

approximately 95% should fall within the range -2 to 2).  With regard to the tag return 

data, there does not appear to be a conventional way to compute standardized 

residuals for multinomial data; therefore, we defined a standardized residual as  

,
ˆ

k iC

 
( )

, , , , , , , ,

, , , , , , , ,

ˆ

ˆ ˆ1
k t a i k t a k t a i

k t a k t a i k t a i

R N p

N p p

−

−
 

where  is the fitted tag return probability.  Interpretation of these residuals is not 

straightforward because they are not independent and their distribution is not evident. 

If the expected return counts were adequately large, then it would seem reasonable to 

assume the standardized residuals should follow a standard normal distribution; 

, , ,ˆ k t a ip
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however, for the SBT data, many of the expected return counts are close to zero so 

this is not likely a good approximation.  Nevertheless, the standardized residuals 

provide a rough diagnostic to check for extreme outliers and patterns that indicate a 

violation of the model.  Also, the sign of the standardized residuals is the same as that 

of the ordinary residuals, so they can be used without reservation in identifying 

tendencies for under- or over-estimation.  

 

Results 

We present results from analyses that included data from cohorts 1989 through 1994.  

These are the only cohorts with sufficient release and recapture data to warrant 

inclusion.  Additionally, we only included recaptures up to a maximum of age 5 

because the numbers of recaptures beyond age 5 are relatively small and because the 

assumption that natural mortality is a linear function of age is less likely to hold true 

at older ages.  Thus, in the notation presented in the model section, the number of 

cohorts being modelled is , which we will index by 6K = k = 1989, 1990, …, 1994 

for ease of reference;  the minimum age of release/return is 1989 2A =  and  for 

all other k; the maximum age of release is 

1kA =

3kB =  for all k; and the maximum age of 

return is  for ,  5kI = 1989, ,1992k = K 1993 4I =  and 1994 3I =  (because fish from 

cohorts 1993 and 1994 are ages 4 and 3 respectively in 1997, which is the last year 

being considered).   

 

Before applying the model, we needed to specify a coefficient of variation for the 

catch at age data ( Cυ ) and a standard error for the reporting rate estimates ( λσ ).  In 

our initial analyses, we set Cυ  to be 0.3 based on results from the SBT analysis 

presented in Appendix 5, and we set λσ  to be 0.1 since the uncertainty in the 

reporting rate estimates is expected to be quite high; however, later we will look at the 

effect of varying these values.   

 

First, we fit the model with all parameters free except for the constraints already 

discussed (i.e., natural mortality linear with age). We will refer to this as model 1.   

Second, we fit the model with the constraint that fishing mortality can be separated 
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into a multiplicative age and year effect2; i.e., we assumed that , 

where  is the year-specific component of fishing mortality in year  and 

 is the age-specific component of fishing mortality at age j (commonly referred 

to as selectivity).  We refer to this as model 2.  Note that  and 

( ) (,k j Y AF F k j F j= + )

)(YF k j+ k j+

( )AF j

YF AF  are only unique 

up to a multiplicative constant because ( )( )Y A Y AF F gF F g=  for any constant g.  

Therefore, to get a unique solution, we fixed AF  at age 5 to be 1.0.   

 

The parameter estimates from the two models are compared in Figures 1 to 3 (for 

completeness, the estimates and their standard deviations for the two models are also 

tabulated in Annex A).  The fishing mortality rate estimates by age and cohort shown 

in Figure 2 for model 2 can be calculated by multiplying the estimated age effects and 

year effects obtained from the model together; the standard deviations were outputted 

from the estimation software (but in theory could be calculated explicitly using 

statistical methods for calculating the variance of the product of two random 

variables). Both models provide an estimate of the population size at the minimum 

age of tagging for each cohort.  For the 1989 cohort the minimum age of tagging was 

age 2, whereas for all other cohorts in the model it was age 1. In order to make the 

abundance estimates comparable between cohorts, we back-calculated an estimate of 

age 1 abundance for the 1989 cohort.  To do so, we used the estimates of age 2 

abundance for the 1989 cohort and age 1 natural mortality obtained from the model 

(which we will denote by  and 1989,1P̂ 1M̂  respectively), and brought in external 

information on the catch of age 1 fish for the 1989 cohort, then solved equations (1) 

and (2) for both the fishing mortality rate and the population size at age 1 (we denote 

these by  and  to indicate that they are estimates, but not maximum 

likelihood estimates from the model).  We calculated an approximate variance for 

 using the formula  

1989,1F% 1989,1P%

1989,1P%

 

                                                 
2 This constraint was only applied to the general fishing mortality parameters, not to the fishing 

mortality parameters for newly tagged fish in their first year of tagging (i.e. the *F  parameters).   
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 ( ) ( )( ) ( )2

1989,1 1989,1 1 1989,2
ˆ ˆexpVar P F M Var P≈ +% % , 

 

where the variance of  is obtained from the model output. This formula assumes 

that  and 

1989,2P̂

1989,1F% 1M̂  are known without error; although this is not true, it provides a 

reasonable approximation for our purposes.   

 

The parameter estimates obtained from the two models are very similar; the only 

parameters for which the error bars on the estimates (defined as plus or minus one 

standard deviation) do not overlap are  and .  Natural mortality at age 1 is 

quite high (~0.4) and decreases to about 0.2 by age 5, but the uncertainty in the age 5 

estimate is very high (Figure 1).  Fishing mortality is generally close to zero for ages 1 

and 2, and for ages 3 to 5 it appears to have increased with cohorts (or years) (Figure 

2).  These patterns are more apparent if we look at the separate age- and year-effect 

estimates from model 2; the results from model 2 suggest that selectivity at young 

ages is dome-shaped with the peak at age 3 (Figure 4, top), and that fishing mortality 

was a fairly smooth U-shaped function of time over the years of the analysis (Figure 

4, bottom).  Note that the estimate for 1991 is very high and uncertain (0.54±0.38), 

the reasons for which are discussed below when we examine the residuals, so it has 

been omitted from the graph.  Cohort abundance appears to have decreased over time, 

from about 2.5-3 million age 1 fish for the 1989 cohort  to just over 1 million age 1 

fish for cohorts 1993 and 1994 (Figure 3). 

1989,2F 1993,3F

 

The negative log-likelihood value for model 1 is 25295.0, and for model 2, which has 

15 fewer fishing mortality parameters to be estimated than model 1, it is 25326.7 

(Table 2).  According to Akaike’s information criterion (Akaike 1974), which takes 

the extra number of parameters in model 1 into account, model 1 provides a 

statistically better fit to the data than model 2.  However, the breakdown of the 

likelihood into its components shows that the difference in the likelihoods is mainly 

due to model 1 fitting the catch at age data better; the other data sets, in particular the 

tag-return data, are fitted almost equally well by model 2 (Table 2).   
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Standardized residuals, as defined in the model section, were computed for the tag-

return and catch data for both models.  Not surprisingly given the comparison of the 

likelihood components between the two models, the residuals are very similar 

between the models for the tag-return data, but are worse for model 2 for the catch 

data (compare Tables 3 and 4).  With regard to the tag-return residuals, an obvious 

feature is that the residuals for the returns at the same age as release are always very 

close to zero.  This is due to having a unique  parameter for every observation 

corresponding to these residuals.  While this is clearly a case of over-fitting, we 

showed in Appendix 5 and confirmed in our current analysis that the inclusion of 

’s is necessary to get a good fit. More importantly, because tags tended to be 

released in the area of the surface fishery either near the beginning or end of the 

fishing season, the fishing mortality for fish tagged in the year of release would be 

expected to differ from that for the population as a whole and would also be expected 

to vary greatly for different releases depending upon the exact release time and 

location.   

*F

*F

 

The standardized residuals pooled over tagging groups (Tables 3a and 4a) show no 

obvious outliers or patterns, except perhaps for a tendency for returns at age from the 

same cohort and release age to all be overestimated or underestimated (indicated by 

rows of mostly negative values or mostly positive values).  Boxplots of the (unpooled) 

standardized return residuals broken down by a number of factors suggest that the 

returns for tagger groups 5 and, especially, 6 may be overestimated (Figure 5); 

otherwise, there is nothing to cause alarm (note that only model 1 results have been 

plotted because the model 2 results are so similar).  The standardized catch residuals 

for model 1 suggest a very good fit (Table 3b); model 2 does not fit the catch data as 

well, with age 1 catches for cohorts 1992 to 1994 and age 2 catch for cohort 1989 

being notably overestimated.   Looking at the catch data (Table 1d), the age 1 catch 

was much higher in 1991 than in subsequent years of the analysis (almost 50 000 fish 

in 1991 versus <8000 fish in all other years and <500 in 1992 to 1996).3  In order for 

model 2 to estimate an age 1 fishing mortality effect that fits both the large 1991 value 

and the small values in later years, it must reach a compromise and, thus, ends up 
                                                 
3 Historically, large numbers of age 1 SBT were caught off of Western Australia, but changes in the 

fishery resulted in 1991 being the last year of any substantive catches in this area (see Discussion). 
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underestimating the 1991 value and overestimating the others.  However, having said 

this, the age 1 catch in 1991 is not underestimated to the degree we might expect; this 

is because, in response to the age 1 effect being estimated so low, the year effect for 

1991 is estimated very high.  There are only two catch observations contributing to 

the 1991 year effect – age 1 catch from the 1990 cohort and age 2 catch from the 1989 

cohort – so the best model fit is achieved with a very high year effect for 1991, which 

gives a reasonable (although still somewhat underestimated) fit to the large age 1 

catch value, but decidedly overestimates the age 2 value.  Keep in mind that the model 

uses not only the catch data but also the tag-return data in estimating age- and year-

specific fishing mortality effects; however, for 1991, only the catch data influence the 

fishing mortality estimates because the two tag-return observations for 1991 are from 

fish tagged in that same year so the  parameters for newly tagged fish apply instead 

of the fishing mortality parameters for the general population.   

*F

 

We re-fit both models only including data from cohorts 1991 to 1994 (which excludes 

any data from 1991 or prior).  In this case, model 2 provides a significantly better fit 

than model 1 according to AIC.   

 

To test the sensitivity of the results to the coefficient of variation assumed for the 

catch data and the standard error assumed for the reporting rate estimates we re-fit 

model 1, first, keeping λσ  at 0.1 and varying Cυ  and, second, keeping Cυ  at 0.3 and 

varying λσ .  In both situations, the point estimates of the parameters did not change 

significantly (all were within one standard deviation of each other), and the 

uncertainty in the estimates tended to increase as the variability in the data increased.  

For illustrative purposes, we have shown the results of varying Cυ  (Figure 6) and 

varying λσ  (Figure 7) on the fishing mortality rate estimates for the 1990 cohort and 

the age 1 population size estimates.  We may have expected the increase in the 

standard deviation of the parameter estimates to be greater in response to increased 

uncertainty in the catch data or reporting rate estimates; however, the variance of the 

parameter estimates is determined by the variability of all data inputs and will tend to 

be dominated by the data set that is most variable, so changing one component may 

not necessarily have a large effect.     
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We also wanted to test the sensitivity of the results to the reporting rate estimates 

chosen as input to the model.  As discussed in the data section, a number of reporting 

rate options are proposed in Appendix 19 based on a range of assumptions.  Although 

we chose to use the option that is most highly information based, it is also yields the 

lowest reporting rates; thus, we re-fit model 1 using the option with the highest 

reporting rates (option 1 of Table 5a, Appendix 19) to evaluate the effect.  Not 

surprisingly, the fishing mortality rates decreased and the population size estimates 

increased; however, the effect was greatest for the population size estimates (Figure 

8).  The changes were fairly uniform in that all fishing mortality estimates shifted 

down by relatively equal amounts, and all population size parameters shifted up by 

relatively equal amounts.  Thus, if relative indices and trends in fishing mortality and 

abundance are of greater interest than actual magnitude, then the reporting rate option 

chosen does not matter as much. Note that the natural mortality rate estimates were 

largely unaffected by the reporting rate option used.   

 

The model estimates of the reporting rates and the tag shedding parameters (see 

Annex A) have not been discussed. There is little information in the tag-return or 

catch data to draw these estimates away from their previously estimated values.  As 

such, the model estimates of these parameters are quite similar to the estimates that 

are inputted.  In fact, for the tag shedding parameters they are virtually identical 

because the standard errors being used for the shedding estimates ( ξσ  and σΩ ) are so 

small that there is almost no flexibility in their estimation.  The primary reason for 

including likelihoods for the reporting rate and shedding parameters is to 

acknowledge their uncertainty and thereby get more realistic variance estimates on the 

mortality rate and abundance estimates, not to improve the estimates of the reporting 

rate and shedding parameters themselves.    

 

Estimates of the fishing mortality rate parameters for newly tagged fish ( ’s) have 

not been presented.  These parameters are not of general interest because they do not 

represent fishing mortality on the population as a whole.  They are simply necessary 

in order to get realistic estimates of the parameters that are of interest.   

*F
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Conclusions and Discussion 

A comprehensive model for estimating mortality rates and abundance for southern 

bluefin tuna using tag-return data and catch data has been presented.  Two versions of 

the model were fitted – one in which the age- and year- specific fishing mortality rates 

were unconstrained (model 1) and one in which they were constrained to have 

separable, multiplicative age and year effects (model 2).  Both models led to similar 

parameter estimates and the same general conclusions. The results suggest that natural 

mortality at age 1 is quite high (~0.4) and decreases to about 0.2 by age 5; however, 

the uncertainty in the age 5 estimate is very high and we found that the estimate is 

sensitive to changes in either the model or the data inputs. Tagging cohorts at age 4 

(in sufficient numbers) in addition to ages 1 to 3 could provide valuable information 

for better estimating natural mortality at older ages.  Fishing mortality is generally 

close to zero for ages 1 and 2, is greatest at ages 3 and 4, and declines at age 5.  The 

results also suggest that juvenile fishing mortality decreased in the first couple of 

years of the 1990s then increased fairly steadily from 1994 to 1997.  Cohort 

abundance appears to have decreased from about 2.5-3 million age 1 fish for the 1989 

cohort to just over 1 million age 1 fish for cohorts 1993 and 1994. 

 

When fit to the data from cohorts 1989 to 1994, model 1 provided a better fit from a 

statistical point of view; however, from a practical point of view, model 2 may still be 

preferred given the fact that it led to very similar parameter estimates using 

substantially fewer parameters and it also provided better insight into trends in fishing 

mortality with age and years.  However, the lack of fit of model 2 to some of the catch 

observations highlighted potential problems with separable models when fishing 

practices (e.g., selectivity) have changed over time.  For example, we saw that the 

SBT fishery caught large numbers of age 1 fish in 1991 then dramatically decreased 

its catch of age 1 fish in subsequent years.  Looking back at catch data prior to 1991 

shows that age 1 fish were caught in even larger numbers over the history of the 

fishery, with over a million age 1 fish being caught in 1983.  A large portion of the 

historic age 1 catches occurred off of Western Australia, but when joint venture 

fishing opportunities began in 1992 fishing off of Western Australia decreased 

substantially.  It is important that such changes in selectivity over time are recognized 

and accounted for when estimating separate age and year effects.  Because selectivity 
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was relatively constant over most years included in our analysis, model 2 was still 

able to provide a reasonable fit.  When we re-ran the analysis only including data 

from cohorts 1991 to 1994 in order to exclude any data from 1991 or prior, we found 

that model 2 provided a statistically better fit than model 1.  These results suggest that 

a separable model is appropriate for SBT, and illustrate the importance of 

incorporating changes in selectivity.  

 

Reporting rates and tag shedding rates were estimated from independent analyses for 

input to the model. We accounted for their uncertainty by including additional 

likelihood terms for the estimates and their standard errors (similar to putting a prior 

on the parameters in a Bayesian framework).  Ideally, we would estimate reporting 

rates directly within the model (for example, using observer data as described in 

Appendix 7), but unfortunately the observer data for SBT are insufficient to let us do 

so.  In the case of the shedding parameters, it is possible to directly incorporate their 

estimation into the model, as described in Appendix 14 (equations 10 and 11); 

however, this would require breaking the returns down not only by cohort, release 

age, return age and tagging group, but also according to whether one tag or both tags 

were returned.  Many of the return counts will be very small when broken down to 

this level and will likely introduce estimation problems. Furthermore, the estimates of 

the shedding parameters will almost certainly be similar to those obtained from the 

independent analysis since the only information available for estimating them  (i.e., 

comparing numbers of returns with one tag versus two) is the same in both cases. 

 

Instead of modelling the reporting rate estimates directly, we modelled a variable 

representing the number of reported tag returns using a binomial distribution and an 

estimated effective sample size.  It would have been more straightforward to model 

the reporting rate estimates themselves as having, say, a beta distribution (this was the 

approach taken in Appendix 9 for modelling the reporting rates in the surface fishery 

component of the 2-fishery model).  However, the maximum likelihood estimates of 

the parameters of a beta distribution correspond to the mode, not the mean, so that the 

reporting rate estimates obtained using a beta likelihood are not equal to the reporting 

rate estimates inputted as data to the likelihood.  In fact, they can be substantially 

different when the distribution is highly skewed.  This result is undesirable because, in 

the absence of any other information, we do not want the reporting rate estimates to 
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change.  To resolve this problem, we used the binomial approach.  Using a normal 

distribution for the reporting rates would also have resolved this problem but it would 

not have been a realistic choice because it does not constrain the estimates to be 

between 0 and 1.  This is not necessarily a problem if the estimates are sufficiently 

away from these bounds and/or have small variances, but this is not true for many of 

the reporting rate estimates. We were able to use a bivariate normal distribution for 

the shedding parameters, even though they too should be constrained between 0 and 1, 

because their estimated variances were so small that the normal approximation was 

adequate. 

 

The model assumes that catch numbers between ages within a year are independent.   

Although this is not true conditional on the total catch in a year (since catching more 

fish at one age means catching less fish at another age to achieve the same total), it is 

a reasonable assumption unconditionally.  For example, consider the following 

argument:  if the total catch within a year is random and follows a Poisson 

distribution, and the distribution of the age counts conditional on the total is 

multinomial, then the unconditional age counts are independent Poisson.  At large 

catch sizes, these can be approximated as independent Gaussian, which is what we 

have done. 

 

Even after taking measures to incorporate uncertainty in the reporting rates and 

shedding rates into the model, the standard errors of the mortality rate and abundance 

estimates may still to be underestimated.  This is because the variance in the number 

of returns is likely to be greater than predicted by a multinomial distribution due to 

incomplete mixing and heterogeneity in the capture probabilities of fish.  One way of 

accounting for overdispersion in the tag-return data is to model the data as Dirichlet-

multinomial, as described in Appendix 9.  To do so requires an assumption be made 

about the level of overdispersion, either assuming it is known or keeping it constant 

since it cannot be estimated otherwise.  The necessity for, and potential gain from, 

incorporating overdispersion in the tag-return model for southern bluefin tuna is an 

area for further investigation.   
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Table 1. Summary of the four southern bluefin tuna data sets used as input to the 

model.   

 

a) Tag-return data 

Number returns by year Cohort Release 

year 

Release 

age 

Number 

releases 1991 1992 1993 1994 1995 1996 1997 

1988 1991 3 810 63 8 16 7 1 5 1 

1989 1991 2 3127 103 148 59 34 20 7 5 

 1992 3 1097  57 18 11 9 3 2 

1990 1991 1 3299 20 40 46 23 13 5 4 

 1992 2 4646  88 159 101 33 12 8 

 1993 3 2777   66 78 32 17 15 

1991 1992 1 2144  1 21 56 37 11 7 

 1993 2 2937   60 68 67 21 11 

 1994 3 3640    77 145 30 40 

1992 1993 1 4898   2 41 201 91 58 

 1994 2 3158    29 167 76 52 

 1995 3 2629     55 103 74 

1993 1994 1 9003    4 110 401 364 

 1995 2 5899     83 395 363 

 1996 3 1511      115 201 

1994 1995 1 8585     0 87 622 

 1996 2 2518      77 339 

 1997 3 526       91 

1995 1996 1 82      0 3 

 1997 2 592       15 

1996 1997 1 884       1 
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b) Reporting rate estimates 

Reporting rate estimate, λ̂  Cohort 

1991 1992 1993 1994 1995 1996 1997 

1988 0.597 0.327 0.402 0.390 0.179 0.254 n/a 

1989 0.654 0.543 0.471 0.457 0.192 0.275 0.596 

1990 0.933 0.577 0.625 0.559 0.258 0.267 0.568 

1991  0.887 0.750 0.600 0.388 0.250 0.537 

1992   0.926 0.498 0.622 0.411 0.597 

1993    0.522 0.592 0.474 0.639 

1994     0.725 0.388 0.727 

1995      0.321 0.775 

1996       0.805 

 

c) Tag shedding data (parameter estimates, standard errors and correlations) 

Tagger 

Group ξ̂  ξσ  Ω̂ σΩ ρ

1 0.974 0.007 0.039 0.004 0.005

2 0.961 0.012 0.049 0.006 0.008

3 1.000 0.000 0.067 0.004 0.000

4 1.000 0.000 0.093 0.006 0.000

5 0.934 0.040 0.089 0.023 0.028

6 0.967 0.022 0.160 0.016 0.016

 

d) Catch data 

Number fish caught Cohort 

1991 1992 1993 1994 1995 1996 1997 

1988 176057 77731 48640 24928 20560 15357 11443 

1989 76744 150758 65802 32144 27442 18972 17492 

1990 48450 33638 120232 72806 39073 24743 21673 

1991  7624 38414 119166 61080 38646 27398 

1992   404 10398 133300 76136 43001 

1993    187 30789 171859 72177 

1994     416 26276 203883 

1995      422 32025 

1996       1965 
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Table 2.  Negative log-likelihood values for models 1 and 2.  The total as well as 

breakdown into likelihood components is given.   

 

Component Model 1  Model 2

Tag-return 24691.0 24695.1

Reporting rates 360.0 361.5

Shedding rates 2.2 2.2

Catch 241.8 267.8

Total 25295.0 25326.7
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Table 3. Standardized tag-return and catch residuals for the model with unconstrained 

fishing mortality rates (model 1).   

a) standardized tag-return residuals, pooled over tagging groups4

 Release Recapture age 

Cohort age 1 2 3 4 5

1989 2  0.1 0.1 1.4 1.1

1989 3  -0.1 -1.9 -1.2

1990 1 0.0 0.4 -2.4 -2.5 -0.4

1990 2  0.1 1.3 1.8 0.2

1990 3  0.0 -0.3 0.3

1991 1 0.0 -0.1 2.4 0.5 0.9

1991 2  0.0 -2.0 -0.5 0.7

1991 3  0.0 0.4 -0.8

1992 1 0.0 0.7 1.3 1.5 0.6

1992 2  0.0 -1.3 -0.4 -0.4

1992 3  0.0 -0.9 -0.3

1993 1 0.0 -0.1 0.5 0.4

1993 2  0.0 -1.1 -1.4

1993 3  0.6 1.5

1994 1 0.0 0.1 -1.7

1994 2  0.3 2.4

1994 3  0.0

 

b) standardized catch residuals  

Cohort Age 1 Age 2 Age 3 Age 4 Age 5

1989  0.3 0.3 0.5 0.0

1990 0.3 -1.0 0.9 0.7 -0.1

1991 0.3 0.4 1.0 -1.0 0.1

1992 0.3 -1.8 0.8 0.3 0.6

1993 0.3 0.7 0.1 -0.1

1994 0.3 -0.4 0.8

                                                 

)

4 Pooled standardized residuals over tagging groups were calculated as 

( ) (6 6
, , , , , , , , , , , , , , , ,1 1

ˆ ˆ 1k t a i k t a k t a i k t a k t a i k t a it t
R N p N p p

= =
− −∑ ∑ ˆ  .  
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Table 4.  Standardized recapture and catch residuals for the model with fishing 

mortality rates constrained to have separable age and year effects (model 2).    

a) standardized tag-return residuals, pooled over tagger groups (see footnote to Table 

3) 

 Release Recapture age 

Cohort age 1 2 3 4 5 

1989 2  0.1 0 1.6 1.9 

1989 3  -0.1 -1.9 -0.9 

1990 1 0.0 0.5 -2.5 -2.5 -0.4 

1990 2  0.1 1.2 1.8 0.3 

1990 3  0.0 -0.5 0.2 

1991 1 0.0 0.4 2.2 0.6 0.8 

1991 2  0.0 -2.1 -0.5 0.7 

1991 3  0.0 0.2 -1.0 

1992 1 0.0 0.9 1.3 1.5 0.5 

1992 2  -0.1 -1.4 -0.3 -0.4 

1992 3  0.0 -1.1 -0.6 

1993 1 0.0 0.2 0.7 0.1  

1993 2  0.0 -0.8 -1.6  

1993 3  0.4 2.6  

1994 1 0.0 -0.4 -1.8  

1994 2  0.4 2.4  

1994 3  0.0  

 

b) standardized catch residuals  

Cohort Age1 Age2 Age3 Age4 Age5

1989  -2.5 -0.1 0.6 0.9

1990 1.0 -1.0 0.5 0.4 -0.2

1991 1.0 1.0 0.3 -1.2 -0.8

1992 -2.7 -1.5 1.4 0.3 0.5

1993 -3.1 0.3 1.2 -0.7

1994 -2.9 -0.7 1.3
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Figure 1. Comparison of natural mortality rate (M) estimates and their standard 

deviations (SD) by age for the model with unconstrained fishing mortality rates 

(model 1) and the model with fishing mortality rates constrained to have separable age 

and year effects (model 2).  Black circle = model 1 results; blue triangle = model 2 

results.   
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Figure 2.  Comparison of fishing mortality rate (F) estimates and their standard 

deviations (SD) by cohort and age for the model with unconstrained fishing mortality 

rates (model 1) and the model with fishing mortality rates constrained to have 

separable age and year effects (model 2).    Black circle = model 1 results; blue 

triangle = model 2 results. 
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Figure 3. Comparison of population size (P) at age 1 estimates and their standard 

deviations (SD) by cohort for the model with unconstrained fishing mortality rates 

(model 1) and the model with fishing mortality rates constrained to have separable age 

and year effects (model 2).  Black circle = model 1 results; blue triangle = model 2 

results.  For the 1989 cohort, only a direct estimate of P at age 2 is obtained from the 

models, so the age 1 estimates shown are post-calculated (see text).  
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Figure 4.  Estimates (± 1 standard deviation) of the age-specific fishing mortality rate 

effect (upper panel) and the year-specific fishing mortality effect (lower panel) for the 

model with separable fishing mortality rates (model 2).  Note that the estimates should 

be interpreted as relative indices; the age effect at age 5 has been fixed at 1.0 (see 

text).  The estimate of the year-specific component for 1991 has been omitted because 

it is based on very little data and has large uncertainty associated with it (refer to text). 
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Figure 5.  Boxplots of standardized recapture residuals broken down by various 

factors for the model with unconstrained fishing mortality rates (model 1). 
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Figure 6.  Effect of varying the coefficient of variation of the catch data (“catch CV”) 

on the fishing mortality rate estimates for the 1990 cohort (top) and the age 1 

population size estimates (bottom). 
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Figure 7. Effect of varying standard error of reporting rate estimates (“RR SE”) on the 

fishing mortality rate estimates for the 1990 cohort (top) and the age 1 population size 

estimates (bottom). 
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Figure 8.  Effect of using reporting rate option 1 (high reporting rates) versus 

reporting rate option 8 (low reporting rates) on the fishing mortality rate estimates for 

the 1990 cohort (top) and the age 1 population size estimates (bottom). 
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Appendix 15:  Estimation of mortality rates and abundance for SBT using data from 1991 to 1997 

Annex A 
 
Table A1. Parameter estimates obtained from model with unconstrained fishing 

mortality rates (model 1).  Standard error estimates are given in parentheses below the 

point estimates.  Note that values for the population size at the initial age of tagging, 

, are in millions, and that 
kAP 1kA =  for all cohorts except 1989, for which .   

The estimates of fishing mortality for newly tagged fish are not of primary interest 

and are not shown.   

2kA =

F∗

 

1M  5M  

0.424 0.181 

(0.031) (0.195) 

 

Cohort 1F  2F  3F  4F  5F   
kAP  

1989 – 0.054 0.162 0.102 0.076  1.62 

  (0.017) (0.031) (0.030) (0.034)  (0.31) 

1990 0.021 0.034 0.099 0.093 0.083  2.67 

 (0.007) (0.007) (0.019) (0.025) (0.039)  (0.48) 

1991 0.003 0.025 0.101 0.144 0.085  2.50 

 (0.001) (0.005) (0.021) (0.041) (0.041)  (0.49) 

1992 0.000 0.024 0.177 0.183 0.136  1.72 

 (0.000) (0.006) (0.029) (0.054) (0.061)  (0.31) 

1993 0.000 0.042 0.489 0.475 –  1.12 

 (0.000) (0.007) (0.158) (0.156)   (0.23) 

1994 0.000 0.040 0.372 – –  1.40 

 (0.000) (0.008) (0.075)    (0.32) 
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Cohort 1λ  2λ  3λ  4λ  5λ  

1989 – 0.679 0.558 0.455 0.476 

  (0.093) (0.088) (0.087) (0.088) 

1990 0.930 0.632 0.570 0.528 0.306 

 (0.105) (0.088) (0.094) (0.090) (0.078) 

1991 0.887 0.741 0.531 0.464 0.276 

 (0.100) (0.098) (0.094) (0.091) (0.073) 

1992 0.926 0.571 0.620 0.413 0.570 

 (0.100) (0.091) (0.086) (0.082) (0.091) 

1993 0.520 0.563 0.315 0.662 – 

 (0.100) (0.092) (0.085) (0.090)  

1994 0.725 0.480 0.695 – – 

 (0.100) (0.084) (0.104)   

 
Tagger 

Group ξ  Ω  

1 0.974 0.039 

 (0.005) (0.003) 

2 0.961 0.049 

 (0.008) (0.004) 

3 1.000 0.067 

 ( – )  (0.003) 

4 1.000 0.092 

 ( – ) (0.004) 

5 0.921 0.096 

 (0.029) (0.016) 

6 0.951 0.179 

 (0.016) (0.011) 
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Table A2. Parameter estimates obtained from model with fishing mortality rates 

constrained to have separable age and year effects (model 2).  Standard error 

estimates are given in parentheses below the point estimates.  Note that values for the 

population size at the initial age of tagging, , are in millions, and that  for 

all cohorts except 1989, for which 

kAP 1kA =

2kA = .   The F∗ estimates of fishing mortality for 

newly tagged fish are not of primary interest and are not shown.  

 

1M  5M  

0.424 0.236 

(0.031) (0.206) 

 
 Age 

 1 2 3 4 5 

AF  0.032 0.377 1.952 1.722 1.0 

 (0.020) (0.172) (0.754) (0.435) -- 

 
 Year 

 1991 1992 1993 1994 1995 1996 1997 

YF  0.541 0.089 0.058 0.063 0.098 0.137 0.206 

 (0.378) (0.043) (0.027) (0.028) (0.043) (0.063) (0.097) 

 
 Cohort 

 1989 1990 1991 1992 1993 1994 

kAP  2.01 2.67 2.54 1.45 1.45 1.2 

 (0.42) (0.45) (0.50) (0.21) (0.24) (0.25) 
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Cohort 1λ  2λ  3λ  4λ  5λ  

1989 – 0.682 0.542 0.49 0.565 

  0.092 0.076 0.070 0.075 

1990 0.930 0.637 0.524 0.492 0.298 

 0.105 0.079 0.071 0.064 0.053 

1991 0.887 0.770 0.461 0.431 0.208 

 0.100 0.086 0.063 0.056 0.040 

1992 0.926 0.582 0.595 0.352 0.466 

 0.100 0.076 0.063 0.048 0.065 

1993 0.520 0.627 0.529 0.718 – 

 0.100 0.072 0.061 0.068  

1994 0.725 0.397 0.677 – – 

 0.100 0.060 0.075   

 
Tagger 

Group ξ  Ω  

1 0.974 0.039 

 (0.005) (0.003) 

2 0.961 0.049 

 (0.008) (0.004) 

3 1.000 0.067 

 ( – )  (0.003) 

4 1.000 0.092 

 ( – ) (0.004) 

5 0.921 0.097 

 (0.029) (0.016) 

6 0.951 0.179 

 (0.016) (0.011) 
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Appendix 16: Application of a spatial tagging and catch model to 1990s SBT data

1 Introduction

In Appendix 11 we developed a spatial multi-year tagging and catch-at-age model

that was designed to have spatial and temporal dynamics resembling those of the

current southern bluefin tuna (SBT) fishery and juvenile stock. The fisheries were

divided into two seasonal components - a summer surface fishery and a winter long-

line fishery. The summer surface fishery occurs only in the Great Australian Bight

(GAB) off South Australia, whereas the winter longline fishery occurs in three re-

gions distinct from where the surface fishery occurs (waters off of South Africa, the

South-East Indian Ocean and the Tasman Sea). All fish migrate out of the GAB at

the end of the summer season into one of the longline regions, but only a fraction

of the fish migrate from the longline regions to the GAB at the end of the winter

season (for simplicity, we assume that all migrations between regions occur at the

end of a season). Movement rates are allowed to vary between regions and with ages

(e.g., a differing percent of fish migrate from the Tasman Sea region to the GAB

with age). To simplify the migration dynamics, we do not allow for direct migration

of fish between the longline regions. Thus, over the course of a single year, a fish

either remains within a single longline region or migrates between one of the long-

line regions and the GAB. Two variations on the basic movement dynamics were

considered: one in which movement is represented as a Markov process, meaning

that a fish has no memory with respect to its previous migrations; and one in which

there is site-fidelity in the movement dynamics, so that a fish that migrates from

a particular longline region to the GAB will always return to that same longline

region at the end of the summer season.

In the current appendix, we apply the spatial multi-year tagging and catch-

at-age model with Markovian movement dynamics to SBT data collected from 1991

to 1997. The model was presented in Appendix 11 in terms of a single cohort of

fish. Because we have SBT data from multiple cohorts, we first discuss the model for

multiple cohorts. In one sense this is trivial, because the multicohort model is just a

juxtaposition of several single cohort models. There are, however, some issues that
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Appendix 16: Application of a spatial tagging and catch model to 1990s SBT data

become more apparent with multiple cohorts, such as: data from partial cohorts (i.e.,

some cohorts being tagged at only a subset of ages); model simplification through

assuming that certain parameters are common to all cohorts or display simple trends

with cohort.

In addition to the adjusting the model for multiple cohorts, some further

modifications need to be made before applying the model to the SBT data. The

models in Appendix 11 were developed in terms of how best to design future SBT

tagging programs, therefore they assume that observer data are available in each

longline region in each winter season and that tag seeding data are available in the

GAB in each summer season with which to estimate reporting rates. In fact, this is

not the case for the 1990s SBT data; although some limited observer data and tag

seeding data exist, they are insufficient for direct inclusion in the model. Instead,

we use the available data and a number of assumptions to come up with reporting

rate estimates by year, age and region for SBT from 1991 to 1997 (more details are

given later). These estimates are then brought into the spatial tagging and catch

model as if they are known without error.

Moreover, recent analyses of the double-tagging data for SBT (Appendix

14) suggest that tag shedding can be substantial for some taggers, so estimates

of mortality rates and abundance that do not take tag shedding into account are

likely to be biased. As such, we modify the model to incorporate instantaneous

and continuous tag shedding parameters. Using the same approach to the reporting

rates, we bring estimates of the tag shedding parameters into the model as being

known without error.

Finally, we modify the model to allow for an initial period of non-mixing in

the tag-return probabilities. This is to allow for the fact that newly tagged fish will

not be fully mixed with the untagged population immediately after tagging, and

for the fact that tagging of SBT generally occurred during or near the end of the

fishing season so tagged fish are only vulnerable for part of the season. The general

approach used is the same as that used in the non-spatial analysis of the 1990s SBT
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tag-recapture and catch data in Appendix 15.

2 The multi-cohort model

2.1 Probability of survival or being caught

We suppose that there are two seasons each year and that there are R regions.

Fishing takes place in region 1 in season 1, and in regions 2 to R in season 2. It is

convenient to work in terms of time periods t, taking values 1, 2, 3, 4, . . . , T , where

there are two periods per year. The season is given by s = t−2[(t−1)/2]. The year

is given by y = 1 + [(t − 1)/2]. In these definitions, and in the definition of age a

below, [x] means the integer part of x.

The probability of survival of a fish during a time period, conditional on its

being alive at the beginning of the period, depends on both natural mortality and

fishing mortality. Before we define these explicitly, we specify their dependence on

age, time period and region. We assume natural mortality depends only on age,

denoted by Ma. We assume the two seasons are of equal length and that natural

mortality occurs at a constant rate so that the natural mortality in each season is

Ma/2.

In the model presented in Appendix 11 for one cohort, we let fishing mortality

depend on age, season and region. With only one cohort, age and season uniquely

define the time period so in fact this is equivalent to letting fishing mortality depend

on time period and region. It is feasible that fishing mortality will vary not only

between time periods (because fishing practices may change over time) but also

between fish of different ages (because different gear types may target different age

classes). As such, when more than one cohort is being modelled, we allow for the

fishing mortality to depend on time t, age a and region r, denoted by Fatr.
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For the SBT fishery with R = 4, the Fatr values will have the structure:

Fat =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Fat1

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for odd t Fat =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

Fat2

Fat3

Fat4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for even t

Here Fat1, Fat2, Fat3, Fat4 denote non-zero values. Note that fishing only takes place

in region 1 in the summer season, and in regions 2, 3, 4 for the winter season, so the

fishing mortality is 0 in the complementary regions.

We now state explicitly the meaning of Ma and Fatr. The probability that a

fish of age a, alive in region r at the beginning of time period t, survives until the

end of the time period, is

Satr = e−Ma/2−Fatr .

The probability that it does not survive, and is caught, is (1 − Satr)fatr, where

fatr =
Fatr

Ma/2 + Fatr

is the conditional probability that it is caught rather than dies naturally. Likewise

the probability that it does not survive, and dies naturally, is (1 − Satr)(1 − fatr).

This is a type of competing risks model, and the mathematical rationale behind it

is explained in Annex A.

Consider a fish alive in region rC at the beginning of period tC at age aC . Let

stC = tC − 2[(tC − 1)/2]. Then this fish will have age (in years) of a = a(aC , tC , t) =

aC + [(t − tC − 1 + stC )/2] in period t ≥ tC . Let Rt be the region that the fish is in

at the start and during time interval t, and Lt = 1 if the fish is alive at the start of

time period t. Hence

Pr{Rt+1 = r, Lt+1 = 1|aC , tC , rC} =
R∑

r′=1

Pr{Rt = r′, Lt = 1|aC , tC , rC}Satr′ πr′r|at (1)

where πr′r|at represents the probability of a fish of age a moving from region r′ to

r at the end of time period t. Looking at the right-hand side of this equation, we
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read that the fish was alive in region r′ at time t with probability Pr{Rt = r′, Lt =

1|aC , tC , rC}, survived the time period with probability Satr′ , and then moved from

region r′ to region r with transition probability πr′r|at. Note that the transition

probabilities do not depend on any of the fish’s history prior to time t.

In our presentation of the model we assume that the transition probabilities

are a function of the fish age a = a(t) and season s = s(t), rather than t directly.

That is, we assume that fish of the same age in the same season would have the

same migration patterns (transition probabilities) across all years. Therefore, we let

Πas denote the matrix of transition probabilities for a fish of age a at the end of

season s. We assume the following structure for these matrices (R = 4). For season

1:

Πa1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 π12|a1 π13|a1 1 − π12|a1 − π13|a1

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For season 2:

Πa2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

π21|a2 1 − π21|a2 0 0

π31|a2 0 1 − π31|a2 0

π41|a2 0 0 1 − π41|a2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

These transition matrices essentially say that at the end of season 1, a fish

in region 1 moves to either region 2, 3 or 4, whereas a fish in region 2, 3 or 4 stays

in that region. At the end of season 2, a fish stays in its current region or moves to

region 1. Note however that a fish could make the following transitions: regions 1,

2, 1, 3 in seasons 1, 2, 1, 2 in time periods 1, 2, 3, 4 respectively. Thus, it need not

remain faithful to its winter (season 2) region.
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Now let us suppose Sat is the R×R diagonal matrix with rth diagonal element

Satr. Also, let Πa(t)s(t) denote the matrix of transition probabilities for a fish of age

a during time interval t. Then, equation (1) can be expressed in matrix form as

pt+1|aC tCrC
= Π′

a(t)s(t) Sat pt|aC tCrC
,

where pt|aC tCrC
is a vector of length R whose rth entry is the probability that a fish,

alive at age aC in region rC at the beginning of time period tC , is alive in region r

at the beginning of time period t. This equation can be calculated iteratively using

as a starting vector that fact that the rth entry of ptC |aC tCrC
is 1 for r = rC and 0

for r �= rC .

The probability that a fish, alive at age aC in region rC at the beginning of

time period tC , is caught during time period t in region r is

qtr|aC tCrC
= fatr(1 − Satr)ptr|aC tCrC

(2)

where ptr|aC tCrC
(the rth entry of vector pt|aC tCrC

above) is the probability that the

fish is alive in region r at the beginning of time interval t, 1−Satr is the probability

that the fish does not survive the time period, and fatr is the conditional probability

that it is caught (rather than dies naturally).

2.2 Probability of tag return

For a tagged fish, we are interested not only in the probability of the fish being

caught but also of its tag being returned. Even when a fish that has been tagged is

caught, the tag may not be returned for several reasons:

1. The tag was lost almost immediately after the fish was tagged, because it was

not securely fastened. This happens with probability 1 − ξ, say.

2. The tag was not lost immediately, but through natural attrition tags are lost

at a constant rate Ω per time period.
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3. The tag is not lost, but when the fish is caught, the tag is not reported, either

deliberately or through oversight. We assume that the probability of a tag

being returned, conditional on the fish being caught and having a tag, is λ,

and that it is the same whether the fish has one or two tags still attached.

In our model we suppose that all fish are double-tagged because this was the

case for the 1990s SBT tagging experiments. We refer to the left-hand tag as tag

A and the right-hand tag as tag B. In our development of the model, we allow for

the shedding parameters ξ and Ω to differ for tag A and tag B, but we assume that

they do not differ with region, age of fish, or time period.

Initially, consider just tag A. The probability that a tagged fish of age a,

alive in region r at the beginning of time period t, survives until the end of the time

period with tag A still intact, is

SA
atr = e−Ma/2−Fatr−ΩA .

The probability that it is caught in the time period with its tag, is (1 − SA
atr)f

A
atr,

where

fA
atr =

Fatr

Ma/2 + Fatr + ΩA

is the conditional probability that it is caught rather than dies naturally or sheds

its tag. This is a competing risks model similar to in the previous section, except

now tag shedding is an additional risk to dying naturally or being caught; the

mathematical details are given in Annex A.

Analogous expressions, SB
atr and fB

atr, can be made regarding tag B.

Now consider both tags. Using the argument outlined in Annex A, the proba-

bility that a fish of age a, alive in region r at the beginning of time period t, survives

until the end of the time period with both tag A and tag B, is

SAB
atr = e−Ma/2−Fatr−ΩA−ΩB .

The probability that it is caught in the time period with both its tags, is (1 −
SAB

atr )fAB
atr , where

fAB
atr =

Fatr

Ma/2 + Fatr + ΩA + ΩB
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is the conditional probability that it is caught rather than dies naturally or sheds

both its tags.

Suppose a fish is double-tagged in region rC at the beginning of period tC

at age aC . Let stC = tC − 2[(tC − 1)/2]. Then this fish will have age (in years) of

a = a(aC , tC , t) = aC +[(t−tC −1+stC )/2] in period t ≥ tC . We focus our argument

on just tag A for the moment. Let Rt be the region that the fish is in at the start

and during time interval t, Lt = 1 if the fish is alive at the start of time interval t

and At = 1 if tag A is still on the fish. Hence

Pr{Rt+1 = r, Lt+1 = 1, At+1 = 1|aC , tC , rC} =
R∑

r′=1

Pr{Rt = r′, Lt = 1, At = 1|aC , tC , rC}SA
atr′ πr′r|at (3)

where πr′r|at represents the probability of a fish of age a moving from region r′ to

r at the end of time period t. Looking at the right-hand side of this equation, we

read that the fish was alive in region r′ at time t and still in possession of tag A

with probability Pr{Rt = r′, Lt = 1, At = 1|aC , tC , rC}, survived the time period

without shedding its tag with probability SA
atr′ , and then moved from region r′ to

region r with transition probability πr′r|at. Note that the transition probabilities do

not depend on any of the fish’s history prior to time t.

Now let us suppose SA
at is the R×R diagonal matrix with rth diagonal element

SA
atr. Then, equation (3) can be expressed in matrix form as

pA
t+1|aC tCrC

= Π′
a(t)s(t) SA

at p
A
t|aC tCrC

,

where pA
t|aC tCrC

is a vector of length R whose rth entry is the probability that a fish,

alive at age aC in region rC at the beginning of time period tC with tag A attached,

is alive in region r at the beginning of time period t with tag A still attached. This

equation can be calculated iteratively, where we are now using as a starting vector

that fact that the rth entry of pA
tC |aC tCrC

is ξA for r = rC and 0 for r �= rC , where ξA

is the probability that tag A is not shed immediately after tagging.

The probability that a fish, alive at age aC in region rC at the beginning of

time period tC with tag A attached, is caught with its tag during time period t in
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region r is

qA
tr|aC tCrC

= fA
atr(1 − SA

atr)p
A
tr|aC tCrC

(4)

where pA
tr|aC tCrC

is the rth entry of vector pA
t|aC tCrC

. Note that tag B may or may

not be on the fish.

Analogously we can compute the probability qB
tr|aC tCrC

of the fish being caught

with tag B intact. Again, tag A may or may not be present.

Now, let pAB
tr|aC tCrC

be the probability that a fish, alive at age aC in region rC

at the beginning of time period tC with tags A and B attached, is alive in region r

at the beginning of time period t with both tags still attached. In vector notation,

pAB
t+1|aC tCrC

= Π′
a(t)s(t) SAB

at pAB
t|aC tCrC

.

To calculate this equation iteratively, we now use as a starting vector that fact that

the rth entry of pA
tC |aC tCrC

is ξAξB for r = rC and 0 for r �= rC , where ξAξB is the

probability that neither tag A nor tag B is shed immediately. Then, the probability

that the fish is caught in region r during time period t with both tags still intact is

qAB
tr|aC tCrC

= fAB
atr (1 − SAB

atr )pAB
tr|aC tCrC

. (5)

Then, the probability that the fish is caught with at least one of its tags is

qA
tr|aC tCrC

+ qB
tr|aC tCrC

− qAB
tr|aC tCrC

,

and, taking into consideration non-reporting, the conditional probability that at

least one of its tags is returned is

gtr|aC tCrC
= λatr(q

A
tr|aC tCrC

+ qB
tr|aC ,tC ,rC

− qAB
tr|aC tCrC

) .

Note that we are allowing the reporting rate (λatr) to vary with age of the fish, time

period and region.

The probability that neither tag is returned is

ḡ|aC tCrC
= 1 −

R∑
r=1

T∑
t=1

gtr|aC tCrC
.
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We therefore obtain a set of multinomial probabilities:

g = (ḡ, g11, g12, . . . , q1R,

g21, g22, . . . , g2R,

. . . ,

gT1, gT2, . . . , gTR) (6)

Many of these probabilities will be 0. For readability we have dropped the condi-

tional expression (|aCtCrC) in the subscript of all terms.

2.3 Inference for the tagging data

We consider tag-recapture data for fish tagged in T consecutive time periods. Tag-

ging occurs at the beginning of each odd time period (season 1) in region 1, and at

the beginning of each even time period (season 2) in regions 2, . . . , R. In each time

period and region of tagging, fish of ages, say, 1 to K (i.e., from K cohorts) are

tagged. Tags are subsequently returned from the surface fishery operating in region

1 in season 1, and from the longline fisheries operating in regions 2, . . . , R in season

2.

Inference for these data is fairly straightforward. We refer to the fish tagged

at age aC in region rC at the beginning of period tC as tagging group (aC , tC , rC).

If tagging occurs at K ages in R regions and T time periods, and T is even to

correspond to T/2 years, then there will be I = KRT/2 tagging groups — KT/2

corresponding to fish tagged in region 1 in odd time periods and KT/2 corresponding

to fish tagged in each of regions 2, . . . , R in even time periods. In practice, tagging

may not be possible at all ages in every region and time period so the number of

tagging groups may be less.

Suppose we put the tag-recapture data into a matrix n of dimension I×J , for

which the data in row i are the numbers of returns by time period and region from

tagging group i. The first entry of each row is the number of unrecaptured tags,
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so that J = 1 + RT ′, where T ′ is the number of time periods in which recaptures

occur (T ′ ≥ T ). The probabilities of return are placed into a corresponding matrix

G. Row i of G is the vector g from (6) for the relevant tagging group. Each row of

data is treated independently as multinomial data.

The log-likelihood is (apart from an additive constant)

ltag =
I∑

i=1

J∑
j=1

nij log Gij .

If there are structural zeroes in the data, this method of computing the log-likelihood

will fail, because Gij = 0 for structural zeroes, and log Gij = −∞ then. The

likelihood for structural zeroes is 00 = 1, and the log-likelihood is 0. We can achieve

this result by the following simple device. Let

G∗
ij =

⎧⎪⎪⎨
⎪⎪⎩

Gij if nij > 0;

0.01 otherwise.

Then

ltag =
I∑

i=1

J∑
j=1

nij log G∗
ij .

2.4 Catch-at-age data

We now look at the model for catch-at-age data. First concentrate on a single

cohort. A complication with catch-at-age data is that, since the fish do not have

tags, we do not know their origins. However, we do know their ages, hence we can

work out the age a0 and time period t0 at which the cohort first entered the study

(i.e., was first tagged). For example, consider a fish caught in time period 5. If it

was age 3, then it would be from the cohort tagged at age 1 at the beginning of time

period 1 (a0 = 1, t0 = 1); if it was age 2, then it would be from the cohort tagged

at age 1 in time period 3 (a0 = 1, t0 = 3); and if it was age 4, then it would be from

the cohort tagged at age 2 in time period 1 (a0 = 2, t0 = 1). Note that a0 and t0

together uniquely define the cohort. Suppose the population size of these fish at the

beginning of t0 in region r0 is Pa0t0r0. Then the probability of a fish originating in
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region r0 being recaptured in region r at time period t is qtr|a0t0r0 from equation (2).

Thus, the probability of being recaptured in region r during time period t regardless

of its source is ∑R
r0=1 qtr|a0t0r0

Pa0t0r0∑R
r0=1 Pa0t0r0

.

The expected number of fish of this cohort caught in region r during time period t

is thus

µtr|a0t0 =
R∑

r0=1

qtr|a0t0r0
Pa0t0r0 .

For the catch-at-age data, we adopt a Gaussian model with known coefficient

of variation cr different for each region. The catches in each region and time are

assumed to be statistically independent.

If the catch in region r and time period t of fish from cohort (a0, t0) is Ctr|a0t0 ,

then the log-likelihood for the catch-at-age data for all regions, time periods and

cohorts involved in the study is (apart from an additive constant)

lcatch =
T ′∑
t=1

R∑
r=1

∑
a0t0

⎡
⎣− log µtr|a0t0 −

1

2

(Ctr|a0t0 − µtr|a0t0)
2

c2
rµ

2
tr|a0t0

⎤
⎦ .

The Gaussian model is intended to capture all source of variation in the catch-at-

age data, including multinomial process error and sampling variability. The latter is

assumed to be dominant, because for SBT the data have been derived from taking

a small sample of the catch to be aged (where age is either estimated from length or

from annuli in the otolith), then scaling up the sample age distribution to the total

catch in numbers (which may itself have been estimated from total weight). A more

complete discussion of the error distribution for the catch-at-age data can be found

in Appendix 5.

2.4.1 An alternative

The philosophy behind the above argument that catches in each region and time pe-

riod can be assumed to be statistically independent is as follows: within each cohort,

the catches for each year can be modelled, unconditionally, as independent counts.
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The cohorts are independent, so the catches within each year are independent. It is

possible to pursue a different argument that may reflect actual practice.

We focus on a particular time period t and region r. We suppose that M fish

are caught, with a total weight of W . We assume that W is measured, but M is not

counted. If Wi is the weight of the ith fish, we have

W =
M∑
i=1

Wi .

If M is Poisson and the Wi are independent and identically distributed with

mean µw and variance σ2
w, we have

E[W ] = µw E[M ]

Var[W ] = (µ2
w + σ2

w)E[M ] .

For each cohort of fish, we know the probability of its being caught in time period

t and region r. Hence

E[M ] =
∑
a0t0

R∑
r0=1

qtr|a0t0r0
Pa0t0r0 =

∑
a0t0

µtr|a0t0 .

A subsample of size N = n is selected, and each fish in this sample is weighed

and aged. Denote these by Wi and Ai. Without loss of generality, we label these as

the first n of the M fish that are caught. We can equally regard the age group Ai

as being equivalent to the cohort (a0, t0), so we instead interpret Ai as the cohort.

We assume, for simplicity, that there is no measurement error. For the likelihood,

we need

Pr{Wi = w, Ai = (a0, t0)} = Pr{Wi = w|Ai = (a0, t0)}Pr{Ai = (a0, t0)}

For simplicity, we assume that Wi|Ai is normal, so that

Pr{Wi = w|Ai = (a0, t0)} =
1√
2π

1

σa0,t0

exp

(
−(w − µa0,t0)

2

2σ2
a0,t0

)
.

Of course, other assumptions, such as Wi|Ai lognormal, could be more realistic. It

is trivial to adjust the argument to this case. We also have

Pr{Ai = (a0, t0)} =
qtr|a0t0∑

a0t0 qtr|a0t0

.
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It is then an easy matter to compute the log-likelihood of the sample.

The likelihood should also include that for W . Note that this includes the

subsampled n, but we assume that M is so much larger than n that W can be

assumed independent of the subsample. If this is not the case, the n can be omitted

from W . We assume that the catch size is sufficiently large for W to have a Gaussian

distribution. Hence

W ∼ N(µw E[M ], µ2
wVar[M ] + σ2

wE[M ]) .

Thus we can include the Gaussian log-likelihood for W . In practice, we would

probably assume that W had a known coefficient of variation.

The trouble with this style of argument is that it is highly idealised. In prac-

tice, the subsampling of fish for ageing and weighing is likely to be more complex

than simple random sampling, and the subsample will, almost certainly, exhibit

overdispersion. The likelihood of the catch-at-age data will therefore be quite com-

plex. It is more pragmatic to adopt the approximate independence argument that

we have used in Section 2.4.

2.5 Overall log-likelihood

The parameters are estimated by maximising the total log-likelihood

l = ltag + lcatch .

We are implicitly assuming that both types of data are statistically independent, as

seems reasonable.

In maximising the likelihood, we treat the reporting rate parameters (λatr)

and tag shedding parameters (ΩA and ΩB) as known. The parameters to be esti-

mated are the age-specific natural mortality parameters, the age-, time- and region-

specific fishing mortality parameters, the region-specific population sizes for each

cohort at the time of first tagging, the age- and season-specific transition probabili-

ties between regions, and the age-, time- and region-specific reporting rates. Note,
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however, that when a cohort is tagged at K consecutive ages, only K − 1 natural

mortality rate parameters can be estimated (this is shown in Appendix 13, and is a

well-known feature in non-spatial Brownie models).

2.6 Allowing for non-mixing of recently tagged fish

For a species with a geographical range as widespread as SBT, we do not expect

newly tagged fish to be fully mixed with the untagged population immediately after

tagging. Moreover, tagging of SBT often occurs during the fishing season, rather

than at the start, so tagged fish are only vulnerable to fishing pressure for part

of the season. As such, we follow the approach used in Appendix 15 to modify

the tag return probabilities to allow for fishing mortality to differ between tagged

fish in the time period of tagging and untagged fish in that same time period. We

assume that tagged and untagged fish are fully mixed by the time period following

release. In particular, for fish in tagging group (aC , tC , rC), we replace FaC tCrC
with

the parameter F ∗
aC tCrC

in the likelihood for the tagging data.

Exploration of this model using simulations yielded an important finding.

When the model was applied to exact data (i.e., simulated without any error), almost

all of the parameters were estimated correctly, but a few were not. In particular,

the Fatr values in time period 1 and the population sizes were incorrect. This led us

to investigate the issue of parameter identifiability in this model.

2.7 Identifiability in the model allowing for a period of non-

mixing

In time period 1 the tagging data involve F ∗
a11 rather than Fa11. The only data that

bear on Fa11 are the catch-at-age data. Furthermore, the population parameters are

involved only in the catch-at-age data. Accordingly, we explain the identifiability

problem using an artificial example in which only catch-at-age data are available.

We simplify the problem to its bare essentials.
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Consider a two-region spatial model in which the initial population in region

1 is P1 and in region 2 is P2. We shall suppose that fish are caught in region 1 in

time periods 1, 3, 5, . . ., and in region 2 in periods 2, 4, 6, . . .. The natural mortality

per time period is M , and the fishing mortality in the relevant region in time period

t is Ft.

All fish migrate from region 1 to 2 at the end of the odd time periods, and a

proportion πt migrate from region 2 to 1 at the end of the even time periods. The

fish that started out in region 2 in time period 1 either die naturally or remain in

region 2 for period 2. The proportion of fish 1 − πt that remain in region 2 at the

end of period t (where t is even) stay in region 2 for the next two time periods.

We assume that we have catch-at-age data only, and that πt, M and F2, F3,

F4, . . . are all known exactly. The question is: can we estimate P1, P2 and F1 from

the catch-at-age data?

In the following table, we set out the expected catches for the first four time

periods. For simplicity of notation, we set Q = P1 e−(M+F1) + P2 e−M .

Time period t Expected catch Ct

1 P1 [1 − e−(M+F1)] F1

M+F1

2 Q [1 − e−(M+F2)] F2

M+F2

3 Q e−(M+F2)π2[1 − e−(M+F3)] F3

M+F3

4 Q e−(M+F2)[π2e
−(M+F3) + (1 − π2)e

−M ] [1 − e−(M+F4)] F4

M+F4

It is clear that the catches Ct in time periods t ≥ 2 consist of Q multiplied by

known factors, and they all merely reinforce our knowledge of Q. We are therefore

left with two equations for three unknowns:

C1 = P1 [1 − e−(M+F1)]
F1

M + F1

Q = P1 e−(M+F1) + P2 e−M .

Hence P1, P2 and F1 cannot be identified from the catch-at-age data.

Now suppose we have three regions, but there is no fishing in regions 2 and 3

in the odd periods, or in region 1 in the even periods. Let F2r be the fishing mortality
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in regions 2 and 3 in period 2, which we assume to be known. The expected catch

in period 1 is

C1 = P1[1 − e−(M+F1)]
F1

M + F1
.

Let Q2 = P1 e−(M+F1)π12 + P2 e−M , where π12, the probability of a fish going from

region 1 to 2 at the end of time period 1, is known. The expected catch in period 2

in region 2 is

Q2 [1 − e−(M+F22)]
F22

M + F22
.

Let Q3 = P1 e−(M+F1)π13 + P3 e−M , where π13 = 1 − π12. The expected catch in

period 2 in region 3 is

Q3 [1 − e−(M+F23)]
F23

M + F23
.

The last two equations are equivalent to knowing Q2 and Q3, since the right-hand

factors are known. We clearly cannot identify P1, P2, P3 and F1 from C1, Q2 and

Q3.

There are several ways to overcome this problem. Here we shall assume

F ∗
atr = κFatr (7)

for all relevant times, regions and age groups, where κ is an unknown parameter to

be estimated. For the 1990s SBT experiments, tagging often took place near the

end of the fishing season so that the F ∗ values are likely to be quite small anyway,

and model (7) is a parsimonious solution to the estimation problem.

3 Analysis of the 1990s southern bluefin tuna data

3.1 The data

The southern bluefin tuna data used as input to the model are: tag release and

return data from tagging experiments conducted from 1991 to 1997; catch-at-age

data from the commercial fisheries from 1991 to 1997; estimates of tag reporting

rates for years 1991 to 1997; estimates of tag shedding rates from the 1990s tagging
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experiments. Note that a year, 1991 say, is comprised of 2 seasons, where season 1

is defined as 1 November 1990 to 30 April 1991 and season 2 is defined as 1 May

1991 to 31 October 1991. The tagging, catch and reporting rate data are divided

into 4 regions: region 1 is the Great Australian Bight (GAB), where fishing only

occurs during season 1; regions 2, 3 and 4 represent South African waters (SAfr),

the South-East Indian Ocean (SEIO) and the Tasman Sea (TAS), respectively, and

fishing only occurs in these regions in season 2 (see Appendix 4 for specific definitions

of the 4 regions).

Details about the data collection processes and data screening criteria for the

tagging and catch data sets can be found in Appendix 4. This appendix also contains

a section specific to the spatial analysis detailing how these data were compiled (e.g.,

how they were divided into seasons and regions). The tag-return and catch-at-age

data from 1991 to 1997 are tabulated in Annex B, Tables 1 and 2. With regard to

the tag-return data, release data are included for fish tagged at ages 1 to 3; a small

number of fish were also tagged at ages 4 and 5 (< 300 in total) but they are not

included in the table or in our analysis because the number for any cohort was too

small to provide meaningful estimates. Recapture data are only included for years

1991 to 1997 because we do not have any data with which to estimate reporting

rates beyond 1997. With regard to the catch-at-age data, Table 1 includes entries

for years 1991 to 1997 and ages 1 to 8, but only those corresponding to a year and

age of recapture are included in the model. For example, in 1991, recaptures only

exist for fish at ages 1, 2 and 3 so only the catch numbers for these ages are used.

An analysis of tag shedding rates for SBT using data from the 1990s tagging

experiments (namely the number of recaptures with one tag versus both tags still

attached) is presented in Appendix 14. Allowing for the shedding parameters to

differ between the two tags made little difference to the results, so it was assumed

that ξA = ξB = ξ and ΩA = ΩB = Ω. The tag shedding estimates used as input

to the spatial model are ξ = 0.98 and Ω = 0.065/2. These are taken from the final

row of Table 3 in Appendix 14, except noting that the Ω value is being divided by
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2 because the analysis in Appendix 14 used time periods of years so that Ω was the

shedding rate per year, whereas here we want the shedding rate per half-year. The

estimates of ξ and Ω were obtained using the data from all taggers combined and,

therefore, represent ‘average’ shedding parameters for all taggers. Recall that they

are assumed to be known exactly.

The tag reporting rates used our analysis are presented in Table 3 of Annex

B. These estimates are based on the non-spatial reporting rate estimates derived

in Appendix 19. To obtain regional estimates, we take a weighted average of the

fishery-specific reporting rate estimates from Table 4a of Appendix 19 (for fisheries

relevant to a given region), using the catch-at-age data by fishery as weights. Details

are given in Annex B. Recall that, like the shedding rate estimates, the reporting

rate estimates are also treated as exact in the model.

3.2 Parameter identifiability

In our development of the model we assumed that fish are tagged in every region

and time period in which fishing occurs (i.e., in region 1 in all odd time periods and

in regions 2 to 4, for SBT, in all odd time periods). Looking at the tagging data for

SBT, many of the relevant cells have zero tag releases. Therefore, before analysing

the real data, it was necessary to check whether the parameters were identifiable.

Accordingly we simulated some exact tagging and catch-at-age data from the model

that mimicked the general nature of the SBT data. We adopted the parsimonious

model (7) for the fishing mortalities in the time period after tagging, both in the

simulation and in the estimation. The maximum likelihood estimates agreed exactly

with the true values for all parameters, including κ. This suggests that, despite the

patchy nature of the tagging, all parameters are identifiable.

3.3 Results

We applied the model to the SBT data corresponding to cohorts 1990 through 1994.

These five cohorts were tagged at ages 1 to 3 and have sufficient release and recapture
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data to warrant inclusion. We only included recaptures up to a maximum of age

5, because the numbers of recaptures beyond age 5 are relatively small (due to a

combination of natural mortality, fishing mortality, tag shedding, and low reporting

rates) and because the assumption that natural mortality is constant for ages 2 and

above is less likely to hold true as more older age classes are included.

Analysis of the data initially led to highly erratic estimates that defied sensi-

ble interpretation. It was clear that although the parameters were identifiable, they

were not very well constrained by the data. Accordingly, we placed some restrictions

on the parameters in the model in an attempt to achieve more sensible estimates.

Several sets of restrictions were tried, especially with regard to the transition prob-

abilities and the distribution of age 1 fish by region. Of these, the following set

seemed most satisfactory in terms of parsimony (as judged by Akaike’s information

criteria) and providing plausible parameter estimates.

For fishing mortalities, we assumed that these could be decomposed into

factors:

Fatr = FarFtr .

That is, we are assuming age-based selectivity is constant within a region but that

fishing intensity varies with region. This seems a plausible model from a fishing

viewpoint, and is consistent with the underlying assumptions in the current SBT

stock assessments. Note that region comes into both factors. Clearly this factori-

sation is not unique, in that multiplying Far by a constant k and dividing Ftr by k

leads to the same product. To overcome this, we fixed Far = 1.0 for a = 3.

With respect to the transition probabilities, πrr′|as is the probability of moving

from region r to r′ for a fish of age a at the end of season s. At the end of season

1 (i.e., odd time periods), recall that we are assuming all fish leave region 1, such

that π11|a1 = 0. At the end of season 2 (i.e., even time periods), we are assuming

that the fish either stay in the region they are in, or they move back to region 1.

Moreover, we assume

πr1|a2 = αaβr .
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In words, from each age group, the same relative proportion return to region 1 from

each region, but the absolute proportion can change with age. We anticipate that

αa would decline with age (so that a smaller proportion of fish return to the GAB as

they get older). The same multiplicative non-uniqueness applies to this factorisation

as for the fishing mortalities. However, it is not absolutely clear a priori how to make

the factorisation unique, so we let the parameters be free but bounded, anticipating

that at least one βr will be forced to a boundary, and thus constrained. Of course,

πrr|a2 = 1 − αaβr and πrr′|a2 = 0 for r′ �= 1 or r.

Finally, all cohorts being modelled were tagged initially at age 1 in season 1,

so we let P1t0r0 be the number of age 1 fish in region r0 and time period t0 from the

cohort that is age 1 at the beginning of time period t0, where t0 is odd. We model

this as

P1t0r0 = P1t0 qr0

where
∑R

r0
qr0 = 1. In other words, P1t0 is the total age 1 population size over all

regions at the beginning of time period t0, and qr0 is the proportion of age 1 fish

allocated to region r0. We assume that P1t0 varies between years (odd time periods),

but that qr0 remains constant.

The coefficients of variation of the catch-at-age data were set at 0.3 for all

regions. The parameter estimates are as follows:

natural mortalities:

M(a)

age 1 age 2

0.415 0.398

fishing mortality components:

F(t,r)

region season 1991 1992 1993 1994 1995 1996 1997

1 1 3.50 0.43 0.18 0.23 0.49 1.26 3.66

A16 - 22



Appendix 16: Application of a spatial tagging and catch model to 1990s SBT data

2 2 20.00 0.66 0.24 0.18 0.19 0.53 1.54

3 2 0.05 0.02 0.01 0.02 0.07 0.12 0.10

4 2 0.23 1.80 1.02 0.15 0.27 0.08 0.19

F(a,r)

region age 1 age 2 age 3 age 4 age 5

1 0.03 0.52 1.00 0.30 0.04

2 0.00 0.07 1.00 4.88 2.59

3 0.01 0.31 1.00 0.68 0.25

4 0.00 0.14 1.00 1.55 5.93

F* factor:

kappa 0.08

transition probabilities, season 1:

pi(1,r|a,1)

region age 1 age 2 age 3 age 4 age 5

2 0.084 0.116 0.051 0.004 0.108

3 0.819 0.734 0.899 0.576 0.883

4 0.097 0.141 0.050 0.420 0.009

transition probability components, season 2:

pi(r,1|a,2)=alpha(a)*beta(r)

alpha(a)

age 1 age 2 age 3 age 4

0.099 0.352 0.524 0.605

beta(r)

region 2 region 3 region 4
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0.010 0.757 0.990

age 1 population sizes by year:

P(1,t0)

1991 1992 1993 1994 1995

3668222 3706423 2115802 1483992 970461

proportion of the age 1 population in each region:

q(r0)

region 1 region 2 region 3 region 4

0.472 0.000 0.483 0.044

average yearly fishing mortalities by year and age:

year age 1 age 2 age 3 age 4 age 5

1991 0.041 --- --- --- ---

1992 0.005 0.037 --- --- ---

1993 0.002 0.018 0.100 --- ---

1994 0.003 0.017 0.096 0.100 ---

1995 0.006 0.039 0.194 0.185 0.107

1996 --- 0.071 0.344 0.270 0.129

1997 --- --- 0.454 0.445 0.195

The natural mortality estimates are quite high, but are within the range of

values assumed for age 1 and 2 fish in stock assessments for SBT. However, recall

that, in our model, natural mortality has been constrained to be the same at ages

2 and above, so that the age 2 parameter value actually applies to fish of ages 2

to 5. Thus, to check that this constraint is not biasing the results, we re-ran the
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analysis with natural mortality modelled as a linear function of age. The estimate

at age 5 still came out close to 0.3, and the likelihood value and the other parameter

estimates were barely changed.

The age component estimates of fishing mortality suggest that, at least for

the period of the study, selectivity in the GAB (region 1) was dome-shaped, peaking

at age 3 and declining to close to zero at ages 1 and 5. Similarly, selectivity in the

South-East Indian Ocean (region 2) was also dome-shaped with a peak at age 3,

which may reflect the fact that substantial numbers of juveniles are caught as by-

catch in the Taiwanese albacore fishery in this region. However, it was lower at age

2 and higher at ages 4 and 5 than in the GAB. In the South African and Tasman

Sea regions (regions 2 and 4), fishing mortality is greatest at ages 4 and 5.

The year component estimates suggest that fishing mortality in the GAB and

South African fisheries was U-shaped over the years 1991 to 1997, being lowest in

1993 in the GAB and in 1994-1995 for South Africa. There is suggestion of this

pattern for the SEIO as well, however the absolute values are much lower. For

the Tasman Sea, the fishing mortality estimates were variable over the years of the

study, but were highest in 1992 and 1993. Note that the estimates for 1991 in the

GAB and, more so, South Africa are very high. This is the result of age 1 catches

being higher in 1991 in these regions than in later years (refer to Table 1 in Annex

B). In 1991, only data for age 1 fish are included in the model so the age 1 selectivity

is estimated to be low based on later years and the 1991 year effect can be estimated

as high as necessary to compensate. This would not have been possible if data from

more ages in 1991 were being included. In order to include earlier data (and achieve

a reasonable fit), the model would need to allow for selectivity to change over time.

This was an issue in the non-spatial analysis as well, and we refer the reader to

Appendix 15 for a more complete discussion.

The transition probability estimates suggest that the majority (75-90%) of

fish move from the GAB to the SEIO at the end of season 1 at all ages, with the

exception of age 4 where a large fraction (about 40%) also move to the Tasman
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region. It is difficult to know if the latter finding is real or simply an artefact of

limited data. The transition probability estimates back to the GAB at the end of

season 2 are broken down into a region and age component. The region component

suggests that almost no fish leave South Africa, whereas large fractions return from

the SEIO and Tasman regions. The age component suggests that a greater propor-

tion of fish returns to the GAB as age increases. This is the opposite trend to what

we believe to be true for SBT, and is probably due in part to lack of recapture data

in the longline regions and at older ages. It may also reflect problems with the age

distribution of the catch data, because inadequate and biased catch sampling as well

as discarding of small fish have been identified as probable issues in the SBT fishery

during the time of the study.

Population abundance appears to have decreased from over 3.5 million age 1

fish in 1991 and 1992 to just under 1 million age 1 fish in 1995. The distribution of

the age 1 population by region, as given by qr0 , suggests that at the start of season

1, almost all age 1 fish are found in the GAB and the SEIO. However, it should

be recognized that there is almost no information for the model to determine this

initial distribution. It is of more interest to look at the distribution at the start of

season 1 at older ages, which we can calculate iteratively using all the parameter

estimates. We find the same outcome – that almost all fish are found in the GAB

and SEIO – but that the split between the two regions varies with age. At age 1 fish

are fairly evenly split between the two regions, but at age 2 the SEIO dominates,

and the pattern reverts with age until fish are fairly even split again by age 5. The

fact that the percent of the population in the GAB increases from age 2 to 5 is

not surprising given that the transition probabilities back to the GAB at the end of

season 2 were estimated to increase with age. However, we reiterate that this result

contradicts our prior beliefs and is likely due to inadequate and/or inaccurate data.

Concerns exist about potential overestimation of the proportion of small fish in the

length/age estimates of the surface fishery catches. If this were the case, it may be

the source of the increasing estimated rates of transition back to the GAB at older
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ages and the relatively low proportion of age 1 fish in the GAB originally.

It is also of interest to compare the parameter estimates from the spatial

model with those obtained from a non-spatial analysis of the same data. Appendix

15 presents results from a non-spatial analysis; however, the data and model used are

not directly comparable (for example, data from an additional cohort were included;

errors in the reporting rate and shedding rate estimates were incorporated; natural

mortality was assumed to be linear with age; differences in shedding rates between

taggers were accounted for). Thus, we modified the model in Appendix 15 to be

more closely comparable to the spatial model and applied it the SBT data from

cohorts 1990 to 1994. The results are as follows:

natural mortalities:

age 1 age 2

0.456 0.367

fishing mortalities by year and age:

year age 1 age 2 age 3 age 4 age 5

1991 0.019 --- --- --- ---

1992 0.001 0.049 --- --- ---

1993 0.001 0.019 0.095 --- ---

1994 0.001 0.020 0.098 0.099 ---

1995 0.001 0.040 0.197 0.200 0.103

1996 --- 0.054 0.270 0.275 0.142

1997 --- --- 0.399 0.405 0.209

age 1 population sizes by year:

1991 1992 1993 1994 1995

2974970 3932870 1545480 1408060 1205560
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The natural mortality rate estimates are quite similar from the two analyses,

especially if we consider the large uncertainty generally associated with natural

mortality estimates.

The age 1 population size estimates are also similar. Both the spatial and

non-spatial analyses suggest a decrease of about 70% in the number of age 1 fish from

1992 to 1995. The 1991 estimates are somewhat inconsistent in that the estimate

from the spatial analysis is almost the same as the 1992 estimate, whereas the

estimate from non-spatial analysis is quite a bit lower; however, the difference is

reasonably small in practical terms.

To compare the fishing mortality estimates, we calculated average yearly fish-

ing mortalities for the spatial model as outlined in Appendix 11, section 3.5.1. These

are presented above as the last item of the non-spatial results. The estimates are

remarkably similar in the two analyses.

4 Concluding remarks

Overall, the results are promising and suggest that the spatial tagging and catch

model has potential to provide useful estimates of mortality rates and abundance for

SBT. The population-wide estimates are generally consistent with estimates from

the ‘equivalent’ non-spatial model and from prior stock assessments. It is difficult to

evaluate the regional estimates – some seem plausible given our limited understand-

ing of the distribution and movement of juvenile SBT (such as the regional fishing

mortality estimates), whereas others contradict our expectations (such as the in-

creasing number of fish returning to the GAB with age, and the general absence of

young fish in the South African region).

Of course, in interpreting the regional results it is important to bear in mind

the limitations of the data. The tagging and recapture data for the longline regions,

South Africa and the SEIO in particular, are very limited. Furthermore, the division

of the catch data between South Africa and the SEIO is uncertain due to the lack of

detailed catch information for these regions (especially for the Taiwanese fishery).
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We found that the region-specific parameter estimates for the longline regions were

quite sensitive to the model constraints chosen. There is potential for the results

to be greatly improved if, in future, adequate tagging were to occur in the longline

regions, and if the catch-at-age data were improved.

Both the spatial and non-spatial model results presented correspond to a

particular set of reporting rate estimates. The difficulty in estimating reporting

rates for SBT is well-known, and is a large source of uncertainty in any analyses

that include SBT tagging data. In recent stock assessments, a range of reporting rate

options have been considered (see Appendix 19). For the analyses in this appendix,

we selected the option considered most plausible; however further analyses should

be done using alternate reporting rate options to see how the parameter estimates

are affected.

If the spatial model is to be pursued as a viable model for analysing SBT

tagging and catch data, a number of modifications would need to be made. For ex-

ample, significant differences in tag shedding rates were found to exist among taggers

(see Appendix 14), and the model should be modified to allow for such differences.

Moreover, we took reporting rate estimates and tag shedding estimates from previ-

ous analyses and used them in the model as if they were known without error. The

uncertainty in these estimates needs to be accounted for. This is especially true

for the reporting rates, for which we have already stressed that the uncertainty is

high. It would be straightforward to take the same approach used in Appendix 15

and include a separate likelihood term for the reporting rate estimates and for the

shedding estimates (keeping in mind that this approach accounts for error in the

mean estimates; it does not account for the fact that the mean estimates may be

biased). Due to the fact that the spatial model was already fairly complex and we

were uncertain of how it would perform when applied to the SBT data, we chose to

keep it as simple as possible to begin with and make additions/improvements only

after we had investigated its performance and felt they were warranted.

Finally, we did not present standard error estimates for any of the param-
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eters. These can be obtained using the standard method of inverting the Hessian

matrix, and they were provided by the software package we used to fit the model.

However, we chose not to include them because we know that they are too small.

Before considering the precision of the parameter estimates, we need to make the

model more realistically reflect the amount of uncertainty in the data. At minimum

this means including error in the reporting rates and shedding rates, but prefer-

ably the model should also allow for overdispersion in the multinomial tag-return

data, and the error disribution for the catch-at-age data should be more thoroughly

investigated.

Given the limitations in the existing data, further analyses with the spatial

model did not seem warranted. However, the results are promising with regard

to the potential for applying the spatial modelling framework to data from future

SBT tagging experiments provided these experiments are appropriately designed and

implemented (e.g., with adequate spatial distribution of tag releases and adequate

collection of data for the estimating reporting rates).
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Annex A: Competing risks theory

We examine the basics of competing risks theory for the probability of a fish sur-

viving or being caught. Let X be the time to the fish being caught, which, for

simplicity, we assume to be exponentially distributed with parameter λ. Let Y be

the time to the fish dying naturally, which we assume to be exponentially distributed

with parameter µ. We assume that X and Y are statistically independent. We are

interested in the probability that a fish is caught in the time interval (x1, x2). This

is

Pr{x1 < X < x2, Y > X} =
∫ x2

x1

λe−λx Pr{Y > x} dx

=
∫ x2

x1

λe−λxe−µx dx

=
λ

λ + µ
(e−(λ+µ)x1 − e−(λ+µ)x2)

=
λ

λ + µ
e−(λ+µ)x1 [1 − e−(λ+µ)(x2−x1)] .

Hence

Pr{x1 < X < x2, Y > X|X > x1, Y > x1}
=

λ

λ + µ
[1 − e−(λ+µ)(x2−x1)]

=
λ(x2 − x1)

λ(x2 − x1) + µ(x2 − x1)
[1 − e−(λ+µ)(x2−x1)]

=
F

F + M
[1 − e−F−M ] ,

where F = λ(x2 − x1) and M = µ(x2 − x1).

In fact, we use a slightly more general version of this argument, in which X

and Y have piecewise exponential distributions. Suppose we partition time (or age)

into J intervals with fixed cutpoints

0 = x0 < x1 < x2 < . . . < xJ = ∞ .

Set Jj = [xj−1, xj). The hazard function for X, defined quite generally as the

ratio λ(x) = f(x)/S(x) where f(x) is the density function and S(x) is the survival
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function, is piecewise constant:

λ(x) = λj if x ∈ Jj .

Under this model X is said to have a piecewise exponential distribution. The cu-

mulative hazard is

Λ(x) =
∫ x

0
λ(u) du .

Hence the survival function is

S(x) = exp(−Λ(x)) .

We assume that Y has a piecewise constant hazard function µ(x) on the same

intervals Jj . It is straightforward to check that for piecewise exponentials

Pr{xj−1 < X < xj , Y > X|X > xj−1, Y > xj−1}
=

λj

λj + µj

[1 − e−(λj+µj)(xj−xj−1)]

=
λj(xj − xj−1)

λj(xj − xj−1) + µj(xj − xj−1)
[1 − e−(λj+µj)(xj−xj−1)]

=
Fj

Fj + Mj
[1 − e−Fj−Mj ] .

This is the version we need. Note that Fj is the incremental cumulative hazard of

being caught over the interval Jj . Similarly Mj is the incremental cumulative hazard

of dying naturally over Jj.

For tagged fish, we are interested in the probability of the fish being caught

with a tag still attached. This involves not only probabilities of survival and being

caught, but also the probability of its tag(s) being shed prior to it being caught. We

generalise the above competing risks argument to include tag shedding as one of the

competing risks.

Let Z be the time to tag shedding. We assume that Z has the distribution

Pr{Z ≤ x} = (1 − ξ) + ξ [1 − exp(−ωx)]
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where (1 − ξ) is the proportion of tags shed immediately after tagging and ω is the

rate at which tags are shed over time. Then

Pr{x1 < X < x2, Y > X, Z > X} =
∫ x2

x1

λe−λx Pr{Y > x, Z > x} dx

= ξ
λ

λ + µ + ω
e−(λ+µ+ω)x1 [1 − e−(λ+µ+ω)(x2−x1)] .

Now Pr{X > x1, Y > x1, Z > x1} = ξe−(λ+µ+ω)x1 . Hence

Pr{x1 < X < x2, Y > X, Z > X|X > x1, Y > x1, Z > x1}
=

λ

λ + µ + ω
[1 − e−(λ+µ+ω)(x2−x1)]

=
F

F + M + Ω
[1 − e−(F+M+Ω)] ,

where F = λ(x2 − x1), M = µ(x2 − x1) and Ω = ω(x2 − x1).

In words, the probability that the fish is caught with a tag during time period

(x1, x2), given that it was alive at x1 with a tag, is given by F
F+M+Ω

[1− e−(F+M+Ω)].

To complete the picture, M
F+M+Ω

[1 − e−(F+M+Ω)] is the conditional probability that

the fish dies naturally with a tag during (x1, x2), and Ω
F+M+Ω

[1 − e−(F+M+Ω)] is the

conditional probability that the fish sheds a tag during (x1, x2). In this last case, the

fish might survive the time period, or it might die or be caught, but without the tag.

The competing risks argument says simply that 1 − e−(F+M+Ω) is the conditional

probability that (at least) one of the events will occur during the time period, and

the ratios F
F+M+Ω

, M
F+M+Ω

and Ω
F+M+Ω

give the further conditional probabilities

governing which one occurs first.

Note that ξ disappears. It disappears from all the conditional arguments.

Instead of starting with a probability of 1 that the fish is alive and has a tag at the

beginning of the first time period, it has a probability of ξ.

If the fish is double tagged, we introduce two independent random variables

Z1 and Z2 with parameters ω1 and ω2 respectively. Then

Pr{x1 < X < x2, Y > X, Z1 > X, Z2 > X|X > x1, Y > x1, Z > x1, Z2 > x1}
=

F

F + M + Ω1 + Ω2
[1 − e−(F+M+Ω1+Ω2)] ,
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where Ωi = ωi(x2−x1). This represents the probability that the fish is caught during

period (x1, x2) with two tags, given that it was alive at time x1 with two tags.

These arguments can all be generalised to piecewise exponential distributions

in which the intervals over which the hazard is constant are the same for each

distribution. In general, though, we shall assume that F depends on age, time

period and region, that M depends on age, but that ω1 and ω2 are constant and

equal. Since the time periods are of equal lengths, this means that Ω1 = Ω2 = Ω.
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5 Annex B: Southern bluefin tuna data

Table 1 shows the catch-at-age data for the years 1991 to 1997 inclusive. The regions

are the Great Australian Bight (GAB), South Africa (SAfr), the South-East Indian

Ocean (SEIO) and the Tasman Sea (TS). The summer season is denoted S1, and

the winter season S2. Each row gives the catch by age group for a region, year and

season.

Table 1: Catch-at-age data for the SBT fishery

Age
Region Year Season 1 2 3 4 5 6 7 8
GAB 1991 S1 42235 48037 110688 2053 11 0 0 0
GAB 1992 S1 28744 10684 80658 11646 287 8 0 1
GAB 1993 S1 1705 19548 51543 8679 693 23 0 2
GAB 1994 S1 79 865 66111 22551 1358 131 18 0
GAB 1995 S1 342 18712 94839 18546 1903 145 1 0
GAB 1996 S1 0 19702 145388 43393 1447 29 0 0
GAB 1997 S1 1889 28797 174461 43553 9259 496 0 0
SAfr 1991 S2 273 3135 18118 22353 9440 3803 3715 3713
SAfr 1992 S2 12 681 15960 28919 14905 4361 2062 1898
SAfr 1993 S2 1 1833 14821 20607 23410 15304 7171 4369
SAfr 1994 S2 0 907 16588 12350 7174 7093 4638 2665
SAfr 1995 S2 0 611 6331 12347 10981 7647 7662 5166
SAfr 1996 S2 12 614 6097 11819 20484 9878 7125 6289
SAfr 1997 S2 10 599 11559 16317 17976 13854 9682 6699
SEIO 1991 S2 554 10458 21566 2479 1523 1352 1245 1066
SEIO 1992 S2 249 3718 20298 3195 1710 1005 974 1098
SEIO 1993 S2 65 2517 13869 9191 4606 3732 2185 1274
SEIO 1994 S2 151 7379 23577 13853 6059 5361 3729 2540
SEIO 1995 S2 63 10911 25055 17355 9116 7466 5684 4828
SEIO 1996 S2 404 5770 18572 14985 9682 8842 7342 6757
SEIO 1997 S2 64 2400 14067 7158 4602 4368 4649 4976
TS 1991 S2 66 14945 25872 11949 6965 3318 2424 1729
TS 1992 S2 203 18785 34616 23709 13346 8357 4217 2465
TS 1993 S2 257 14452 39840 27629 19805 12301 7802 5069
TS 1994 S2 6 1211 12146 23023 17008 11518 7629 4618
TS 1995 S2 1 511 6850 10906 14776 10656 6618 4341
TS 1996 S2 5 194 1654 5554 7329 6657 5550 3439
TS 1997 S2 1 210 3696 4993 10306 7612 6202 4722
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We now tabulate the tag-recapture data. The majority of tag releases oc-

curred in the GAB, but moderate releases also occurred in the South-East Indian

Ocean (SEIO) and the Tasman Sea (TS). Table 2 gives the recapture numbers by

age and region for each tagged group. ‘NA’ indicates that the entry is a structural

0 (i.e., when the recapture age is younger than the release age) or that the entry

corresponds to a year beyond 1997 (the last year being included in the analysis).

Table 2: Tag-recapture data for the SBT fishery

Release Number Recaptures by Region and Age
Region Year Season Age Releases Recaps Region 1 2 3 4 5 6 7 8
GAB 1991 S1 1 3301 151 GAB 19 25 23 10 3 1 1 NA

SAfr 0 0 4 4 1 0 1 NA
SEIO 1 2 0 0 0 0 0 NA
TS 0 14 19 9 9 3 2 NA

GAB 1991 S1 2 3127 372 GAB NA 79 91 13 10 0 0 0
SAfr NA 1 2 7 3 2 1 0
SEIO NA 8 10 5 2 1 1 0
TS NA 15 44 32 19 16 5 5

GAB 1991 S1 3 810 99 GAB NA NA 50 1 0 1 0 0
SAfr NA NA 2 1 3 0 1 0
SEIO NA NA 0 1 0 0 0 1
TS NA NA 11 5 13 6 0 3

GAB 1992 S1 1 2147 133 GAB 1 10 38 27 1 3 NA NA
SAfr 0 0 1 0 3 0 NA NA
SEIO 0 1 6 1 0 0 NA NA
TS 0 10 11 9 7 4 NA NA

GAB 1992 S1 2 4646 397 GAB NA 48 79 48 4 1 0 NA
SAfr NA 0 9 15 6 3 0 NA
SEIO NA 5 4 9 3 1 1 NA
TS NA 35 65 28 19 7 7 NA

GAB 1992 S1 3 1097 100 GAB NA NA 33 1 3 2 0 0
SAfr NA NA 0 1 1 1 1 0
SEIO NA NA 5 1 1 1 0 0
TS NA NA 19 15 6 5 2 2

GAB 1993 S1 1 4898 390 GAB 2 29 178 74 36 NA NA NA
SAfr 0 0 0 5 1 NA NA NA
SEIO 0 9 6 5 5 NA NA NA
TS 0 2 16 7 15 NA NA NA

GAB 1993 S1 2 2937 225 GAB NA 31 40 40 8 1 NA NA
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SAfr NA 1 4 6 5 1 NA NA
SEIO NA 0 6 3 2 2 NA NA
TS NA 28 17 18 5 7 NA NA

GAB 1993 S1 3 2777 202 GAB NA NA 37 44 17 2 0 NA
SAfr NA NA 1 9 2 1 0 NA
SEIO NA NA 1 5 2 2 3 NA
TS NA NA 26 20 8 10 12 NA

GAB 1994 S1 1 9003 869 GAB 3 79 375 329 NA NA NA NA
SAfr 0 1 7 6 NA NA NA NA
SEIO 0 24 8 5 NA NA NA NA
TS 1 3 5 23 NA NA NA NA

GAB 1994 S1 2 3158 323 GAB NA 22 152 51 28 NA NA NA
SAfr NA 0 0 5 0 NA NA NA
SEIO NA 1 8 5 1 NA NA NA
TS NA 6 7 14 23 NA NA NA

GAB 1994 S1 3 3640 289 GAB NA NA 41 99 9 15 NA NA
SAfr NA NA 2 5 5 2 NA NA
SEIO NA NA 17 6 5 5 NA NA
TS NA NA 17 34 11 16 NA NA

GAB 1995 S1 1 8585 706 GAB 0 48 581 NA NA NA NA NA
SAfr 0 2 10 NA NA NA NA NA
SEIO 0 35 15 NA NA NA NA NA
TS 0 2 13 NA NA NA NA NA

GAB 1995 S1 2 5899 832 GAB NA 65 356 309 NA NA NA NA
SAfr NA 1 7 6 NA NA NA NA
SEIO NA 13 17 14 NA NA NA NA
TS NA 1 13 30 NA NA NA NA

GAB 1995 S1 3 2629 229 GAB NA NA 35 79 53 NA NA NA
SAfr NA NA 0 3 1 NA NA NA
SEIO NA NA 4 11 5 NA NA NA
TS NA NA 14 9 15 NA NA NA

GAB 1996 S1 1 82 3 GAB 0 3 NA NA NA NA NA NA
SAfr 0 0 NA NA NA NA NA NA
SEIO 0 0 NA NA NA NA NA NA
TS 0 0 NA NA NA NA NA NA

GAB 1996 S1 2 2518 414 GAB NA 56 310 NA NA NA NA NA
SAfr NA 0 4 NA NA NA NA NA
SEIO NA 17 11 NA NA NA NA NA
TS NA 2 14 NA NA NA NA NA

GAB 1996 S1 3 1511 315 GAB NA NA 103 178 NA NA NA NA
SAfr NA NA 2 1 NA NA NA NA
SEIO NA NA 7 8 NA NA NA NA
TS NA NA 2 14 NA NA NA NA

GAB 1997 S1 1 884 1 GAB 0 NA NA NA NA NA NA NA
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SAfr 0 NA NA NA NA NA NA NA
SEIO 1 NA NA NA NA NA NA NA
TS 0 NA NA NA NA NA NA NA

GAB 1997 S1 2 592 15 GAB NA 12 NA NA NA NA NA NA
SAfr NA 0 NA NA NA NA NA NA
SEIO NA 3 NA NA NA NA NA NA
TS NA 0 NA NA NA NA NA NA

GAB 1997 S1 3 526 91 GAB NA NA 90 NA NA NA NA NA
SAfr NA NA 0 NA NA NA NA NA
SEIO NA NA 1 NA NA NA NA NA
TS NA NA 0 NA NA NA NA NA

SAfr 1995 S2 3 3 0 GAB NA NA 0 0 0 NA NA NA
SA NA NA 0 0 0 NA NA NA
SEIO NA NA 0 0 0 NA NA NA
TS NA NA 0 0 0 NA NA NA

SEIO 1995 S2 1 9 0 GAB 0 0 0 NA NA NA NA NA
SAfr 0 0 0 NA NA NA NA NA
SEIO 0 0 0 NA NA NA NA NA
TS 0 0 0 NA NA NA NA NA

SEIO 1995 S2 2 61 9 GAB NA 0 6 3 NA NA NA NA
SAfr NA 0 0 0 NA NA NA NA
SEIO NA 0 0 0 NA NA NA NA
TS NA 0 0 0 NA NA NA NA

SEIO 1995 S2 3 32 1 GAB NA NA 0 1 0 NA NA NA
SAfr NA NA 0 0 0 NA NA NA
SEIO NA NA 0 0 0 NA NA NA
TS NA NA 0 0 0 NA NA NA

TS 1991 S2 2 82 16 GAB NA 0 3 0 0 0 0 0
SAfr NA 0 0 0 0 0 0 0
SEIO NA 0 0 0 0 0 0 0
TS NA 11 1 0 0 0 0 1

TS 1991 S2 3 1 0 GAB NA NA 0 0 0 0 0 0
SAfr NA NA 0 0 0 0 0 0
SEIO NA NA 0 0 0 0 0 0
TS NA NA 0 0 0 0 0 0

TS 1992 S2 2 69 9 GAB NA 0 3 0 0 0 0 NA
SAfr NA 0 0 0 0 0 0 NA
SEIO NA 0 0 0 0 0 0 NA
TS NA 0 1 2 3 0 0 NA

TS 1992 S2 3 13 2 GAB NA NA 0 0 0 0 0 0
SAfr NA NA 0 0 0 0 0 0
SEIO NA NA 0 0 0 0 0 0
TS NA NA 0 1 1 0 0 0

TS 1993 S2 2 224 41 GAB NA 0 15 5 0 0 NA NA
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SAfr NA 0 0 0 0 0 NA NA
SEIO NA 0 1 0 0 0 NA NA
TS NA 7 5 2 4 2 NA NA

TS 1993 S2 3 132 23 GAB NA NA 0 2 1 0 0 NA
SAfr NA NA 0 0 0 0 0 NA
SEIO NA NA 0 0 0 0 0 NA
TS NA NA 8 6 2 2 2 NA

TS 1994 S2 2 19 3 GAB NA 0 2 1 0 NA NA NA
SAfr NA 0 0 0 0 NA NA NA
SEIO NA 0 0 0 0 NA NA NA
TS NA 0 0 0 0 NA NA NA

TS 1994 S2 3 97 14 GAB NA NA 0 7 0 0 NA NA
SAfr NA NA 0 0 0 0 NA NA
SEIO NA NA 0 0 0 0 NA NA
TS NA NA 0 3 1 3 NA NA

TS 1995 S2 2 8 1 GAB NA 0 0 1 NA NA NA NA
SAfr NA 0 0 0 NA NA NA NA
SEIO NA 0 0 0 NA NA NA NA
TS NA 0 0 0 NA NA NA NA

TS 1995 S2 3 64 7 GAB NA NA 0 3 0 NA NA NA
SAfr NA NA 0 0 0 NA NA NA
SEIO NA NA 0 0 0 NA NA NA
TS NA NA 3 0 1 NA NA NA

TS 1996 S2 2 6 0 GAB NA 0 0 NA NA NA NA NA
SAfr NA 0 0 NA NA NA NA NA
SEIO NA 0 0 NA NA NA NA NA
TS NA 0 0 NA NA NA NA NA

TS 1996 S2 3 5 0 GAB NA NA 0 0 NA NA NA NA
SAfr NA NA 0 0 NA NA NA NA
SEIO NA NA 0 0 NA NA NA NA
TS NA NA 0 0 NA NA NA NA

TS 1997 S2 2 1 0 GAB NA 0 NA NA NA NA NA NA
SAfr NA 0 NA NA NA NA NA NA
SEIO NA 0 NA NA NA NA NA NA
TS NA 0 NA NA NA NA NA NA

TS 1997 S2 3 27 0 GAB NA NA 0 NA NA NA NA NA
SAfr NA NA 0 NA NA NA NA NA
SEIO NA NA 0 NA NA NA NA NA
TS NA NA 0 NA NA NA NA NA

Table 3 gives the reporting rate estimates by region, year, season and age, for

seasons in which fishing occurs. These estimates were obtained by taking a weighted
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average of the fishery-specific reporting rate estimates from Table 4a of Appendix

19 (for fisheries relevant to a given region), using the catch-at-age data by fishery

as weights. In particular:

For the GAB, we use the reporting rate estimates based on tag seeding data

and assume they hold for all components of the GAB catches (surface, farm and

very limited longline), except for farm catches in 1996 where we need to account for

mass deaths due to disease. Specifically, to estimate the reporting rate for year y

and age a, we took an average of the reporting rate estimates for Fishery 2 (surface

fishery), option b, and Fishery 3 (farm fishery), option b, from Table 4a of Appendix

19 for year y, weighting them by the non-farm and farm catches of age a fish in year

y, respectively.

For the Tasman region (TAS), catches are comprised of Japanese longline

catches from vessels with observers (Fishery 4 in Appendix 19 since virtually all

observer catches occurred within the Australian EEZ), Japanese longline catches

from vessels without observers (Fisheries 6 and 7 in Appendix 19), and New Zealand

domestic catches (assumed to have a zero reporting rate). To estimate the reporting

rate for year y and age a, we took an average of the reporting rate estimates for

Fishery 4, Fishery 6 and Fishery 7, option a, from Table 4a of Appendix 19 for year

y as well as an estimate of 0 for the NZ fishery, weighting them by the catches of

age a fish in year y that occurred in the Tasman region in each of the respective

four fisheries.

For the South-East Indian Ocean region (SEIO), catches are comprised of

Japanese longline catches from vessels without observers (Fisheries 6 and 7 in Ap-

pendix 19) and other miscellaneous catches (for which the reporting rate is assumed

to be 0%). There were some very limited catches from vessels with observers but we

were unable to separate these data out, so we assume they have the same reporting

rate as the unobserved catches. To estimate the reporting rate for year y and age a,

we took a weighted average of the reporting rate estimates for Fishery 6 and Fishery

7, option a, from Table 4a of Appendix 19 for year y as well as an estimate of 0 for
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the miscellaneous catches, where we weighted them by the catches of age a fish in

year y that occurred in the SEIO region in each of the respective three fisheries.

Finally, for the South African region (SAfr), reporting rates for a given year

and age are assumed to be 40% of the corresponding reporting rate for the SEIO

region. This is consistent with option b for Fishery 8 of Appendix 19, where Fish-

ery 8 corresponds to catches in the South African region. An explanation for this

assumption can be found in the Polacheck et al. (1996) reference within Appendix

19.

Table 3: Reporting rates for the SBT fishery

Age
Region Year Season 1 2 3 4 5 6 7 8
GAB 1991 S1 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81
GAB 1992 S1 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81
GAB 1993 S1 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81
GAB 1994 S1 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81
GAB 1995 S1 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81
GAB 1996 S1 0.81 0.437 0.545 0.578 0.664 0.81 0.81 0.81
GAB 1997 S1 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81
SAfr 1991 S2 0.119 0.107 0.019 0.14 0.141 0.14 0.139 0.14
SAfr 1992 S2 0.14 0.088 0.025 0.14 0.141 0.14 0.14 0.139
SAfr 1993 S2 0.273 0.168 0.079 0.08 0.132 0.108 0.122 0.151
SAfr 1994 S2 0.323 0.27 0.162 0.147 0.188 0.172 0.2 0.237
SAfr 1995 S2 0.087 0.072 0.038 0.047 0.072 0.064 0.074 0.09
SAfr 1996 S2 0.215 0.106 0.017 0.06 0.131 0.127 0.152 0.181
SAfr 1997 S2 0.309 0.207 0.035 0.091 0.2 0.186 0.215 0.246
SEIO 1991 S2 0.297 0.268 0.048 0.351 0.351 0.349 0.347 0.349
SEIO 1992 S2 0.35 0.221 0.063 0.351 0.351 0.349 0.349 0.348
SEIO 1993 S2 0.682 0.419 0.198 0.201 0.329 0.271 0.305 0.378
SEIO 1994 S2 0.808 0.676 0.405 0.367 0.47 0.429 0.5 0.594
SEIO 1995 S2 0.218 0.179 0.095 0.118 0.179 0.159 0.185 0.224
SEIO 1996 S2 0.537 0.264 0.042 0.15 0.329 0.318 0.379 0.453
SEIO 1997 S2 0.774 0.516 0.087 0.228 0.499 0.465 0.538 0.615
TS 1991 S2 0.589 0.505 0.472 0.435 0.425 0.416 0.411 0.41
TS 1992 S2 0.388 0.43 0.408 0.401 0.388 0.383 0.382 0.385
TS 1993 S2 0.724 0.768 0.732 0.717 0.712 0.71 0.711 0.713
TS 1994 S2 0.157 0.876 0.852 0.842 0.83 0.826 0.827 0.829
TS 1995 S2 0.369 0.416 0.393 0.365 0.331 0.308 0.319 0.325
TS 1996 S2 0.817 0.715 0.747 0.71 0.707 0.701 0.694 0.672
TS 1997 S2 1 1 0.985 0.994 0.994 0.986 0.98 0.95
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Abstract 

The question of what information can be obtained from tagging experiments when tag return 
data with reliable reporting rates and catch at age data are available from only one component 
of a multi-component fishery is examined in the context of SBT fisheries. A Petersen-type 
mark and recapture estimator of abundance is used as the basis of our examination. The 
estimator is applied to tag return data from tagging experiments conducted on SBT in the 
1990s to examine the type of performance that might be expected from the current CCSBT 
tagging program, given that reliable reporting rates are unlikely to be available for the 
longline component of the fishery. The results suggest that using only the SBT tag returns 
from the surface component of the entire juvenile fishery may still allow for information on 
juvenile abundances and/or trends, but this requires relatively consistent mixing patterns of 
tagged fish with the complete population of juvenile fish. It also requires that reliable 
estimates of reporting rates and of the age distribution of the surface catches are available, 
which emphasizes the need for developing appropriate statistical estimators for these 
quantities.  The results presented for the 1990s SBT tagging program are reasonably 
consistent with the assumption of consistent and high levels of mixing. They also indicate no 
increase (and possibly a decrease) in the strength of cohorts at age 1 during the first half of 
the 1990s, and suggest a declining trend in abundance by ages 2 and 3 for the surviving 
members of these cohorts. 
 

Introduction 

Tagging experiments provide a potentially informative approach for reducing uncertainty in 

stock assessments by providing direct estimates of fishing and natural mortality rates and/or 

abundance (e.g. Polacheck et al. 1998, 2003; Hoenig et al. 1998; Pollock et al. 2002). This is 

particularly true for fisheries in which fishery-independent abundance surveys are infeasible 

and therefore commercial catch rate (CPUE) data must be depended on as the only measure 

of relative abundance (e.g. in pelagic longline and purse seine fisheries). However, reliable 

estimation of fishing and natural mortality rates and/or abundance from tagging data requires 

that estimates of reporting rates be available1. Estimation of reporting rates can be 

problematical for some fishery components in a multi-component fishery. In such cases, can 

tagging experiments still produce estimates that are useful for stock assessments? The answer 

to this question is likely to depend upon the nature of the fishery and the other data available 

from the fishery2. 

 

                                                 
1 Note if one is willing to assume reporting rates are constant, it is theoretically possible to simultaneously 
estimate reporting rates as well as fishing and natural mortality rates in a multi-year tagging program of the 
same cohort. However, the precision of the estimates are generally poor. 
2 For example, if tags are well mixed and there is good information on the catch by age for all fishery 
components, reporting rates for a missing component can be estimated based on the return rate of tagged fish in 
that component compared with the return rate of tagged fish in components with reliable reporting rates (e.g. 
Hearn et al. 2003). 
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Tagging programs were conducted on juvenile southern bluefin tuna (SBT) in the 1990s in 

order to provide estimates of fishing mortality and recruitment (e.g. Polacheck et al. 1998). 

The CCSBT is currently conducting an extensive tagging program with a similar objective 

(Anon. 2001a), for which tagging commenced in 2001/2002. SBT are harvested by fishing 

fleets from a number of countries; in particular, juvenile SBT are harvested by Australian 

purse seiners within the Great Australian Bight (GAB) and by longline fleets from Japan, 

Korea and Taiwan on the high seas. Observers are currently the only practical and feasible 

way to obtain estimates of reporting rates from pelagic longline vessels (Polacheck et al. 

2004). In the previous 1990s SBT tagging experiments, observers on Japanese longline 

vessels (principally within Australia’s EEZ) were used as a basis for estimating longline 

reporting rates (Polacheck et al. 1996, 1998). Even so, the estimates of reporting rates had a 

high degree of uncertainty associated with them (Polacheck et al. 1998).  However, the 

Japanese fleet no longer operates with the Australian EEZ, so this source of observer data no 

longer exists. In the current situation, obtaining even minimal levels of observer coverage in 

high-seas longline fisheries has proven to be extremely difficult. Thus, although the CCSBT 

set a target of 10% observer coverage for all of its major fisheries in 2001 (Anon. 2001b), on 

the high seas only Japan had placed observers on its vessels in 2002 and the coverage was 

~3.5% . No substantive increases were expected in 2003 for any of the fleets (Anon. 2003). 

The 2003 CCSBT Scientific Committee concluded that the current levels of observer 

coverage in the Japanese, Korean and Taiwanese longline fleets are not high enough to 

provide useful estimates of reporting rates from these fleets (Anon. 2003).  Thus, reliable 

estimates of the reporting rates for the main longline fisheries will not be obtainable for at 

least the first several, if not all, years during which significant tag returns would be expected  

from the current CCSBT releases. 

 

The current paper examines the question of what information can be obtained from tagging 

experiments when tag return data with reliable reporting rates and catch at age data are 

available from only one component of a multi-component fishery.  The question is addressed 

in the context of SBT fisheries, and the approach taken is to consider the tagging and catch at 

age data in the context of a Petersen-type mark and recapture estimator of abundance (Seber 

1973). A Petersen estimator is based on the ratio of the observed number of tags returned 

within samples taken from the population given the known number of tags released into the 

population. In a fishery context, the catch at age data constitutes a sample from the 

population. However, unlike most situations in which a Petersen-type estimator is used, the 
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size of the sample examined for tags is estimated rather than being known exactly. The 

approach developed is applied to data from tagging experiments conducted on SBT in the 

1990s to examine the performance that might be expected from the current CCSBT tagging 

program, given that the reliable reporting rates are unlikely to be available for the longline 

component of the fishery. 

 

Data and Background 

Data from the multi-year, multi-age tagging experiments on juvenile SBT conducted in the 

1990s (see Polacheck et al. 1998 and references therein) are used here. These experiments 

tagged fish in Western Australia (WA) and the Great Australian Bight (GAB)3. Fish were 

tagged in WA from 1991 through 1995 and in the GAB from 1991 through 1997. Fish of ages 

0 to 2 were tagged in WA, and fish of ages 1 to 5 were tagged in the GAB.  Only releases 

between ages 1 and 2 for WA and ages 1 and 3 for the GAB are considered here since only a 

small number of releases were outside these age ranges. The age of a fish when tagged was 

estimated based on its length using cohort slicing and the SBT growth curve currently being 

used by the CCSBT for its stock assessments.  All tagging was done between November and 

April, so the ages were adjusted in order that fish tagged in November or December from a 

given year-class/cohort were placed in the same age grouping as those tagged after 

December.  This adjusted age is referred to as a fish’s “cohort” age4, and it is the age used 

throughout this paper.  Table 1 provides the number of tags released by area, cohort and age. 

The age of the fish tagged in each area reflects the predominant age classes found during 

tagging in each area.  

 

In this paper, tag returns only from the GAB are considered. Juvenile SBT (ages 1 to 4) tend 

to spend their summers in coastal waters of Australia, where they are harvested by Australian 

surface fisheries, and their winters in deeper oceanic waters, where they are harvested by 

various longline fisheries. Age 0 to 2 fish are found in WA, while age 1 to 4 fish are 

commonly found in the GAB. The proportion of the global SBT stock for each of these age 

classes found in WA and the GAB during the summer months is not known; however, it is 

thought to be a relatively high but diminishing with age. Over the period covered by the 
                                                 
3 Relatively small numbers of fish were tagged in other areas, primarily in waters off eastern Tasmania and from 
longline vessels. These releases have been excluded from the analyses presented here.  
4 SBT spawn between September and April. For the purpose of aging, all fish are assumed to have a birth date of 
January 1. Cohort age is defined as its estimated age from cohort slicing  (i.e. its calendar age) if a fish was 
tagged or caught prior to June and as one plus its estimated age from cohort slicing if it was tagged or caught 
after the end of June.   
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tagging experiments, the Australian surface fishery shifted from predominately a pole and 

line fishery targeting fresh SBT for the Japanese sashimi market to a purse seine fishery for 

tuna farming. Nevertheless, for the fishing seasons of tag recoveries considered here (1991 

through 1998) the estimated age composition of the surface catch in terms of cohort ages was 

relatively consistent, with some shift away from smaller/younger fish (Figure 1). 

 

Methods 

Basic estimator 

The basic estimator used in this paper is: 

 

 
rcaA

rcAac
rcaA R

NC
P

,,,

,,,*
,,, =  (1) 

where: 

A =age of tagging; 

a = age or ages of recapture (i.e. can be a vector of more than one age); 

c = cohort;  

r = the region of tagging (WA, GAB, or WA and GAB combined); 

acC ,  = the catches from cohort c in the GAB at age a; 

rcaAR ,,,, = the number of recaptures in the GAB from cohort c at     

                age a that were released in region r at age A; 

rcAN ,,  = the number of releases from cohort c at age A in region r; 

*
,,, rcaAP = a measure of a cohort c’s “strength” based on recaptures at  

             age a from releases at age A in region r.  

 

As developed below, alternative interpretations of  are possible depending upon 

assumptions made about mixing and the proportion of the juvenile stock in the GAB. Note 

 is only calculated using returns from years after the year of release (i.e. for  a>A) to 

allow for heterogeneity in recaptures during the year of tagging (e.g. short-term incomplete 

mixing during a season within a region; variability in the time of releases relative to the 

fishery; some releases having occurred in areas near the commercial fishery). In the results 

presented here tag reporting rates are assumed to be 100%. 

*
,,, rcaAP

*
,,, rcaAP
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Interpretation of  assuming complete mixing *
,,, rcaAP

If there is full mixing of the tagged fish with the untagged fish from a cohort prior to there 

being any (substantial) differential fishing mortality, then   provides an estimate of the 

size of a cohort at the age of tagging. This can easily be seen by deriving expressions for the 

expected catches and number of tag recaptures. Assuming that the fish tagged in a region are 

a representative sample of the fish in that region and that tagging does not affect their 

subsequent behaviour or mortality, the expected number of recaptures in the GAB of age a 

fish from cohort c that were released at age A in region r is: 

*
,,, rcaAP

 

 ( ), ,( ),
, , , , , , , , ,

,

1 a c a A a c rf m za c
A a c r A a c r A a c r

a c a

f
R N e

f m
ρ

+
−− + −= −

+
1, ,e  (2) 

 

where  

,a cf  = the fishing mortality rate in the GAB for age a fish from cohort c; 

am  = the natural mortality rate for age a fish (assumed for simplicity to be constant 

across cohorts); 

, , ,A a c rρ  = the fraction of fish from cohort c that were in region r at age A that are in the 

GAB at age a (i.e. year c+a) during the fishing season; 

, 1, ,A a c rz+ −  = the cumulative natural and fishing mortality rates between ages A and a−1 

(inclusive) for fish from cohort c that were in region r at age A  

 

Similarly, the number of fish caught in the GAB at age a from cohort  c (i.e. in year c+a) that 

were in region r at age A (i.e. the number of fish caught for which the tagged fish constitute a 

representative sample) is: 

 

 ( ), ,( ),
. , , , , , , , ,

,

1 a c a A a c rf m za c
A a c r A a c r A c r A c

a c a

f
C P e

f m
ρ ϕ

+
−− + −= −

+
1, ,e  (3) 

 

 where: 

rcA ,,ϕ  = the fraction of cohort c that was in region r at age A;  

cAP ,   = the size of cohort c at age A; 
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rcaAC ,,.  = the catch of age a fish in the GAB in year a+c (from cohort c) that were in 

region r at age A.  

 

In a parallel manner, the expected catch in the GAB of age a fish from cohort c that were not 

in region r (referred to as r*) at age A is simply: 

 

 ( ) ( ) *, ,
* *

( ),
, , ,. , , , , ,

,

1 1 a c a A a c r
zf ma c

A c r A cA a c r A a c r
a c a

f
C P e

f m
ρ ϕ

+
−

−− += − −
+

1, ,e  (4) 

 

Adding equations 3 and 4 provides an expression for the total catch in the GAB from a cohort 

at age a (i.e,  from equation 1). Under full mixing and before any differential fishing 

mortality,  the 

acC ,

ρ  and  parameters are equal across regions (i.e. +z *, , , , , ,A a c r A a c r
ρ ρ=  and 

*, 1, , , 1, ,A a c r A a c r
z z+ +

− −
= ), and by dividing the total catch expression (i.e. equation 3 + 4) by 

equation 2, it is straightforward to show that: 

 

 
rcA

rcaA

cA

ac

N
R

P
C

,,

,,,

,

, =  (5) 

 

In other words,  provides an estimate of a cohort’s size at the time/age of tagging (*
,,, rcaAP ,A cP ).  

Note that  can be calculated using returns from any age (or set of ages) after the age of 

tagging, allowing for multiple estimates of a cohort’s size at the time of tagging.   

,A cP

 

If there was a short period of non-mixing (such that natural mortality could be ignored) in 

which fishing mortality was primarily in the area of releases and the recaptures were known 

for that period,  could then be used to provide an estimate of a cohort’s size at the time 

after mixing by reducing the number of releases by the number of short term recaptures. For 

example, in the SBT case, a small number of the GAB releases occurred during the fishing 

season (rather than at the end of the season) and in areas near the commercial fishery; taking 

into account the first year’s recaptures in the surface fishery could address this problem.  

Because the numbers of first year recaptures were small, recaptures that occurred during the 

season of release have not been excluded in the results presented below, but a comparison of 

*
,,, rcaAP
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the estimates when these recaptures were excluded showed that it had only a minimal effect 

on the estimates of . *
,,, rcaAP

Interpretation of  assuming incomplete mixing *
,,, rcaAP

If there is substantial non-mixing, then the relationship between  and the size of the 

cohort (

*
,,, rcaAP

,A cP ) will depend upon: the fraction of the cohort was in the region of tagging at the 

time of tagging ( rcA ,,ϕ ); the relative fraction of the cohort that go into the GAB at age a that, 

at the time of tagging, were in the region of tagging compared to those that were not in the 

region of tagging (i.e. , , ,A a c rρ  compared to *, , ,A a c r
ρ ); and the differential in the fishing 

mortality rates that the two different groups of fish experience (i.e.  compared to , 1, ,A a c rz+ −

*, 1, ,A a c r
z+

−
).  If all of these are highly variable over time, then estimates of  relative to *

,,, rcaAP

,A cP  will be highly variable and will not provide any useful information about either absolute 

abundance or trends in abundance.  However, there may be some situations in which the ratio 

/*
,,, rcaAP ,A cP  will be relatively constant (i.e. a constant relative bias) and thus a time series of 

 will provide a relative index of .  *
,,, rcaAP ,A cP

 

Appendix 1 provides tables of /*
,,, rcaAP ,A cP for a range of values for the parameters rcA ,,ϕ , 

, , ,A a c rρ , *, , ,A a c r
ρ , , 1, ,A a c rz+ −  and *, 1, ,A a c r

z+
−

. These tables provide an indication of the degree of 

bias in  that can occur. The bias in can be either positive or negative and its 

potential range is quite large (i.e. / ranges from 0.31 to 7.76 for the range of the 

parameter values examined in Appendix 1). As such, without any additional information on 

the values for the parameters 

*
,,, rcaAP *

,,, rcaAP

*
,,, rcaAP ,A cP

rcA ,,ϕ , , , ,A a c rρ , *, , ,A a c r
ρ , , 1, ,A a c rz+ −  and *, 1, ,A a c r

z+
−

, the absolute 

values of the estimates for  would be of little value (even as possible bounds for *
,,, rcaAP ,A cP ). 

Examination of the tables in Appendix 1 do suggest that there are some circumstances under 

which a time series of  could provide a useful relative index of *
,,, rcaAP ,A cP .  This would 

clearly apply if rcA ,,ϕ , , , ,A a c rρ , *, , ,A a c r
ρ ,  and , 1, ,A a c rz+ − *, 1, ,A a c r

z+
−

 were constant over time. 

However, there appear to be some other situations in which the variability in the relative bias 

would be expected to remain relatively small. For example, if rcA ,,ϕ  and , , ,A a c rρ  are 
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reasonably  high and consistent  (i.e. a large fraction of a cohort at the age of tagging is 

available for tagging and the proportion of these fish that go into to the area of recapture is 

high) combined with low rates of exploitation prior to the recovery for the tagged component 

of the population (conditions which are thought to apply to 1-year-old SBT), then 

/*
,,, rcaAP ,A cP would appear relatively insensitive to reasonable variation in *, , ,A a c r

ρ  and 

*, 1, ,A a c r
z+

−
. 

    

It is also worth noting that if , , ,A a c rρ  and , 1, ,A a c rz+ −  are relatively constant, then  would 

provide a relative abundance index of the number of age a fish from a cohort in the area of 

recapture.  In the case of SBT, given that fishing mortality rates on age 1 are near zero, a time 

series of estimates of  from returns at age 2 would provide a good measure of relative 

abundance of age 2 fish in the GAB as long as 

*
,,, rcaAP

*
,,, rcaAP

, , ,A a c rρ  was relatively constant (i.e. as long as 

in each year the same proportion of age 1 fish that were in the region of tagging go into the 

GAB at age 2).  In this situation, the data provide a straightforward Petersen estimate except 

that the number of marked fish available for recapture is unknown but has been 

proportionally reduced by the same fraction in each year.  

Variance and confidence intervals for  *
,,, rcaAP

There are two principle sources of errors in the estimates of  (assuming 100% reporting 

rates). The first is the sampling error associated with the number of tags recaptured and the 

second is estimation error associated with the number of fish caught during a year. There is 

also potential error in the actual number of tags released by age from a cohort due to aging 

errors in the cohort sliced age estimates. This latter source of error is not considered here.  

*
,,, rcaAP

 

Tag return data are commonly modelled as multinomial. However, there is a number of 

factors that lead to recaptures being over-dispersed relative to a multinomial (e.g. 

heterogeneity in recapture probabilities as a result of schooling behaviour, or variability in 

selectivity among vessels). Previous analyses of these tagging data indicated over-dispersion 

in the data exists and a bootstrap approach was suggested as a mechanism to estimate the 

variance associated with sampling error in the number of recovered tags (Polacheck et al. 

1998).  Thus, a bootstrap approach was used here.  Bootstrap samples were constructed by 

randomly selecting, with replacement, days from which tag releases occurred during a release 
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season and area. Days were selected until the bootstrap sample comprised the same number 

of days for which tagging actually occurred. All tags released on the selected days and their 

associated recoveries were included in the bootstrap sample. The bootstrap samples were thus 

conditioned on the number of days for which tagging occurred; the actual number of tags 

included in different bootstrap samples varied. 

 

The appropriate approach to estimate the error associated with the catch at age estimates is 

less clear. The estimates of the catch at age are derived from a complex system of sampling 

the catch for length, converting the sampled length measurements to age estimates using 

cohort slicing, then scaling up the estimated sample age distribution using estimates of the 

total catch. Total catch in numbers is estimated from the landed weight of the catch divided 

by the estimated mean weight in the case of pole and line caught fish, and from video counts 

of fish during transfers from towing to farm cages in the case of the purse seine caught fish. 

For the purpose of getting an indication of how errors in the estimated catch at age data 

contribute to the error in the estimates of , a Monte-Carlo approach was taken. In this 

approach, it was assumed that the major source of error in the catch at age estimates comes 

from estimating the age distribution; the total catch within a fishing season was assumed to 

be known exactly.  Monte-Carlo re-sampling of the catch at age estimates was then 

performed assuming multinomial sampling with a pre-specified effective sample size. A 

sample size of 50 was used in the results presented here. 

*
,,, rcaAP

 

A single bootstrap sample was combined with one realization from the Monte-Carlo re-

sampling of the catch at age data to produce a single “bootstrap/Monte-Carlo” estimate of  

. This process was repeated 1000 times to derive an estimate of the coefficient of 

variation (CV) and confidence interval for .   Note that in some cases a bootstrap 

sample could contain a set of releases for which there were zero recaptures for the age range 

of recaptures being considered.  In such cases, it was not possible to estimate , and 

such a bootstrap sample was excluded in the calculation of the bootstrap mean, variance and 

confidence interval for that age range. This will underestimate the overall uncertainty. The 

bootstrap/Monte-Carlo estimates of the CVs and confidence intervals presented here are 

clearly conditional on the assumed effective sample size for the catch at age data, but they 

*
,,, rcaAP

*
,,, rcaAP

*
,,, rcaAP
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provide both an indication of what these values might be and the relative contribution of the 

error associated with the tagging and catch at age data in the overall estimates of . *
,,, rcaAP

 

Results 

Figure 2 compares estimates of  based on returns at age 2, 3, 4 and 2-4 pooled for fish 

released at age 1 in WA. With the exception of the estimate based on returns of age 2 fish for 

the 1994 cohort, the estimates based on the returns for different ages exhibit a large degree of 

consistency within a cohort (e.g. the 90% confidence error bars for the age-specific return 

estimates overlap with the pooled age estimates). Such agreement is consistent with full and 

complete mixing of the tagged fish with all the fish from a cohort. In the case of the 1994 

cohort, the large difference stems from very few tagged fish having been returned at age 2 

relative to the estimated number of age 2 fish caught, although the very wide error bars for 

this estimate indicate that there is large uncertainty associated with it. Figure 3 presents 

similar estimates as those in Figure 2 except the estimates are based on age 2 releases in WA. 

Figures 4 to 6 present similar results for releases in the GAB at age 1, 2 and 3 respectively.  

In general, the estimates based on returns at different ages tended to be relatively consistent 

within a cohort, although fewer actual comparisons could be made in some of these figures 

(e.g. Figure 3 is sparse because relatively few age 2 fish are tagged in WA; in Figure 6, which 

shows results for age 3 releases in the GAB, estimates are only possible using age 4 returns). 

The largest discrepancy in the age-specific estimates in these later figures is between the 

1991 cohort estimates using age 3 versus age 4 returns from releases at age 2 in the GAB 

(Figure 5). In this case, it is not possible to distinguish which is the more likely “outlier”. In 

this context, the estimate for the 1991 cohort using age 3 releases (based on age 4 returns) in 

Figure 6 also appears to be low based on the time trend in the estimates. It is perhaps worth 

considering that the 1991 cohort estimates based on age 4 returns (from age 2 and 3 GAB 

releases) and the 1994 cohort estimates based on age 2 returns (from age 1 WA releases) are 

dependent upon the estimates of the catch at age for the 1994/1995 and 1995/1996 fishing 

seasons. Sampling protocols to deal with the increasing farm catches were developing during 

this period. As such, the age compositional data from this period may be less reliable and 

warrant further examination. 

*
,,, rcaAP

 

Figure 7 compares the estimates of   using age 1 releases from WA, the GAB,  and 

both areas combined. Figure 8 shows similar results but for age 2 releases. In both cases, only 

*
,,, rcaAP
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the estimates based on the pooled tag return data up through age 4 are shown. For both age 1 

and 2 releases, the estimates of  using WA and GAB releases appear reasonably 

consistent. This could be considered further indication of a high degree of mixing of tagged 

fish with all the fish from a cohort. The estimates of  for the combined WA and GAB 

release data tend to follow closely the estimates for either the WA estimates (in the case of 

age 1 releases) or the GAB estimates (in the case of age 2 releases). This reflects the fact that 

releases from WA tend to dominate the overall age 1 releases, while GAB releases tend to 

dominate the age 2 releases for each cohort (Table 1). This simply reflects the areas where 

these age-classes of fish are generally found. 

*
,,, rcaAP

*
,,, rcaAP

 

A further check of the consistency of the  estimates in terms of mixing and as a 

possible measure of a cohort’s absolute abundance at the age of tagging is to compare the 

estimates for each cohort across release ages. If the estimates represent estimates of absolute 

abundance, then the estimates at each successive release age should decrease, reflecting the 

natural and fishing mortality that occurred on each cohort. Figure 9 compares the estimates of 

abundance for ages 1 and 2 based on the combined releases from WA and the GAB and 

returns pooled across all recapture ages through age 4.  Figure 10 provides a similar 

comparison but for age 1, 2 and 3 estimates based on releases from the GAB only. In the case 

of the releases from the GAB (Figure 10), the estimates for a cohort always decrease with age 

and the magnitude would appear reasonable. However, this would best be evaluated within an 

overall stock assessment  that considered all catch from a cohort. In the case of the estimates 

from the combined releases (Figure 9), the estimates of age 1 abundance are generally greater 

than the age 2 estimates.  However, in three of the six comparisons

*
,,, rcaAP

5, the differences appear to 

be relatively small if natural mortality rates are considered. For age 1 SBT, natural mortality 

rates have been estimated to be relatively high (~0.3-0.5) based on alternate analyses of these 

same tagging data (Polacheck et al. 1998). As noted above, the estimates for the combined 

age 1 releases are dominated by releases from WA (with the exception of the 1995 and 1996 

cohorts), while the age 2 releases are dominated by releases from the GAB. This would 

suggest that, to the extent that these combined estimates for ages 1 and 2 are considered 

inconsistent with an assumption of complete mixing, a greater fraction of the stock of age 1 

fish represented by the tagged fish in WA ends up in the GAB than the fraction of the stock 

                                                 
5 Note that the 1995 age 1 estimate is based on only 82 releases from the GAB (as there were no WA releases in 
this year) and 15 returned tags (see Tables 1 and 2), and perhaps should be excluded in this comparison. 
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of age 2 fish represented by the tagged fish in the GAB (i.e. too many age 1 WA releases 

were recaptured relative to age 2 GAB releases).  

 

Discussion 

The estimates of  presented here suggest that using only the SBT tag returns from the 

surface component of the entire juvenile fishery may still allow for information on juvenile 

abundances and/or trends.  This requires relatively consistent mixing patterns of tag fished 

with the complete population of juvenile fish. From the results presented for the 1990s SBT 

tagging program, the estimates of  for a cohort at a particular age and based on a 

particular area of release (e.g. WA or GAB) are relatively consistent using returns at different 

ages, suggesting relatively consistent, if not complete mixing. Comparisons of the estimates 

for different ages of release also suggest a reasonable degree of consistency in mixing for 

releases at age 1, 2 and 3 from the GAB, but some concerns about lack of complete mixing 

within the juvenile population when estimates based on combined releases from WA and 

GAB are considered. The results suggest that possibly too high of a proportion of age 1 

releases (particularly from WA) are subsequently recaptured in the GAB relative to age 2 

releases. To the extent that the estimates presented here from the 1990s tagging experiments 

are considered to provide information on juvenile abundances, the results provide no 

indication of an increase (and possibly a decrease) in the strength for cohorts at age 1 from 

the first half of the 1990s, and suggest a declining trend by age 2 and 3 in abundance for the 

surviving members from these cohorts. 

*
,,, rcaAP

*
,,, rcaAP

 

It should be emphasised that the estimates using only tag return data from the Australian 

fishery as presented here require that reliable estimates of reporting rate and of the age 

distribution of the surface catches are available. As such, the level of precision and potential 

biases in the resulting estimates of  will be critically dependent upon the level of 

sampling for lengths in the surface fishery and the accuracy with which these are converted to 

age frequency estimates for the entire catch. The estimates of the CVs presented here for 

 are only indicative as they are based on a rather arbitrary assumption of multinomial 

sampling error for the catch at age data with an effective sample size of 50.  In most cases, 

the error in the catch at age tends to be an equal or dominant contributor (compared to the 

error in the tag returns) to the estimates of the CVs (Table 2). Thus, substantial reduction in 

*
,,, rcaAP

*
,,, rcaAP
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the effective sample sizes in these calculations would, in most cases, result in substantial 

increases in the CVs of the estimates. If meaningful estimates of precision are to be derived 

from these tagging experiments, it is critical that appropriate statistical models be developed 

for the actual estimation procedure for the catch at age data. Similarly, the estimates of the 

tag reporting rates in the surface fishery are critical. The CV associated with these could be a 

substantial contributor to the overall precision of the estimates if not estimated with 

reasonable precision. Moreover, any bias in the reporting rate would act as a multiplicative 

bias on . *
,,, rcaAP

 

It should be noted that with the assumption of complete mixing and the existence of reporting 

rates estimates for the surface fishery, the tag returns from the surface fishery could be used 

along with estimates of the catch at age in both the surface and longline fisheries to estimate 

the reporting rates in the longline fisheries (see Hearn et al. 2003). The tag return data could 

then be used in a Brownie model estimation framework as envisioned in the original design 

of the SRP tagging program. Incorporation of any reported tags from the longline fishery 

would potentially add some, but little, information to the overall estimates (e.g. in a Brownie 

estimation framework, estimates of total mortality do not require estimates of reporting rates). 

However, the precision and accuracy of the mortality estimates would be highly dependent 

upon the variance and potential biases in the estimated catch at age data from the longline 

fisheries, since the estimates of the reporting rates are directly dependent upon these data. In 

addition to this dependence on the catch at age estimates from the longline fishery, a major 

disadvantage of using such a Brownie approach as compared to the Petersen-type approach 

used here is that it would provide little scope for diagnostics and testing assumptions of the 

underlying model. Moreover, the biases in the mortality rate estimates from any incomplete 

mixing would tend to be amplified by estimating the longline reporting rates this way6. 

 

Fully appropriate direct incorporation of the estimates of  into a statistical catch at age 

stock assessment model similar to those being used for SBT would be problematical because 

of the need to account for the double use of the catch at age data (i.e. once in the estimates of 

 and once as a directly fitted component in the assessment). Alternatively, the tag 

*
,,, rcaAP

*
,,, rcaAP

                                                 
6 For example, in a case with low mixing into the areas of the longline fishery, a low number of tag returns from 
the longline fishery relative to the number of fish caught would incorrectly be considered to represent low 
reporting rates. Thus, the estimated number of actual recaptures would be too high, which would further bias 
upward the estimates of fishing mortality rates. 
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return data could be incorporated by using the stock assessment model to predict the expected 

number of returns from the Australian surface fishery conditional on the rest of the model 

structure and parameters (this would be similar to the approach currently being used in the 

stock assessment models and, functionally, would be more similar to a Brownie model 

approach). However, developing an appropriate likelihood for the tag return component (and 

thus determining the appropriate weight to be given to the tag data in the overall estimation) 

would be challenging.   

 

Finally, one advantage of using the approach developed here when there is little or no 

information on the reporting rates from the longline fisheries is that it can provide an 

indicator of trends in juvenile abundances over the period of the tagging experiments 

independent of any assumptions about tag returns and catches in the longline fishery. Such 

indicators can provide a useful independent check on overall complex stock assessment 

results.  
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Table 1: Number of tag releases by cohort, area and cohort age. Note a small number of tags 
estimated to be age 3 were released in WA (88), and a small number of tags estimated be age 
0, 4 or 5 were released in the GAB (291).  
 
 

WA GAB  
Cohort 1 2 1 2 3 
1988      0    0     0 0  810 
1989      0  354     0 2773 1096 
1990 2645   891 654 3755 2692 
1991 2111  289   33 2648 3640 
1992 4522    49 376 3109 2627 
1993 8442 1756 561 4143 1511 
1994 8170      0 415 2518 526 
1995       0      0   82   592    0 
1996       0      0 884      0    0 

 
 
 
Table 2: Comparison of the bootstrap/Monte-Carlo CV estimates for  when the 
estimates are based on: the bootstrap component for the tagging data only; the Monte-Carlo 
component for the catch-at-age data only; and both. R is the total number of tags recovered 
from a cohort for ages 2 to 4 in the case of age 1 releases, and for ages 3 to 4 in the case of 
age 2 releases. 

*
,,, rcaAP

 
     CV  

Release age Cohort *
,,, rcaAP  R tag & catch  tag only   catch only 

       
1 1990 5.18 57 0.27 0.24 0.11 
 1991 2.89 75 0.14 0.10 0.10 
 1992 2.24 281 0.17 0.12 0.12 
 1993 2.28 782 0.12 0.06 0.11 
 1994 2.19 820 0.12 0.04 0.11 
 1995 1.18 15 0.37 0.36 0.11 
 1996 3.70 80 0.29 0.28 0.08 
       
2 1989 2.17 104 0.17 0.13 0.11 
 1990 2.53 127 0.13 0.06 0.11 
 1991 2.86 80 0.14 0.09 0.11 
 1992 1.91 203 0.14 0.07 0.12 
 1993 1.49 665 0.13 0.06 0.12 
 1994 1.00 425 0.12 0.04 0.12 
 1995 1.01 93 0.12 0.04 0.11 
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Figure 1: Estimated age composition of Australian surface fishery catches in the Great 
Australian Bight by fishing season (e.g. 1991 refers to the 1990/1991 fishing season). 
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Figure 2: Petersen estimates for the number of 1-year-old SBT ( ) based on age 1 
releases from Western Australia. Circles represent estimates based on age 2 returns, triangles 
on age 3 returns, diamonds on age 4 returns, and solid squares on returns from ages 2-4 
pooled. Error bars are estimated 90% confidence intervals (see text). Only estimates based on 
more than 10 returns are shown. 
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Figure 3: Petersen estimates for the number of 2-year-old SBT ( ) based on age 2 
releases from Western Australia. Circles represent estimates based on age 3 returns, triangles 
on age 4 returns, and solid squares on returns from ages 3 and 4 pooled. Error bars are 
estimated 90% confidence intervals (see text). Only estimates based on more than 10 returns 
are shown. 
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Figure 4: Petersen estimates for the number of 1-year-old SBT ( ) based on age 1 
releases from the Great Australian Bight. Circles represent estimates based on age 2 returns, 
triangles on age 3 returns, diamonds on age 4 returns, and solid squares on returns from ages 
2-4 pooled. Error bars are estimated 90% confidence intervals (see text). Only estimates 
based on more than 10 returns are shown. 
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Figure 5: Petersen estimates for the number of 2-year-old SBT ( ) based on age 2 
releases from the Great Australian Bight. Circles represent estimates based on age 3 returns, 
triangles on age 4 returns, and solid squares on returns from ages 3 and 4 pooled. Error bars 
are estimated 90% confidence intervals (see text). Only estimates based on more than 10 
returns are shown. 
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Figure 6: Petersen estimates for the number of 3-year-old SBT ( ) based on age 3 
releases from the Great Australian Bight. The estimates are based on age 4 returns. Error bars 
are estimated 90% confidence intervals (see text). Only estimates based on more than 10 
returns are shown. 
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Figure 7: Comparison of Petersen estimates for the number of 1-year-old SBT ( ) based 
on age 1 releases from Western Australia (triangles), the Great Australian Bight (circles), and 
both areas combined (solid squares). The estimates shown are based on the pooled returns 
and catches for ages 2 to 4. Error bars are estimated 90% confidence intervals (see text). Only 
estimates based on more than 10 returns are shown. Note that slight differences in the 
confidence intervals when there were only releases in one area (1995 and 1996) represent 
different realizations of 1000 bootstrap/Monte-Carlo estimates 
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Figure 8: Comparison of Petersen estimates for the number of 2-year-old SBT ( ) based 
on age 2 releases from Western Australia (triangles), the Great Australian Bight (circles), and 
both areas combined (solid squares). The estimates shown are based on the pooled returns 
and catches for ages 3 and 4. Error bars are estimated 90% confidence intervals (see text). 
Only estimates based on more than 10 returns are shown. Note that slight differences in the 
confidence intervals when there were only releases in one area (1994 and 1995) represent 
different realizations of 1000 bootstrap/Monte-Carlo estimates. 
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Figure 9: Comparison of Petersen estimates for the number of 1-, 2- and 3-year-old SBT 
( ) based on age 1 releases (solid squares), age 2 releases (triangles) and age 3 releases 
(diamonds), respectively, from Western Australia and the Great Australian Bight combined. 
Note there were no age 3 releases in Western Australia. The estimates shown are based on the 
pooled returns and catches for each age of release. Error bars are estimated 90% confidence 
intervals (see text).   

*
,,, rcaAP

Cohort

Po
pu

la
tio

n 
es

tim
at

e 
(m

illi
on

s)

1990 1992 1994 1996

0
1

2
3

4
5

6

 
Figure 10: Comparison of Petersen estimates for the number of 1-, 2- and 3-year-old SBT 
( ) based on age 1 releases (solid squares), age 2 releases (circles), and age 3 releases 
(triangles), respectively, from the Great Australian Bight only. The estimates shown are 
based on the pooled returns and catches for each age of release. Error bars are estimated 90% 
confidence intervals (see text).   
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Appendix 1 
 
Tables of  values for / A cP rcA ,,for a range of values for the parameters ϕ , , , ,A a c rρ , 

*, , ,A a c r
ρ ,  and , 1, ,A a c rz+ − *, 1, ,A a c r

z+
− , 1, ,A a c r

+
− *, 1, ,

. Note that in the results presented here z  and 
A a c r

z+
−

, 1, , , 1, , , 1,A a c r A a c r A a cz f m+ + +
− − −= +

* * , 1,, 1, , , 1, ,

 

have been separated into a fishing and natural mortality component with natural morality 

assumed to be independent of region r. Thus, 

 

  and 

 

A a cA a c r A a c r
z f m+ + +

−− −
= +

, 1,

where f and m refer to fishing and natural mortality rates respectively. In the results presented 

in this appendix 

 

 

A a c−m+  has been fixed at 0.35. 
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Table 1: Comparison of the ratio of /  for a range of values for *
,,, rcaAP ,A cP *, , ,A a c r

ρ  and *, 1, ,A a c r
f +

−
 when rcA ,,ϕ  is fixed at 0.8, , , ,A a c rρ  is fixed at 0.8 

and 
, 1, ,A a c r

f +
−

is fixed at 0.1. Note , 1,A a cm+
− = 0.35. 

 
   *, , ,A a c r
ρ  *, 1, ,A a c r

f +
−  

   
     
     
     
     
     
     
     
     
     
     

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15
0.10 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.82 0.82 0.82 0.82 0.82
0.20 0.86 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
0.30 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.87 0.87 0.87 0.87 0.87
0.40 0.91 0.91 0.91 0.91 0.91 0.91 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
0.50 0.94 0.94 0.94 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.92 0.92 0.92 0.92 0.92
0.60 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.94
0.70 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.97
0.80 1.02 1.02 1.02 1.01 1.01 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99
0.90 1.05 1.05 1.04 1.04 1.04 1.04 1.03 1.03 1.03 1.03 1.03 1.02 1.02 1.02 1.02 1.01
1.00 1.08 1.07 1.07 1.07 1.07 1.06 1.06 1.06 1.06 1.05 1.05 1.05 1.05 1.04 1.04 1.04
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Table 2: Comparison of the ratio of /  for a range of values for *

,,, rcaAP ,A cP *, , ,A a c r
ρ  and  when +

− *,,1 rca
f rcA ,,ϕ  is fixed at 0.8, 

, , ,A a c r
ρ is fixed at 0.8 and 

, 1, ,A a c r
f +

−
is fixed at 0.5. Note = 0.35. , 1,A a cm+

−

 
*, , ,A a c r

ρ  *, 1, ,A a c r
f +

−  

   
    
    
    
    
    
    
    
    
    
    

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15
0.10 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
0.20 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.87 0.87 0.87 0.87 0.87 0.87
0.30 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
0.40 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.94
0.50 1.01 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98
0.60 1.05 1.04 1.04 1.04 1.04 1.04 1.03 1.03 1.03 1.03 1.02 1.02 1.02 1.02 1.01 1.01
0.70 1.09 1.09 1.08 1.08 1.08 1.07 1.07 1.07 1.07 1.06 1.06 1.06 1.06 1.05 1.05 1.05
0.80 1.13 1.13 1.12 1.12 1.12 1.11 1.11 1.11 1.10 1.10 1.10 1.10 1.09 1.09 1.09 1.08
0.90 1.17 1.17 1.16 1.16 1.16 1.15 1.15 1.15 1.14 1.14 1.14 1.13 1.13 1.13 1.12 1.12
1.00 1.21 1.21 1.20 1.20 1.20 1.19 1.19 1.18 1.18 1.18 1.17 1.17 1.17 1.16 1.16 1.15
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Table 3: Comparison of the ratio of /  for a range of values for *

,,, rcaAP ,A cP *, , ,A a c r
ρ  and *, 1, ,A a c r

f +
−

 when rcA ,,ϕ  is fixed at 0.4, , , ,A a c rρ  is fixed at 0.8 

and 
, 1, ,A a c r

f +
−

is fixed at 0.1. Note , 1,A a cm+
− = 0.35. 

 
 

*, , ,A a c r
ρ  *, 1, ,A a c r

f +
−  

   
    
    
    
    
    
    
    
    
    
    

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15
0.10 0.48 0.48 0.47 0.46 0.46 0.45 0.45 0.44 0.44 0.43 0.43 0.43 0.42 0.42 0.42 0.42
0.20 0.57 0.55 0.54 0.52 0.51 0.50 0.49 0.48 0.47 0.47 0.46 0.46 0.45 0.45 0.44 0.44
0.30 0.65 0.63 0.60 0.58 0.57 0.55 0.54 0.52 0.51 0.50 0.49 0.48 0.47 0.47 0.46 0.46
0.40 0.73 0.70 0.67 0.65 0.62 0.60 0.58 0.56 0.55 0.53 0.52 0.51 0.50 0.49 0.48 0.47
0.50 0.81 0.78 0.74 0.71 0.68 0.65 0.63 0.61 0.59 0.57 0.55 0.54 0.52 0.51 0.50 0.49
0.60 0.90 0.85 0.81 0.77 0.73 0.70 0.67 0.65 0.62 0.60 0.58 0.57 0.55 0.54 0.52 0.51
0.70 0.98 0.93 0.88 0.83 0.79 0.75 0.72 0.69 0.66 0.64 0.61 0.59 0.57 0.56 0.54 0.53
0.80 1.06 1.00 0.94 0.89 0.84 0.80 0.76 0.73 0.70 0.67 0.64 0.62 0.60 0.58 0.56 0.55
0.90 1.15 1.08 1.01 0.95 0.90 0.85 0.81 0.77 0.74 0.70 0.67 0.65 0.62 0.60 0.58 0.57
1.00 1.23 1.15 1.08 1.01 0.96 0.90 0.85 0.81 0.77 0.74 0.70 0.68 0.65 0.63 0.60 0.58
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Table 4: Comparison of the ratio of /  for a range of values for *

,,, rcaAP ,A cP *, , ,A a c r
ρ  and *, 1, ,A a c r

f +
−

 when rcA ,,ϕ  is fixed at 0.8, , , ,A a c rρ  is fixed at 0.4 

and 
, 1, ,A a c r

f +
−

is fixed at 0.1. Note , 1,A a cm+
− = 0.35. 

 
 

*, , ,A a c r
ρ  *, 1, ,A a c r

f +
−  

   
    
    
    
    
    
    
    
    
    
    

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15
0.10 0.86 0.85 0.85 0.84 0.84 0.83 0.83 0.83 0.82 0.82 0.82 0.82 0.82 0.82 0.81 0.81
0.20 0.91 0.90 0.89 0.88 0.87 0.87 0.86 0.85 0.85 0.84 0.84 0.84 0.83 0.83 0.83 0.82
0.30 0.97 0.95 0.94 0.92 0.91 0.90 0.89 0.88 0.87 0.87 0.86 0.86 0.85 0.85 0.84 0.84
0.40 1.02 1.00 0.98 0.96 0.95 0.93 0.92 0.91 0.90 0.89 0.88 0.87 0.87 0.86 0.85 0.85
0.50 1.08 1.05 1.03 1.00 0.99 0.97 0.95 0.94 0.92 0.91 0.90 0.89 0.88 0.88 0.87 0.86
0.60 1.13 1.10 1.07 1.05 1.02 1.00 0.98 0.96 0.95 0.93 0.92 0.91 0.90 0.89 0.88 0.87
0.70 1.19 1.15 1.12 1.09 1.06 1.03 1.01 0.99 0.97 0.96 0.94 0.93 0.92 0.91 0.90 0.89
0.80 1.24 1.20 1.16 1.13 1.10 1.07 1.04 1.02 1.00 0.98 0.96 0.95 0.93 0.92 0.91 0.90
0.90 1.30 1.25 1.21 1.17 1.13 1.10 1.07 1.05 1.02 1.00 0.98 0.97 0.95 0.94 0.92 0.91
1.00 1.35 1.30 1.25 1.21 1.17 1.14 1.10 1.07 1.05 1.02 1.00 0.98 0.97 0.95 0.94 0.92
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Table 5: Comparison of the ratio of /*

,,, rcaAP ,A cP  for a range of values for rcA ,,ϕ  and 

, , ,A a c rρ  when *, , ,A a c r
ρ  is fixed at 0.2, 

, 1, ,A a c r
f +

−
is fixed at 0.1, and *, 1, ,A a c r

f +
−

is fixed at 

0.05. Note = 0.35. , 1,A a cm+
−

 
 

rcA ,,ϕ  , , ,A a c rρ  
 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.10 1.99 1.05 0.73 0.57 0.48 0.42 0.37 0.34 0.31
0.20 1.88 1.04 0.76 0.62 0.54 0.48 0.44 0.41 0.39
0.30 1.77 1.04 0.79 0.67 0.59 0.55 0.51 0.48 0.46
0.40 1.66 1.03 0.82 0.72 0.65 0.61 0.58 0.56 0.54
0.50 1.55 1.03 0.85 0.76 0.71 0.68 0.65 0.63 0.62
0.60 1.44 1.02 0.88 0.81 0.77 0.74 0.72 0.71 0.69
0.70 1.33 1.02 0.91 0.86 0.83 0.81 0.79 0.78 0.77
0.80 1.22 1.01 0.94 0.91 0.88 0.87 0.86 0.85 0.85
0.90 1.11 1.01 0.97 0.95 0.94 0.94 0.93 0.93 0.92

 
 
 
Table 6: Comparison of the ratio of / for a range of values for *

,,, rcaAP ,A cP rcA ,,ϕ  and 

, , ,A a c rρ  when *, , ,A a c r
ρ  is fixed at 0.6, 

, 1, ,A a c r
f +

−
 is fixed at 0.1, and  *, 1, ,A a c r

f +
−

is fixed at 

0.05. Note , 1,A a cm+
− = 0.35. 

 
 

rcA ,,ϕ  , , ,A a c rρ  
 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.10 5.78 2.94 1.99 1.52 1.24 1.05 0.91 0.81 0.73
0.20 5.25 2.72 1.88 1.46 1.21 1.04 0.92 0.83 0.76
0.30 4.72 2.51 1.77 1.40 1.18 1.04 0.93 0.85 0.79
0.40 4.18 2.29 1.66 1.35 1.16 1.03 0.94 0.87 0.82
0.50 3.65 2.08 1.55 1.29 1.13 1.03 0.95 0.89 0.85
0.60 3.12 1.86 1.44 1.23 1.10 1.02 0.96 0.92 0.88
0.70 2.59 1.65 1.33 1.17 1.08 1.02 0.97 0.94 0.91
0.80 2.06 1.43 1.22 1.12 1.05 1.01 0.98 0.96 0.94
0.90 1.53 1.22 1.11 1.06 1.03 1.01 0.99 0.98 0.97
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Table 7: Comparison of the ratio of /*

,,, rcaAP ,A cP for a range of values for rcA ,,ϕ  and 

, , ,A a c rρ  when *, , ,A a c r
ρ  is fixed at 0.6, 

, 1, ,A a c r
f +

−
 is fixed at 0.4, and *, 1, ,A a c r

f +
−

is fixed at 

0.05. Note = 0.35. , 1,A a cm+
−

 
rcA ,,ϕ  , , ,A a c rρ  

 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.10 7.76 3.93 2.65 2.02 1.63 1.38 1.19 1.06 0.95
0.20 7.01 3.61 2.47 1.90 1.56 1.34 1.17 1.05 0.96
0.30 6.26 3.28 2.29 1.79 1.49 1.29 1.15 1.05 0.96
0.40 5.51 2.95 2.10 1.68 1.42 1.25 1.13 1.04 0.97
0.50 4.76 2.63 1.92 1.56 1.35 1.21 1.11 1.03 0.97
0.60 4.01 2.30 1.74 1.45 1.28 1.17 1.09 1.03 0.98
0.70 3.25 1.98 1.55 1.34 1.21 1.13 1.06 1.02 0.98
0.80 2.50 1.65 1.37 1.23 1.14 1.08 1.04 1.01 0.99
0.90 1.75 1.33 1.18 1.11 1.07 1.04 1.02 1.01 0.99

 
 
 
Table 8: Comparison of the ratio of / for a range of values for *

,,, rcaAP ,A cP rcA ,,ϕ  and 

, , ,A a c rρ  when *, , ,A a c r
ρ  is fixed at 0.6, 

, 1, ,A a c r
f +

−
 is fixed at 0.05, and *, 1, ,A a c r

f +
−

is fixed at 

0.40. Note , 1,A a cm+
− = 0.35. 

 
rcA ,,ϕ  , , ,A a c rρ  

 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.10 3.91 2.00 1.37 1.05 0.86 0.73 0.64 0.58 0.52
0.20 3.58 1.89 1.33 1.05 0.88 0.76 0.68 0.62 0.58
0.30 3.26 1.78 1.29 1.04 0.89 0.79 0.72 0.67 0.63
0.40 2.94 1.67 1.25 1.03 0.91 0.82 0.76 0.72 0.68
0.50 2.61 1.56 1.20 1.03 0.92 0.85 0.80 0.76 0.73
0.60 2.29 1.45 1.16 1.02 0.94 0.88 0.84 0.81 0.79
0.70 1.97 1.33 1.12 1.02 0.95 0.91 0.88 0.86 0.84
0.80 1.65 1.22 1.08 1.01 0.97 0.94 0.92 0.91 0.89
0.90 1.32 1.11 1.04 1.01 0.98 0.97 0.96 0.95 0.95
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Table 9: Comparison of the ratio of /*

,,, rcaAP ,A cP for a range of values for *, , ,A a c r
ρ  and 

, , ,A a c rρ  when rcA ,,ϕ  is fixed at 0.8, 
, 1, ,A a c r

f +
−

 is fixed at 0.1, and *, 1, ,A a c r
f +

−
is fixed at 

0.05. Note , 1,A a cm+
− = 0.35. 

 
 

, , ,A a c rρ  *, , ,A a c r
ρ  

 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 
0.10 1.01 1.22 1.43 1.64 1.85 2.06 2.27 2.48 2.69 2.90 
0.20 0.91 1.01 1.12 1.22 1.33 1.43 1.54 1.64 1.75 1.85 
0.30 0.87 0.94 1.01 1.08 1.15 1.22 1.29 1.36 1.43 1.50 
0.40 0.85 0.91 0.96 1.01 1.06 1.12 1.17 1.22 1.27 1.33 
0.50 0.84 0.88 0.93 0.97 1.01 1.05 1.09 1.14 1.18 1.22 
0.60 0.84 0.87 0.91 0.94 0.98 1.01 1.05 1.08 1.12 1.15 
0.70 0.83 0.86 0.89 0.92 0.95 0.98 1.01 1.04 1.07 1.10 
0.80 0.83 0.85 0.88 0.91 0.93 0.96 0.98 1.01 1.04 1.06 
0.90 0.82 0.85 0.87 0.89 0.92 0.94 0.96 0.99 1.01 1.03 
1.00 0.82 0.84 0.86 0.88 0.91 0.93 0.95 0.97 0.99 1.01 

 
 
 
Table 10: Comparison of the ratio of / for a range of values for *

,,, rcaAP ,A cP *, , ,A a c r
ρ  and 

, , ,A a c rρ  when rcA ,,ϕ  is fixed at 0.4, 
, 1, ,A a c r

f +
−

 is fixed at 0.1, and *, 1, ,A a c r
f +

−
is fixed at 

0.05. Note , 1,A a cm+
− = 0.35. 

 
 

, , ,A a c rρ  *, , ,A a c r
ρ  

 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 
0.10 1.03 1.66 2.29 2.92 3.55 4.18 4.82 5.45 6.08 6.71 
0.20 0.72 1.03 1.35 1.66 1.98 2.29 2.61 2.92 3.24 3.55 
0.30 0.61 0.82 1.03 1.24 1.45 1.66 1.87 2.08 2.29 2.50 
0.40 0.56 0.72 0.87 1.03 1.19 1.35 1.50 1.66 1.82 1.98 
0.50 0.53 0.65 0.78 0.90 1.03 1.16 1.28 1.41 1.54 1.66 
0.60 0.51 0.61 0.72 0.82 0.93 1.03 1.14 1.24 1.35 1.45 
0.70 0.49 0.58 0.67 0.76 0.85 0.94 1.03 1.12 1.21 1.30 
0.80 0.48 0.56 0.64 0.72 0.79 0.87 0.95 1.03 1.11 1.19 
0.90 0.47 0.54 0.61 0.68 0.75 0.82 0.89 0.96 1.03 1.10 
1.00 0.46 0.53 0.59 0.65 0.72 0.78 0.84 0.90 0.97 1.03 
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Abstract 
This paper reviews alternative approaches to the use of observers for estimating tag reporting 
rates and discusses their applicability for obtaining estimates from the SBT longline fisheries. 
Five basic approaches were identified and reviewed. Of these, only the use of high reward 
tags appears to have any potential to provide robust and direct estimates. However, the 
logistic and reward issues associated with this approach would appear to make its realization 
problematical and also quite expensive. However, developing technologies may make 
approaches based on automatic detection systems more feasible in the future and, as such, 
might warrant further investigation if tagging is to be used as a long term monitoring strategy 
for SBT. 
 
 
Introduction 
As part of its Scientific Research Program, the CCSBT is undertaking a large-scale tagging 
program of juvenile SBT in order to obtain improved estimates of natural mortality and 
timely, reliable estimates of current juvenile fishing mortality rates (Anon. 2001).  A critical 
component in the analyses of the data from such a tagging program is the ability to estimate 
reporting rates (i.e. the proportion of tagged fish, captured by fishermen, actually returned to 
the CCSBT). The 2003 CCSBT Scientific Committee concluded that the current levels of 
observer coverage in the Japanese, Korean and Taiwanese longline fleets are not high enough 
to provide useful estimates of reporting rates from these fleets and thus fishing mortality rates 
in these fleets (Anon. 2003). The overall implications of this conclusion for the ability of the 
SRP tagging program to meet its primary objectives were not certain and the Scientific 
Committee agreed to convene a Technical Group Meeting in conjunction with its next 
meeting to evaluate this question. One of the terms of reference for this working group was to 
“consider alternative methods, other than increasing observer coverage, for improving the 
estimates of reporting rates” (Anon. 2003). The current paper reviews approaches for 
estimating tag reporting rates and discusses their applicability for obtaining estimates from 
the SBT longline fisheries. Based on a review of the tagging literature, five basic approaches 
were identified and are reviewed here: 

 
1. High reward tags 
2. Tag seeding 
3. Automatic tag detection systems 
4. Extrapolation from estimates from the surface fishery 
5. Model-based approaches 

 
High reward tags 
One approach to estimating reporting rates that has been used in tagging studies is to have a 
high reward associated with a relatively small fraction of the tags being released (Pollock et 
al. 2001). Those tags carrying a high reward must be clearly identifiable by a tag finder (e.g. 
different colours) and carry a sufficiently high reward that 100% of these tags will be 
returned by all tag finders. The ratio of the return rate (i.e. the number of tags returned 
divided by the number of releases) of “regular” tags compared to that of high reward tags 
provides a direct estimate of the reporting rate. Fishery-specific reporting rates can be 
estimated using this approach by considering within-fishery return rates.  
 
For this approach to be viable, a sufficient number of high reward tags must be caught within 
each of the fishery components so that a viable reporting rate can be obtained, taking into 
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account overdispersion in the recapture probabilities and potential incomplete mixing. This 
might require that a relatively high number of high reward tags are released given the 
differential age-specific mortality rates between fishery components (e.g. a large number of 
high reward tags would be vulnerable to capture in the surface fishery at ages 2 and 3, prior 
to the ages of where fish are being captured in reasonable numbers by longline vessels).  
High reward tagging also requires that there is sufficient publicity that the fishermen on all 
vessels in each of the fishery components are aware of the existence of these high reward tags 
and the rewards they carry. There also must be well developed procedures in place to ensure 
that these high rewards actually are paid to those finding the tags. In addition, as already 
stated, the magnitude of the reward must be large enough that 100% of the high reward tags 
are returned. It is these latter two requirements that would appear to be the most difficult to 
meet within the SBT longline fisheries.  
 
Past experience has shown that it can often be difficult to ensure that the tag finder is the 
person who actually receives the reward for a returned tag. This is due to the long time lags 
between tag finding and actual tag returns as a result of long fishing trips, logistic problems 
with contacting and getting returns back to individual crewmen, and problems with 
determining who to actually reward (e.g. the fishing master will often collect tags with the 
identity of the actual tag finder being lost, and thus removing the incentive to return tags from 
those actually responsible for finding them).  
 
More problematical is determining a reward that would provide sufficient incentive to ensure 
a high degree of certainty that 100% of the recaptured high reward tags would be returned. 
Experience with the provision of rewards for archival tags indicates that a reward with a 
value on the order of $250A has not been sufficient to ensure near 100% reporting rates (i.e. 
return rates for archival tags with a $250 reward and conventional tags from longline vessels 
have been similar and low). The problem of suitable rewards is also compounded by the fact 
that in some fleets cash rewards are considered unacceptable and the incentive for any 
particular “in kind” reward is hard to assess.   
 
In summary, high reward tagging does have the potential to provide estimates of the reporting 
rates from longline vessels. However, the logistic and reward issues would appear to make 
realization of this potential problematical and also potentially quite expensive. 
 
Tag seeding 
Tag seeding is a common approach that is used to estimate tag reporting rates in some 
commercial fisheries and is being used in the current SRP tagging program to provide 
estimates of reporting rates from the Australian surface fishery. The basis of tag seeding 
experiments is to plant tags into fish after they have been captured but before those handling 
and/or processing them have had a chance to actually recover the tags (e.g. prior to unloading 
of the catch for processing in a cannery). The proportion of planted tags recovered then 
provides a direct estimate of the reporting rate.  It is critical that the tag seeding is done blind 
in the sense that the tag finders are unaware of the tag seeding and that tag seeded fish are 
indistinguishable from wild tagged fish. In the case of pelagic tuna longline fisheries, each 
fish is individually hauled on board and processed at the time of landing. As such, longlining 
provides no opportunity for tags to be seeded without the fishermen being aware of the tags 
being planted in the harvested fish. As such, tag seeding does not provide a viable alternative 
for estimating reporting rates for the SBT longline fisheries. 
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Automatic tag detection systems 
Automatic tag detection systems (e.g. PIT tags) provide one approach for either eliminating 
the need to estimate reporting rates altogether or for estimating reporting rates. In the former 
case, it is essential that systems are in place that would ensure that all tuna landed pass 
through the detection system and the reliance on fishermen for tags is eliminated. Given the 
complex array of landings, transhipment and markets that are involved with SBT, a practical 
and acceptable system that was intended to detect all tags post-landing would be extremely 
difficult to implement, particularly within the timeframe of the current SRP, and would likely 
be expensive (both financially and in terms of labour) to operate and maintain. Alternatively, 
an automatic detection system could conceivably be developed for detecting tagged fish at 
the point of landing on a longline vessel. Such a system would need to be coupled with a 
system that ensured (or at least monitored) whether all fish were in fact passed by the 
automatic detection apparatus (e.g. video monitoring of the landing area?). Development and 
employment of such systems would require a strong level of commitment and appreciation 
for their need by industry. The initial cost of such a system would be expensive, but once 
deployed might be relatively cost effective compared to on-board observers, particularly if 
tagging was to be used as a long term monitoring approach. 
 
Alternatively, automatic tag detection systems could be used in conjunction with 
conventional tagging to estimate reporting rates. In this case, a certain fraction of the fish 
tagged with a conventional tag would be also be tagged with an automatically detectable tag.  
Then, a proportion of the catch would be scanned for the automatically detectable tags at the 
time of landing. In this case, the automatically detectable tags would need to be cryptic with 
respect to the fishermen, which is the case for PIT and coded wire tags. The proportion of 
conventional tags that were retrieved from fish that were detected with an automatically 
detectable tag would then provide an estimate of the reporting rate.  
 
This approach requires that both a representative and substantial fraction of the landed catch 
be scanned for automatically detectable tags. Current technology for automatically detectable 
tags requires that fish are individually scanned with a detection device or that fish come 
within a few meters or less of the detection device. This, combined with the large range and 
variety of landing and marketing options for SBT, would make obtaining representative, large 
scale samples post-harvesting extremely difficult. Thus, to obtain large scale representative 
sampling would require a large number of on-the-ground technicians to do the scanning with 
ability to obtain relevant information on the detected scanned fish (i.e. location and time of 
capture) and access to the different landing/marketing venues. 
 
It should be noted that technologies are evolving. The potential exists for automatic  tag 
detection systems with much greater detection ranges that require less human involvement 
and still have high probabilities of detection without direct human monitoring. In this case, 
the use of automatically detectable tags might be a feasible and cost effective alternative in 
the future.  
 
Finally, industry has expressed concern about potential consumer issues with past proposals 
to use automatically detectable tags (e.g. PIT tags). This relates to the placement of the tag 
and the potential for the tag to go undetected prior to being sold and/or consumed. Placing the 
tags within the body cavity is not viable if detection is to take place after the fish have been 
landed since fish are gutted at this point. Previous proposals have suggested placing PIT tags 
in the head; however, the heads of SBT are sold and eaten. Industry objected to placing such 
tags within the head because of possible liability if a tag were eaten, plus the potential for 
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associated negative publicity. Developing acceptable tag placement arrangements which 
overcome such concerns would also be required prior to any large scale use of automatically 
detectable tags. 
 
Extrapolation from estimates from the surface fishery 
Tag reporting rates can be extrapolated from the surface fishery assuming complete mixing 
and that reliable estimates of reporting rates are available for the surface fishery (Hearn et al. 
2003). This can be done by comparing, for each age class, the ratio of the number of tagged 
fish returned to the total number of fish caught in the longline fishery to the ratio of the 
number of tagged fish returned (after correcting for the estimated reporting rate) to the total 
number of fish caught in the surface fishery. The age-specific reporting rates can then be 
combined to provide an overall estimate of the reporting rate for a fishery within a year, 
assuming that reporting rates within a fishery are independent of age of the recaptured fish.  
 
Extrapolations from the surface fishery require that reliable estimates of the catch at age data 
are available for both the surface fishery and the longline fishing components for which 
reporting rates are to be estimated. The precision of extrapolated reporting rate estimates for a 
longline component will be dependent upon the precision of the catch at age estimates for 
both the surface and longline components. A poorly estimated catch at age distribution in 
either component will translate into poorly estimated reporting rates.  
 
If the assumption of complete mixing is violated and not accounted for, then biases will be 
introduced in tag-based estimates of mortality rates and population size, and these biases will 
be compounded by biases in reporting rate estimates when extrapolation methods are used to 
estimate them. This is because in the extrapolated reporting rate estimates, low return rates 
will be taken to signify low reporting rates. Thus, the estimated actual number of returns will 
be inflated. However, if the low return rate is due to incomplete mixing of tagged fish into 
areas of longline vulnerability, the actual number of returns should not be inflated (and this 
would be the case if an independent estimate of the reporting rate was available for the 
longline component). In addition to the compounding of biases, the reliance on extrapolated 
reporting rates can preclude the use of diagnostic tests for non-mixing (e.g. it is not possible 
to separate non-reporting in an area/time strata from lack of tagged fish being in that 
area/time strata). Moreover, the use of extrapolated reporting rates would prevent the 
application of more spatially explicit tag recovery models to account for heterogeneity in 
recapture probabilities as a result of non-mixing.  
 
Model-based approaches 
Within a Brownie estimation framework, it is theoretically possible to estimate tag reporting 
rates from the tagging data alone if reporting rates and natural mortality rates are constant 
over time1. However, except within specific special circumstances, the estimates are 
extremely imprecise (Hoenig et al. 1998; Pollock et al. 2001). Constancy in the reporting rate 
for the CCSBT SRP tagging program seems unlikely because of the evolving nature of the 
return promotional activities combined with the differential and changing age-specific 
catches within the various fishery components (since overall reporting rates for any age class 
in a given year are a weighted average of the reporting rates within each fishery component 
weighted by the catch in that component).  Moreover, such model-based estimates of 

                                                 
1 Some relaxation of these constancy assumptions may be possible if multiple cohorts as well as multiple years 
of tagging of the same cohorts are done. 
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reporting rates would preclude the use of diagnostic tests for non-mixing or the application of 
spatially explicit models to account for it. 
 
Discussion 
Substantial problems appear to exist with all five approaches identified and reviewed as 
alternatives to the use of observers for estimating tag reporting rates in the context of SBT 
longline fisheries. Two of the approaches, namely extrapolation and model-based approaches, 
are indirect (i.e. they use no direct observational data on the actual reporting rates). The 
model-based approach provides highly imprecise estimates in most cases and requires 
restrictive assumptions about constancy in reporting rates and natural mortality rates. 
Extrapolation from the surface fishery requires accurate and precise estimates of the reporting 
rates in the surface fishery and of the size/age composition of the catch from all fleets.  More 
importantly, the estimated reporting rates for the longline fisheries are dependent upon the 
assumption of complete mixing. Violation of this assumption will introduce biases in 
extrapolated reporting rate estimates, which can compound biases that already exist in 
tagging estimates of mortality rates and population size when non-mixing is not accounted 
for. Moreover, extrapolation methods preclude diagnostic testing for non-mixing as well as 
the use of spatially explicit tag recovery models.  
 
Two of the three approaches that provide direct estimates of reporting rates are logistically 
infeasible, at least at the current time (i.e. automatic detection systems and tag seeding). 
However, developing technologies may make automatic detection systems more feasible in 
the future and might warrant further investigation if tagging is to be used as a long term 
monitoring strategy. The third direct method, high reward tagging could potentially provide a 
way to estimate reporting rates. However, it is not clear what would serve as a sufficiently 
attractive, yet still affordable, award to ensure 100% reporting of such tags, and there are also 
substantial logistical problems with its implementation. It should be noted that it would be 
possible to combine the high reward tagging and the observer approaches for estimating 
reporting rates. The combined data would provide an improvement over data from a single 
approach (Pollock et al. 2002). However, the relative trade-off and improvements is not 
straightforward to determine and would depend upon a large number of relatively unknown 
factors.  It is also possible to use high reward tags in just one component of the longline 
fishery to estimate reporting rates for that component, and then use these estimates along with 
the extrapolation method to estimate reporting rates in the other longline components; 
however, all of the assumptions and potential problems associated with the extrapolation 
method would still apply.   
 
In summary, of the alternative approaches to the use of observers for providing estimates of 
tag reporting rates from longline vessels, only the use of high reward tags appears to have any 
potential to provide robust and direct estimates. However, logistic and reward issues make 
realization of this potential problematical and also potentially quite expensive.  
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Introduction 
 
Tag release and return data from juvenile southern bluefin tuna (SBT) from tagging 
experiments conducted in the 1990s have been one of the primary data sources for 
recent SBT stock assessments and for conditioning the operating model being 
developed for evaluating management procedures for SBT. Estimates of reporting 
rates are integral for the use of the tagging data within these contexts. Estimates of tag 
reporting rates for the 1990s tagging experiments were first developed in 1996 
(Polacheck et al. 1996) and were subsequently updated to incorporate new, updated 
and revised data (Polacheck et al. 1997, 1998; Preece et al. 2001). In particular, 
estimates of the catch by year, age and fishery are critical for the estimation of 
reporting rates for SBT, and there have been substantive changes to these data over 
the years reflecting improvements in the estimation of SBT growth and revisions to 
the estimation of total catch and/or its size distribution. The latest update to the 
reporting rate estimates was made in 2001 (Preece et al. 2001). Since then, there have 
been further revisions to the catch data, and, in addition, the operating model used for 
management procedures evaluation does not use catch data compiled by calendar 
year, which was the basis for the previous reporting rates, but by fishing seasons 
instead. At the 2004 CCSBT Scientific Committee meeting, it was agreed that the tag 
release and recapture data should be re-compiled to reflect the non-calendar year 
fishing seasons used in the operating model (Anon. 2004, Annex 5). Updated tagging 
data reflecting this change were provided by CSIRO to the CCSBT in September 
2004.  However, no provision was made for updating the reporting rate estimates to 
reflect the most recent catch estimates and the change in the definition of year.  
 
This paper presents updated estimates of reporting rates that use the most recent catch 
estimates and are consistent with the definitions of fishing seasons used in the 
operating model. These updated reporting rates were calculated in a similar manner to 
the way they were calculated for the 2001 assessment, as documented in Appendix 2 
of CCSBT-SC/0108/21 (Preece et al. 2001).  A few changes were made to the way in 
which the data were compiled and to the reporting rate options; these changes are 
described in the present document. 
 

Material and Methods 
 
Definition of Fisheries 
 
Reporting rates are first calculated for separate fishery components and then 
combined to provide an overall estimate for each fishing season. The fishery 
definitions used here remained the same as those used previously: 
 
Fishery 1. Australian domestic longline and other miscellaneous catch outside South 

Australia (there are a few troll and purse seine operations outside SA) 
Fishery 2. South Australia surface fishery (mainly pole and line and purse seine, but 

also a handful of trolling operations) 
Fishery 3. Australian farm fishery 
Fishery 4. Japanese longline catch inside the AFZ on vessels with observers 
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Fishery 5. Japanese longline catch outside the AFZ on vessels with observers in 
statistical areas 3-9 

Fishery 6. Japanese longline catch inside the AFZ on vessels without observers 
Fishery 7. Japanese longline catch outside the AFZ on vessels without observers in 

statistical areas 3-8  
Fishery 8. Japanese longline catch outside the AFZ on vessels without observers in 

statistical area 9  
 
Note that the Japanese longline fisheries include Australian and New Zealand joint 
venture operations.  
 
 
Tag Return Data 
 
The criteria used to filter the release and recapture records remained the same as 
described in CCSBT-SC/0108/21.  The only difference to way in which the tag return 
data was compiled is that recapture year is defined as November 1 of the previous 
year to October 31 of the given year, rather than calendar year (which was used in the 
2001 analysis).1  The tag-return data provided by CSIRO to the CCSBT in September 
2004 were also compiled using this adjusted year definition.  This change was made 
so that the reporting rates would better correspond to fishing seasons.  For example, 
using January 1 as the start of a year (i.e. calendar year) splits the surface fishing 
season into two years, whereas using July 1 as the start of a year splits the longline 
fishing season into two years; using November 1 is a reasonable compromise.   
 
Table 1 gives an updated summary of the number of tags released by year and cohort, 
and the corresponding number of tags recaptured by year.   
 
 
Catch Data 
 
The catch data were generally compiled in the same way as described in CCSBT-
SC/0108/21.  The biggest difference is that catches were compiled by adjusted year 
(starting November 1), rather than calendar year, for reasons already discussed for the 
tag return data.  A few more minor differences are as follows: 
 
• Some of the historical catch data was updated for the 2004 CCSBT data exchange; 

in particular, Japan provided updated longline data for the early 1990s and New 
Zealand provided updated joint venture data. 

• Two alternatives are presented for the observer catch data (Fisheries 4 and 6) 
because of uncertainty about the return of tags when observers were on board a 
vessel, but not actually observing the catch. This issue arises because a significant 
percentage of the catch was not actually observed while observers were aboard 
vessels (~30% for observer vessels within the AFZ and ~17% for RTMP observer 
vessels).  In the first alternative, we assume that all tags are returned from all 
catches on observer vessels. In the second alternative,  we assume that that the 
reporting rate is 100% only for the catches actually observed by the observer, and 

                                                           
1 This adjusted year definition has always been used for release year and cohort (in 
both the present analysis and in past analyses). 
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when the observer is not observing the catch that the reporting rate is the same as 
for unobserved vessels. In reality, the reporting rates for the unobserved catch 
while an observer is on board is likely to be somewhere in between 100% and the 
rate for vessels without observers as the presence of observers is likely to promote 
tag returns.  

 
Unfortunately the tag data base does not provide any insight into this issue 
because it only contains information on whether the tag came from a vessel with 
an observer, not on whether the fish from which the tag came was actually 
observed. Furthermore, the observer data base does not contain information on 
when and which tags were recovered while an observer was on board observing 
the catch. This means that no matter which assumption is used there may be some 
miss-assignment of tags to whether they came from the observed component.  If 
we assume that 100% of tags are returned from all catches when an observer was 
on board a vessel, then the age distribution of the observer catches (determined 
from fish whose lengths were measured) needs to be scaled up to the total number 
of fish caught on observer vessels.  If we assume that tags are only returned from 
catches actually observed by the observer, then essentially no scaling up is 
necessary because the number of fish measured for length is almost the same as 
the number of fish actually observed (a very small number of observed fish are not 
measured, so we scale up the age distribution to account for these fish)2.      

 
 
Reporting Rate Options 
 
In calculating a final reporting rate for each year and age class, we first need to 
calculate the reporting rate for each fishery.  The options considered for each fishery 
are given in Table 2.  There are only minimal changes from 2001, as follows: 
 
• Option b) for Fisheries 2 and 3 (Australian surface and farm fisheries, 

respectively) is now based on tag seeding data instead of relative returns rates 
compared to Fishery 1 (Australian longline catches).  Using the relative return 
rate to Fishery 1 did not have a very scientific basis given the small sample size 
for this fishery and thus high variances.  Furthermore, the reporting rates 
calculated this way tended to be equal or close to 100%. On the other hand, recent 
analyses of data from tag seeding experiments suggest that reporting rates may 
have been substantially less than 100% for the Australian farm fishery during the 
1990s. Thus, tag seeding experiments conducted in the farms in 1996 and 1997 
suggested significantly lower levels of reporting:  76% and 86% respectively  
(Polacheck 2004).  We took the average (81%) and assumed that it is 
representative of the reporting rates in years 1991 to 1997 in both the farm fishery 
and the surface fishery.   

• Option b) for Fishery 7 (out-of-zone Japanese longline fishery without observers) 
in 1997 now uses all ages, rather than just ages 5 and older, because the Japanese 
industry policy of non-retention of fish less than 25kg on unobserved vessels, 

                                                           
2 Note that in previous estimates of reporting rates, option 2 (un-scaled data) was used because the 
problem of determining which catch data within the observer data base to use as the “observed” catch 
had not been fully recognized or addressed. nor the issue of which tags were “observer reported tags”.  
Thus, the un-scaled catch (i.e. catches that were actually observed) had been used while the apparent 
intention was that the scaled catch should have been used. 
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which was in place in 1995 and 1996, was abandoned in 1997. This change 
should provide for a more precise estimate of the reporting rate in 1997 (i.e. as a 
result of the additional tag return data), although the previous exclusion should 
not have biased the estimate.   

 
As outlined in CCSBT-SC/0108/21, option b) for Fishery 7 would ideally be 
calculated as the relative return rate compared to Fishery 5; however, lack of RTMP 
data makes this unfeasible (RTMP data were not made available for 1996 and 1997 
and are fairly sparse in other years of the program, i.e. 1992 to 1995).  This fact, along 
with the non-retention of small fish in Fishery 7 in 1995 and 1996, leads to the rather 
complicated option b) for Fishery 7.   
 
Eight combinations of the reporting rate options for the eight fisheries were 
considered.  Fisheries 1, 4, 5, and 6 have only one option.  For the remaining fisheries, 
the combinations of options that we considered are summarized in Table 3.  These are 
the same combinations presented in CCSBT-SC/0108/21.   Now, however, we have 
the added complexity that we can use either the scaled or un-scaled data for the 
observer catches in calculating the reporting rates corresponding to these eight 
options.  Until a decision has been reached on which of these two alternatives is 
believed to be more valid, the eight reporting rate options have been calculated using 
both the scaled and un-scaled data.   
  
Combining Fishery Specific Reporting Rates 
 
Using the reporting rates calculated for all of the fisheries, we then calculated age-
specific reporting rates for each year as a weighted average of the reporting rates for 
all fisheries (Polacheck et al. 1997; Hearn et al. 1999). The reporting rate for each 
fishery is weighted by the proportion of catch at age in each fishery.  Note that ‘all 
fisheries’ includes any catches not accounted for in Fisheries 1 to 8, for which the 
reporting rate is assumed to be zero.   
 
 

Results 
 
Table 4 presents updated year-specific reporting rate estimates for the fisheries and 
reporting rate options specified in Table 2.  Results are presented using both the 
scaled and un-scaled observer catch data.  Table 5 provides estimates of the year- and 
age-specific reporting rates (averaged over fisheries) for each of the eight reporting 
rate options given in Table 3.  Again, results are presented using both the scaled and 
un-scaled observer catch data. 
 

Discussion 
 
The first eight reporting rate options presented here are analogous to those presented 
previously for the SBT tagging experiments conducted in the 1990s (Polacheck et al. 
1996, 1998; Preece et al. 2001). They have been updated (1) to incorporate recent 
updates to the estimates of SBT catches and their size distributions; (2) to include 
corrected estimates of the SBT catches while observers were on board vessels; (3) to 
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include tag seeding estimates of reporting rates for the Australian surface fishery and 
(4) to estimate the reporting rates for a fishing year (in contrast to previous calendar 
year estimates). It should be noted that among the eight options only option 8 is 
actually information based for the major non-observed fisheries for which a non-zero 
reporting rate is estimated (i.e. the Australian surface fishery, the Japanese longline 
fishery in the AFZ, the Japanese longline fishery in Areas 3-8 outside the AFZ and the 
Japanese longline fishery in Area 9). For the other seven options, the reporting rate for 
at least one of these fisheries is based on what can be considered the most optimistic 
assumption for that fishery (e.g. 100% reporting rates for the Australian surface, out-
of-zone reporting rates are the same as in-zone, etc.). In this sense, option 8 could be 
considered the most “realistic” or plausible.  
 
It should be emphasized that the eight reporting options do not span the range of 
uncertainty in the actual reporting rates. The eight options originally provided a 
measure of the sensitivity/robustness of the resulting mortality rate estimates and 
fishing rate mortality rate trends over time to uncertainty in the reporting rates. In 
particular, they provided a measure of the sensitivity of having direct information for 
each of the major fishery components contributing to the overall reporting rate in 
contrast to what would be the most optimistic assumption in the absence of any direct 
information or data. As such, a comparison of the two sets of four options for each 
major fishery provides a measure of its contribution to the uncertainty (i.e. options 1-4 
relative to options 4-8 for the Australian surface and farm fisheries; options 1,2,5,6 
versus 3,4,7,8 for the Japanese longline fishery areas 3 to 8; odd versus even options 
for the Japanese South African longline fishery (area 9)). In this sense, option 1 could 
be considered a reasonable upper bound for the reporting rates. However, none of the 
options could be considered as a reasonable lower bound. Conditional on the available 
data and information, option 8 could be considered as a “best” estimate (although they 
are the lowest) as it uses the “best” direct information for each of the main fishery 
components. However, it should be stressed that there is large uncertainty about these 
reporting rate estimates as the information/data available for their estimation is quite 
limited. Even in those cases where direct data are used, rather restrictive assumptions 
are required (e.g. no temporal changes in the reporting rates in the surface fishery over 
time). Finally, it should also be noted that these estimates of reporting rates are 
dependent upon the estimates of the catch at age for all of the different SBT fisheries. 
Large uncertainty is associated with these in some cases and this uncertainty is not 
reflected within any of the options presented. 
 
We have also included in this paper are eight additional reporting rate options which 
take into account the uncertainty about tag reporting when observers are on board a 
vessel but not actually in the act of observing the catch (i.e. the un-scaled estimates). 
It should be noted that if 100% of the tags were returned while an observer was on 
board, independent of whether he was actually observing, then the scaled and un-
scaled estimates would be expected to be the same if returned tags could be correctly 
assigned to whether in fact they came from a fish when the observer was observing or 
not. In this case, the un-scaled estimates would be preferable as any non-reporting of 
tags when the observer was not observing would introduce a positive bias into the 
reporting rates (e.g. the assumption of 100% reporting rates for the observed fishery 
would be violated), while the un-scaled estimates would be unbiased. However, as 
noted above, given the way the data have been compiled, it is not possible to 
determine which tags returned from observer vessels came from fish that were 
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actually observed. If some tags came from the unobserved catches, this would 
introduce a negative bias into the un-scaled estimates (e.g. too many tags would be 
considered to have been returned from the observed portion of the catch and too few 
from the unobserved). It is undoubtedly the case that at least some tags from the 
unobserved portion of the catch were returned to the observers while they were on 
board. Thus, both the un-scaled and scaled estimates potentially contain negative or 
positive biases respectively. The difference between the two provides a measure of the 
extent of the possible bias but the data by themselves do not allow the extent of actual 
bias to be determined. The differences between the scaled and un-scaled estimates are 
substantive. These differences emphasize the importance of ensuring that detailed and 
accurate data from observers are recorded and made available if observer data are to 
be used for the estimation of reporting rates. 
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Table 1.  Summary of release and recapture numbers used in the reporting rate 
analysis. 

# of Recaptures by Year Cohort Release 
Year 

#  of 
Releases 1991 1992 1993 1994 1995 1996 1997

1988 1991 810 63 8 16 7 1 4 1
1988 1992 1 0 0 0 0 0 0 1
1989 1991 3127 102 147 58 34 21 7 5
1989 1992 1097 0 57 18 11 10 4 2
1989 1993 22 0 0 2 0 0 1 0
1989 1994 4 0 0 0 0 0 0 0
1990 1991 3299 20 40 46 23 15 4 4
1990 1992 4646 0 88 157 100 33 12 9
1990 1993 2777 0 0 65 78 31 15 15
1990 1994 111 0 0 0 4 2 0 0
1990 1995 3 0 0 0 0 0 0 0
1991 1992 2144 0 1 21 56 37 12 7
1991 1993 2937 0 0 60 68 69 21 11
1991 1994 3640 0 0 0 77 146 30 41
1991 1995 101 0 0 0 0 1 3 1
1991 1996 1 0 0 0 0 0 0 0
1992 1993 4898 0 0 2 40 202 93 63
1992 1994 3158 0 0 0 29 167 77 55
1992 1995 2629 0 0 0 0 54 102 75
1992 1996 24 0 0 0 0 0 1 1
1993 1994 9003 0 0 0 4 110 399 370
1993 1995 5899 0 0 0 0 83 396 367
1993 1996 1511 0 0 0 0 0 115 205
1993 1997 17 0 0 0 0 0 0 7
1994 1995 8585 0 0 0 0 0 87 637
1994 1996 2518 0 0 0 0 0 75 344
1994 1997 526 0 0 0 0 0 0 91
1995 1996 82 0 0 0 0 0 0 3
1995 1997 592 0 0 0 0 0 0 15
1996 1997 884 0 0 0 0 0 0 1
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Table 2.  Summary of the reporting rate options considered for each fishery. 
Fishery Description Reporting Rate 

1 AUS LL & misc. 100% 
2 AUS surface a) 100% 

b) 81% (based on tag seeding experiments3) 
3 AUS farm a) 100% except in 1996 where it is estimated as 53% 

due to the mass farm deaths4. 
b) 81% (based on tag seeding experiments) except in 

1996 where it is estimated as 53% of 81%.  
4 JPN in-AFZ with 

observers 
100% 

5 JPN out-of-AFZ 
with observers 

100% 

6 JPN in-AFZ 
without observers  

Calculated as the relative return rate compared to 
Fishery 4. 

7 JPN out-of-AFZ 
without observers 
areas 3 to 8 

a) Same as Fishery 6. 
b) 1991-1994: calculated as the relative return rate  

compared to Fisheries 4 and 5 combined; 
1995: same as 1991-1994 except only using fish 5 
years of age and older; 
1996: calculated as the relative return rate for 
Fisheries 5 and 7 combined compared to Fishery 4, 
and only using fish 5 years of age and older; 
1997: same as 1996 but using all ages. 

8 JPN out-of-AFZ  
without observers 
area 9 

a) Same as Fishery 7a) 
b) 40% of Fishery 7a) 5 
c) Same as Fishery 7b) 
d) 40% of Fishery 7b) 

 
 
 
Table 3.  The 8 combinations of the reporting rate options presented in Table 2 that 
we considered. 

Combination  
Fishery 1 2 3 4 5 6 7 8 

2 a a a a b b b b 
3 a a a a b b b b 
7 a a b b a a b b 
8 a b c d a b c d 

 

                                                           
3 See Polacheck et al. 2004 for further information. 
4 See Polacheck et al. 1998 for further information. 
5 See Polacheck et al. 1996 for reasoning behind 40%. 
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Table 4.  Year-specific reporting rate estimates for the fisheries and options presented 
in Table 2.  
 
a) Results using scaled up observer data (assumes 100% of tags are returned from 
observer vessels regardless of whether all catches are directly observed).  

Fishery Option 1991 1992 1993 1994 1995 1996 1997
1 - 1 1 1 1 1 1 1
2 a 1 1 1 1 1 1 1
2 b 0.81 0.81 0.81 0.81 0.81 0.81 0.81
3 a 1 1 1 1 1 0.529 1
3 b 0.81 0.81 0.81 0.81 0.81 0.429 0.81
4 - 1 1 1 1 1 1 1
5 - 1 1 1 1 1 1 1
6 - 0.371 0.363 0.687 0.83 0.313 0.707 1
7 a 0.371 0.363 0.687 0.83 0.313 0.707 1
7 b 0.331 0.415 0.492 0.327 0.177 0.413 1
8 a 0.371 0.363 0.687 0.83 0.313 0.707 1
8 b 0.331 0.415 0.492 0.327 0.177 0.413 1
8 c 0.148 0.145 0.275 0.332 0.125 0.283 0.4
8 d 0.132 0.166 0.197 0.131 0.071 0.165 0.4

 
 
b) Results using un-scaled observer data (assumes 100% of tags are returned from 
observer vessels when the observer is actually observing catches, and that the 
reporting rate is the same as for unobserved vessels when the observer is not 
observing).  

Fishery Option 1991 1992 1993 1994 1995 1996 1997
1 - 1 1 1 1 1 1 1
2 a 1 1 1 1 1 1 1
2 b 0.81 0.81 0.81 0.81 0.81 0.81 0.81
3 a 1 1 1 1 1 0.529 1
3 b 0.81 0.81 0.81 0.81 0.81 0.429 0.81
4 - 1 1 1 1 1 1 1
5 - 1 1 1 1 1 1 1
6 - 0.234 0.237 0.45 0.524 0.209 0.408 0.957
7 a 0.234 0.237 0.45 0.524 0.209 0.408 0.957
7 b 0.231 0.295 0.363 0.243 0.134 0.285 0.772
8 a 0.234 0.237 0.45 0.524 0.209 0.408 0.957
8 b 0.231 0.295 0.363 0.243 0.134 0.285 0.772
8 c 0.094 0.095 0.18 0.21 0.084 0.163 0.383
8 d 0.092 0.118 0.145 0.097 0.053 0.114 0.309

 

 A19-10



Appendix 19: Updated reporting rate estimates for 1990s SBT tagging experiments 
 

Table 5.  Year- and age-specific reporting rate estimates (averaged over all fisheries) 
for the eight options presented in Table 3.  
 
a) Results using scaled up observer data (assumes 100% of tags are returned from 
observer vessels regardless of whether all catches are directly observed). 

Option 1:      
Age 1991 1992 1993 1994 1995 1996 1997 

1 0.988 0.971 0.937 0.692 0.89 0.546 0.99 
2 0.785 0.617 0.865 0.717 0.735 0.504 0.951 
3 0.734 0.648 0.769 0.814 0.767 0.589 0.906 
4 0.307 0.413 0.657 0.773 0.492 0.557 0.841 
5 0.305 0.346 0.659 0.749 0.355 0.523 0.814 
6 0.249 0.31 0.632 0.711 0.289 0.488 0.751 
7 0.276 0.304 0.635 0.725 0.292 0.502 0.754 
8 0.309 0.332 0.651 0.746 0.304 0.511 0.755 

Option 2:      
Age 1991 1992 1993 1994 1995 1996 1997 

1 0.987 0.971 0.937 0.692 0.916 0.538 0.988 
2 0.779 0.616 0.85 0.695 0.776 0.494 0.946 
3 0.72 0.634 0.731 0.765 0.775 0.587 0.89 
4 0.216 0.337 0.547 0.71 0.477 0.522 0.753 
5 0.213 0.255 0.477 0.658 0.315 0.36 0.638 
6 0.185 0.257 0.451 0.597 0.251 0.375 0.54 
7 0.195 0.255 0.481 0.611 0.238 0.395 0.568 
8 0.202 0.268 0.5 0.635 0.25 0.386 0.596 

Option 3:      
Age 1991 1992 1993 1994 1995 1996 1997 

1 0.987 0.973 0.926 0.522 0.911 0.324 0.99 
2 0.779 0.626 0.849 0.521 0.759 0.469 0.951 
3 0.729 0.654 0.729 0.721 0.77 0.585 0.906 
4 0.285 0.438 0.574 0.641 0.467 0.51 0.841 
5 0.28 0.38 0.535 0.501 0.29 0.35 0.814 
6 0.229 0.339 0.511 0.436 0.215 0.333 0.751 
7 0.253 0.333 0.521 0.45 0.209 0.338 0.754 
8 0.281 0.365 0.531 0.462 0.217 0.327 0.755 

Option 4:      
Age 1991 1992 1993 1994 1995 1996 1997 

1 0.986 0.973 0.926 0.522 0.911 0.32 0.988 
2 0.773 0.624 0.838 0.512 0.758 0.469 0.946 
3 0.717 0.638 0.703 0.702 0.769 0.584 0.89 
4 0.204 0.352 0.495 0.616 0.456 0.491 0.753 
5 0.198 0.276 0.405 0.465 0.267 0.255 0.638 
6 0.171 0.278 0.381 0.391 0.193 0.267 0.54 
7 0.18 0.277 0.411 0.405 0.179 0.275 0.568 
8 0.186 0.292 0.423 0.418 0.187 0.254 0.596 
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Option 5:       

Age 1991 1992 1993 1994 1995 1996 1997 
1 0.934 0.885 0.937 0.692 0.753 0.545 0.808 
2 0.666 0.57 0.777 0.704 0.65 0.414 0.78 
3 0.614 0.553 0.691 0.712 0.638 0.479 0.743 
4 0.299 0.388 0.633 0.716 0.438 0.477 0.726 
5 0.305 0.346 0.656 0.741 0.346 0.517 0.773 
6 0.249 0.31 0.632 0.711 0.288 0.487 0.747 
7 0.276 0.304 0.635 0.725 0.292 0.502 0.754 
8 0.309 0.332 0.651 0.746 0.304 0.511 0.755 

Option 6:      
Age 1991 1992 1993 1994 1995 1996 1997 

1 0.933 0.885 0.937 0.692 0.753 0.538 0.805 
2 0.66 0.568 0.762 0.681 0.649 0.413 0.775 
3 0.6 0.539 0.653 0.663 0.637 0.478 0.727 
4 0.208 0.313 0.523 0.653 0.418 0.444 0.639 
5 0.213 0.255 0.474 0.65 0.305 0.355 0.597 
6 0.185 0.257 0.451 0.596 0.25 0.375 0.537 
7 0.195 0.255 0.481 0.611 0.238 0.395 0.568 
8 0.202 0.268 0.5 0.635 0.25 0.386 0.596 

Option 7:      
Age 1991 1992 1993 1994 1995 1996 1997 

1 0.934 0.887 0.926 0.522 0.748 0.324 0.808 
2 0.66 0.578 0.761 0.507 0.632 0.388 0.78 
3 0.61 0.56 0.651 0.619 0.632 0.476 0.743 
4 0.277 0.414 0.549 0.584 0.408 0.432 0.726 
5 0.28 0.38 0.532 0.493 0.281 0.345 0.773 
6 0.229 0.339 0.511 0.435 0.214 0.333 0.747 
7 0.253 0.333 0.521 0.449 0.209 0.338 0.754 
8 0.281 0.365 0.531 0.462 0.217 0.327 0.755 

Option 8:      
Age 1991 1992 1993 1994 1995 1996 1997 

1 0.933 0.887 0.926 0.522 0.748 0.32 0.805 
2 0.654 0.577 0.75 0.498 0.632 0.387 0.775 
3 0.597 0.543 0.625 0.6 0.632 0.475 0.727 
4 0.196 0.327 0.471 0.559 0.397 0.413 0.639 
5 0.198 0.276 0.402 0.457 0.258 0.25 0.597 
6 0.171 0.278 0.381 0.39 0.192 0.267 0.537 
7 0.18 0.277 0.411 0.405 0.179 0.275 0.568 
8 0.186 0.292 0.423 0.418 0.187 0.254 0.596 
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b) Results using un-scaled observer data (assumes 100% of tags are returned from 
observer vessels only when the observer is actually observing catches, and that the 
reporting rate is the same as for unobserved vessels when the observer is not 
observing). 

Option 1:      
Age 1991 1992 1993 1994 1995 1996 1997 

1 0.985 0.965 0.88 0.456 0.902 0.317 0.989 
2 0.74 0.536 0.773 0.517 0.75 0.467 0.949 
3 0.702 0.603 0.671 0.732 0.763 0.583 0.904 
4 0.213 0.321 0.497 0.633 0.452 0.504 0.831 
5 0.197 0.235 0.456 0.524 0.277 0.338 0.791 
6 0.161 0.213 0.433 0.48 0.212 0.315 0.724 
7 0.177 0.208 0.434 0.484 0.209 0.32 0.726 
8 0.198 0.226 0.446 0.497 0.216 0.312 0.726 

Option 2:      
Age 1991 1992 1993 1994 1995 1996 1997 

1 0.985 0.965 0.88 0.456 0.902 0.312 0.987 
2 0.736 0.535 0.763 0.503 0.75 0.467 0.944 
3 0.693 0.594 0.647 0.701 0.763 0.583 0.889 
4 0.155 0.272 0.425 0.593 0.438 0.485 0.747 
5 0.139 0.175 0.336 0.466 0.25 0.244 0.623 
6 0.12 0.178 0.314 0.407 0.186 0.25 0.522 
7 0.126 0.175 0.333 0.412 0.172 0.258 0.548 
8 0.131 0.185 0.346 0.426 0.18 0.24 0.573 

Option 3:      
Age 1991 1992 1993 1994 1995 1996 1997 

1 0.985 0.967 0.875 0.358 0.899 0.224 0.984 
2 0.739 0.545 0.766 0.403 0.74 0.457 0.94 
3 0.702 0.61 0.654 0.679 0.76 0.582 0.895 
4 0.211 0.35 0.46 0.558 0.434 0.485 0.791 
5 0.195 0.274 0.4 0.384 0.241 0.265 0.693 
6 0.159 0.246 0.379 0.324 0.171 0.25 0.608 
7 0.175 0.24 0.382 0.329 0.162 0.251 0.606 
8 0.195 0.264 0.392 0.337 0.167 0.235 0.602 

Option 4:      
Age 1991 1992 1993 1994 1995 1996 1997 

1 0.985 0.967 0.875 0.358 0.899 0.221 0.982 
2 0.735 0.544 0.758 0.397 0.74 0.456 0.936 
3 0.693 0.599 0.634 0.665 0.759 0.581 0.883 
4 0.154 0.288 0.402 0.54 0.426 0.472 0.723 
5 0.138 0.199 0.304 0.357 0.223 0.2 0.557 
6 0.119 0.202 0.282 0.291 0.154 0.205 0.445 
7 0.125 0.2 0.301 0.295 0.139 0.208 0.462 
8 0.129 0.212 0.312 0.304 0.144 0.185 0.479 
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Option 5:       

Age 1991 1992 1993 1994 1995 1996 1997 
1 0.932 0.879 0.88 0.456 0.739 0.317 0.806 
2 0.621 0.488 0.686 0.503 0.624 0.386 0.778 
3 0.583 0.509 0.593 0.63 0.625 0.474 0.741 
4 0.205 0.297 0.473 0.576 0.392 0.426 0.717 
5 0.197 0.235 0.453 0.516 0.268 0.332 0.751 
6 0.161 0.213 0.433 0.479 0.211 0.315 0.72 
7 0.177 0.208 0.434 0.484 0.209 0.32 0.726 
8 0.198 0.226 0.446 0.497 0.216 0.312 0.726 

Option 6:      
Age 1991 1992 1993 1994 1995 1996 1997 

1 0.932 0.879 0.88 0.456 0.739 0.312 0.804 
2 0.617 0.487 0.676 0.489 0.624 0.386 0.773 
3 0.574 0.499 0.569 0.599 0.625 0.474 0.726 
4 0.148 0.247 0.401 0.536 0.378 0.407 0.633 
5 0.139 0.175 0.334 0.459 0.241 0.238 0.582 
6 0.12 0.178 0.314 0.406 0.185 0.25 0.519 
7 0.126 0.175 0.333 0.412 0.172 0.258 0.548 
8 0.131 0.185 0.346 0.426 0.18 0.24 0.573 

Option 7:      
Age 1991 1992 1993 1994 1995 1996 1997 

1 0.932 0.882 0.875 0.358 0.736 0.224 0.802 
2 0.62 0.498 0.678 0.39 0.614 0.376 0.769 
3 0.582 0.516 0.576 0.577 0.622 0.473 0.733 
4 0.203 0.326 0.436 0.501 0.375 0.407 0.676 
5 0.195 0.273 0.398 0.376 0.232 0.259 0.653 
6 0.159 0.246 0.378 0.323 0.17 0.25 0.604 
7 0.175 0.24 0.382 0.329 0.162 0.251 0.606 
8 0.195 0.264 0.392 0.337 0.167 0.235 0.602 

Option 8:      
Age 1991 1992 1993 1994 1995 1996 1997 

1 0.932 0.881 0.875 0.358 0.736 0.221 0.8 
2 0.616 0.497 0.67 0.383 0.613 0.375 0.765 
3 0.573 0.504 0.556 0.562 0.621 0.472 0.721 
4 0.147 0.264 0.377 0.483 0.366 0.394 0.608 
5 0.138 0.199 0.301 0.35 0.214 0.194 0.516 
6 0.119 0.202 0.282 0.29 0.153 0.205 0.441 
7 0.125 0.2 0.301 0.295 0.139 0.208 0.462 
8 0.129 0.212 0.312 0.304 0.144 0.185 0.479 
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Introduction 
Extensive tagging experiments for southern bluefin tuna (SBT) have been conducted 
beginning in the 1960s. These tagging experiments can be divided into three basic 
groups based on the methods used and the objective/design for the experiments. These 
are pre-1980, 1983-84 and 1990s. The tagging experiments conducted in the 1990s 
were designed to tag multiple cohorts at three consecutive ages with the intention that 
the release and return data could be analyses within a Brownie estimation framework 
(Polacheck et al. 1996, 1997, 1998) and are examined further in Appendices 15 and 
16. However, the pre-1990 tagging experiments were not designed within the context 
of this Brownie estimation framework. The stated objectives of the pre-1980 tagging 
experiments were to delineate stock boundaries, show migration paths, confirm 
growth rates obtained by other methods, and hopefully to assist in the stock 
assessments. The focus of the 1983-84 experiments was more quantitative with a 
focus on estimating mortality rates, fishery interaction and local populations. 
Improved tagging methods were also used in the post-1980 experiments, particularly 
with the introduction of vinyl tagging cradles (Caton 1991). 
 
Over 50,000 conventional tags were released prior to 1990 and nearly all of these are 
potentially usable for quantitative mortality and/or population estimation1. Extensive 
use of these data have been used for the quantitative estimation of growth and tag 
shedding (e.g. Hearn 1986; Hampton 1989; Hampton and Kirkwood 1989; Hearn et 
al. 1991; Polacheck et al. 2003, 2004; Hearn and Polacheck 2003) as well as some 
qualitative examination of with respect to migration/movements (Hynd, 1969; 
Murphy, 1977; Murphy and Majkowski, 1981). However, with some limited 
exceptions (e.g. Lucas 1974; Hampton 1991; and Hearn et al. 1987) there has been 
relatively limited use of these data for estimation of mortality rates or for quantitative 
use in the stock assessment process. In addition, since these previous analyses, there 
have been extensive developments in estimation methods (see earlier appendices of 
this report) as well as substantial changes in our understanding of SBT age and 
growth (Gunn et al. 1996; Hearn and Polacheck 2003; Polacheck et al. 2003, 2004). 
The latter is essential for the estimation of the age of release of tagged fish, which is a 
critical input for many of the quantitative estimation approaches. Also, there is now a 
better understanding of the need to address some of the key issues with respect to 
incomplete mixing, tag shedding and reporting rates if such quantitative estimation is 
to be undertaken. In the current Appendix, the potential use of the data from these 
earlier tagging experiments for providing quantitative mortality rate estimates within 
the context of the generalized Brownie-Petersen framework developed in this report 
(Appendices 5 and 7) are examined.   

Release Data  
Table 1 provides the number of tags released by cohort and age of release for all 
tagging experiments prior to 19902. Tag releases were screened with respect to quality 
as described in Appendix 4. However, releases by all taggers (i.e., fishermen as well 
as scientists) have been included in this table. In additions releases from troll caught 

                                                 
1 A fraction of the releases are considered unusable for quantitative analyses because of noted concerns 
at the time of release (e.g. injuries, tag placement, etc. – see Appendix 4). 
2 Note that cohort and age of release are estimated quantities based on the release date and the length of 
the fish at release. 
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as well as pole and line caught fish have been included. It is clear from Table 1 that 
for all of the cohorts spawned since 1968, tagging was not conducted in sufficient 
sequential years and/or over a wide enough age range of fish to provide substantial 
numbers of releases at more than a single age for any cohort. Since tagging of the 
same cohort in multiple years is a basic requirement for the application of the 
Brownie model3 or the generalizations developed within this report, the lack of 
releases for multiple ages means that it is not feasible to apply such estimation models 
to the data from these cohorts.  In contrast, simply based on the number of releases by 
age, there would appear to be sufficient data to consider application of a Brownie or 
Brownie-Petersen model to the data from the 1960-68 cohorts. However, there are 
several issues that need to be considered prior to any such application including: (1) 
who did the tagging, (2) potential incomplete mixing, (3) tag shedding and (4) tag 
reporting rates. 

Tagger 
While all of the juvenile SBT tagging experiments were organized by CSIRO, a large 
fraction of the tagging prior to 1980 was not actually conducted by CSIRO staff or 
dedicated “tagging technicians” (e.g. WA Fisheries staff) but was conducted by 
contracted commercial fishermen, often without any direct, on-board supervision by 
CSIRO staff. Stanley and Hearn (1999) note that “pre-1990 some taggers would have 
had no or little experience in tagging, especially commercial fishermen”. The actual 
documentation of who did the tagging is incomplete and for a fraction of the releases, 
the tagger or his training/affiliation is simply unknown. Most cases where the tagger 
is unknown were for releases prior to 1966 and during the 1970s (Table 2). It should 
also be noted that for all the pre-1990 tagging the actual tagger was not included in 
the original computer records for the tagging data. The tagger was subsequently 
entered based on an examination of the written tagging data sheets. In some cases, 
there is uncertainty as to whether the tagger has been identified correctly (see Stanley 
and Hearn 1999). However, this is not likely to be a substantial problem, particularly 
with determination of whether tagging was done by a commercial fishermen or not 
(e.g. most of the fish identified as tagged by commercial fishermen occurred when 
there was no CSIRO or other tagger aboard). 
 
Concerns have been expressed about the reliability of the tagging done by commercial 
fishermen (Hearn, personal communications4). These concerns relate to (1) the quality 
of the tagging, (2) whether in fact the tags were released and (3) the reliability of the 
release information (especially length). Attempts to evaluate these concerns are 
confounded by the fact that years with substantial numbers of releases by commercial 
fishermen do not tend to overlap with years of substantial numbers of releases by 
scientists.  Thus, scientist releases dominate the tagging in the early 1960s while 
fishermen releases dominated tagging in 1967-69 (Table 3). Differences also exist in 
the month when fish were tagged (Figure 1), which would be expected to affect the 
number of short-term returns (e.g., higher returns would be expected for fish tagged 
nearer the beginning of the fishing season). There were also differences in the size 
range of fish tagged; these changed over time and return rates varied with the size at 
                                                 
3 The Brownie model as originally developed can be applied to tagged data pooled over age when there 
are not significant differences with age in fishing mortality rates and in recruitment among cohorts - 
neither of which is applicable in the case of the SBT tagging data. 
4 Dr. W. Hearn, CSIRO Marine Research, PO Box 20, North Beach, Western Australia 6020, Australia 
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release (Figure 2, 3 and 4). Thus, for example, overall 28% of the fish that were less 
than 80cm when tagged were recaptured compared to only 9% for those greater or 
equal to 80cm. In addition, catches of SBT increased substantially during the 1960s 
and early 1970s (Figure 6), which means return rates would have also been expected 
to have been increasing during this period. The evaluation of fishermen releases in the 
1967-69 period is further confounded by the fact that most of these releases were by a 
single vessel in an area within any given year, in particular in 1968 and 1969.  
 
The concern about the quality of tagging relates to the fact that the commercial 
fishermen were not trained in either tagging or general scientific/biological 
techniques. As such, there is a possibility that tag shedding or tagging mortality could 
be abnormally high and that the number of returns from these releases would be 
significantly too low. If this were the case, then mortality rates estimates from such 
releases would be substantially biased unless data were available that would allow 
these effects to be estimated. However, comparison of the return rates from fishermen 
and scientist released fish do not support this concern. In fact, overall return rates 
from fishermen tagged fish exceed scientist tagged fish by nearly a factor of five 
(Table 3). However, the interpretation of these differences is confounded by the 
factors discussed above. For example, for the releases in the early 1960s (1959-66), 
return rates are greater for scientist tagged fish when the data are broken down into 
area and size of release (Table 3). In contrast for releases between 1967-69, return 
rates from releases off South Australia (SA) are nearly equivalent for scientist and 
fishermen releases, while for releases off New South Wales (NSW) return rates for 
fishermen releases exceed those from scientist releases by over a factor of five when 
releases less than 80cm are considered (Table 3). Note that almost all of the fishermen 
releases were less than 80cm (Figure 3). Thus, the return rates from the 1959-1966 
period lend some support to concerns about the relative quality/reliability of 
fishermen releases, while those from the 1967-69 period do not. 
 
The return rates from the 1967-69 fishermen releases are very high and are among the 
highest seen for any of the large batches of SBT tags ever released. These very high 
return rates have raised concerns about whether in fact all of the tags were actually 
released. Instead some tags may never have been released and may have simply been 
returned and reported as having been retrieved from recaptured fish. While such 
concerns are hard to evaluate, there is no direct evidence which supports such 
concerns. Moreover, there are a number of factors that would suggest that the release 
and return data are valid. These include: 

1. The returns came from a large number of fishermen/vessels (Table 4) and 
reported recapture dates were spread out over time (Figure 5); 

2. The reported size range of fish, both when released and recaptured, do not 
suggest any substantive inconsistencies (Figure 4);  

3. Catches in NSW doubled between 1967 and 1968 and again between 1968 and 
1969, with 1969 having the largest catches in number ever recorded for NSW. 
Catches remained near this peak level in 1970 and declined by 19% in 1971 
(Figure 6). As such, large increases in the return rates from releases in 1968 
and 1969 would be expected; 

4. CSIRO internal correspondence at the time the contracts were let stated that 
the fishermen undertaking the tagging were highly regarded in terms of 
tagging skill and reliability.  
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As such, other than the high recovery rate, nothing we have been able to ascertain, 
either internal to the data or from the limited accounts at the time, suggest concerns 
with these 1967-69 releases. 

Incomplete mixing 
Table 5 compares the number of tags returned by recapture location for tags released 
off WA (Western Australia), SA and NSW in the 1960s for recaptures that were at 
liberty for over 270 days. Tables 6-8 provide similar comparisons except broken down 
into tags released by scientists, fishermen or unknown taggers. Evident in these tables 
is a very strong tendency for fish tagged in NSW to be recaptured almost exclusively 
in NSW (e.g. 93% overall), while fish tagged in WA or SA tended to be more evenly 
distributed between SA and NSW (e.g. 40% of the SA releases were recaptured in SA 
and 28% in NSW). In addition, a significantly lower percent of the recaptures from 
NSW releases came from longline vessels compared to those from WA or SA (4% 
compare to 22% and 32% respectively). The spatial location of the returns from 
longline vessels also differed for releases from NSW and those from WA and SA 
(Table 9). Thus, a high proportion of the NSW longline returns were from east of 
145°E longitude (i.e. the Tasman Sea/New Zealand area) with very few returns from 
the Indian Ocean.  In contrast the longline returns for WA and SA releases were more 
evenly spread out from the Indian Ocean to the Tasman Sea (Table 9).  
 
If the tagged fish were completely mixed, then the proportion of returns from the 
different locations for the different release locations should be the same for tagged 
fish of similar ages released in the same time period. The extent to which these 
proportions differ would constitute a measure of incomplete mixing. Simple 
interpretation of the results in Tables 5-8 is confounded by the fact that the releases 
took place over a decade, while the number and spatial distribution of both releases 
and commercial catches vary over time. Thus, there are differences in the relative 
patterns of return locations for tags released prior to 1966 and those released post 
1966 (Table 10). This is not surprising as the catches off NSW were increasing in the 
late 1960s (Figure 6). The differences in the temporal distribution of releases for 
scientists and fishermen (Table 3) may also explain the large differences in the 
proportion of their WA and SA releases that were recaptured in NSW. However, any 
comparison is confounded to some extent by the small number of scientist released 
tags in the late 1960s.  
  
Although the temporal changes in the distribution of releases and commercial catches 
complicates the interpretation of the spatial pattern of the return data, the differential 
pattern of return location by release location provides strong evidences of incomplete 
mixing of fish among the release locations. In particular, it suggests that once fish 
entered the NSW fishing area they tended to remain in this area. They did not move or 
return to the SA region as juveniles. When they moved into more off-shore waters and 
became vulnerable to longline gear, they remained primarily in the Tasman Sea/New 
Zealand region. This contrasts strongly with the recaptures from releases from WA 
and SA, which indicate a much wider mixing among SBT fishing areas. Thus, there 
was substantial movement of fish from WA and SA into the waters off NSW, but also 
a large proportion that remained or returned to the SA region. When fish from these 
areas moved into off-shore waters, they spread out into the Indian Ocean as well as 
the Tasman Sea.  
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Tag Shedding 
Hampton (1989) and Hampton and Kirkwood (1989) analysed tag shedding rates for 
the pre-1990 SBT tagging experiments. These analyses were performed on releases 
pooled over a number of years and taggers but with separate analyses according to the 
area of release and for fishermen contracted releases. For the 1960s releases, the 
estimates of shedding rates obtained were reasonably high (Figure 7). Thus, in all 
cases the estimated probability of a double-tagged fish losing both its tags within three 
years always exceeded 17% and was as high as 37%. It should be noted that these 
analyses did not consider individual differences among taggers within the groups of 
releases that were analysed. As discussed in Appendix 14, this will underestimate the 
actual shedding rates if in fact heterogeneity in shedding rates exists among taggers. 
In addition, in the initial few years (1959-1963) of SBT tagging only a small fraction 
of the releases were double tagged (i.e. 0% prior to 1962 and 22% in 1963).  For these 
single-tagged fish, the probability of recovering a tagged fish without any tag is much 
higher than for fish that were double tagged. 

Reporting Rates 
For tags released in the 1960s, no data exists that can be used to directly estimate 
reporting rates. Thus, no tag seeding experiments were undertaken for the surface 
fishery and no observers were present in any components of the SBT fishery. Any 
analysis of the 1960s tag return data would be conditional on assumptions about the 
tag reporting rates in these years.  It should be noted that there was substantial 
publicity about these tagging experiments.  Moreover, they were not undertaken to 
estimate fishing mortality rates because there was little concern at the time about 
overfishing of the stock and no limits on catch existed or were being contemplated. As 
such, one of main factors that can make fishermen reluctant to return tags did not exist 
(i.e. the perception that returning tags will contribute to reduction in quotas). All of 
this combined with high tag return rates from NSW in the late 1960s (if these were 
not an artefact) would suggest that reporting rates may have been relatively high 
during the 1960s period (at least in the latter years). Nevertheless, it is unlikely that 
reporting rates were 100%.  

Conclusions 
The examination of the historic (pre-1990) SBT tagging data presented here suggests 
that there are substantial problems with using these data for quantitative estimation of 
mortality rates and population sizes. The data are not directly amendable to the 
Brownie-Peterson estimation framework developed within this report. For the post 
1960s releases, there was simply not enough multiple tagging of the same cohorts at 
consecutive ages to permit the application of a Brownie-type estimator. For the 1960s 
releases, potentially sufficient multiple tagging of some cohorts was conducted to 
allow for a Brownie-type estimator to be used. However, the differential return rates 
for tags released in different areas (e.g. Tables  5-9) provide strong evidence for 
substantial incomplete mixing among releases from NSW with those from WA and 
SA. This indicates that the non-spatial models of Appendices 7 and 9 would not be 
appropriate and that a spatially explicit estimation model would be required to obtain 
reliable estimates. The spatially explicit models developed for use with the 1990s SBT 
tagging experiments (see Appendices 11 and 16) cannot be used for these 1960s data 
because these models make no allowance for a NSW juvenile component of the stock 
since this component disappeared in the early 1980s (Caton, 1991). The fully generic 
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spatial model of Appendix 10 is also not directly applicable because of the lack of 
releases and fishing in all areas (particularly the longline areas) and the differing 
seasonality among the fisheries. A spatially explicit model that incorporated 
hypotheses with respect to the possible movement dynamics along the lines of those 
in Appendix 11 but tailored for the stock and fisheries of the 1960s could be 
developed. However, development of such a model was beyond the scope of the 
current study, particularly given the lack of data for estimating reporting rates, the 
high shedding rates and  concerns associated with the fishermen releases (e.g. the 
results would be highly dependent upon assumptions about reporting rates and 
whether or not fishermen releases were included). Nevertheless, further analyses of 
the 1960s tagging experiments could be informative. In particular, such analyses 
might be extremely informative with respect to the NSW surface component of the 
stock and its disappearance in the early 1980s.  They might also provide additional 
estimates of juvenile natural mortality that would be useful for comparison with those 
from the 1990s experiments.  
 
Even without a quantitative estimation model, the examination of the return and 
recapture data from the 1960s presented here suggests that historically a large degree 
of spatial structuring and spatial heterogeneity existed among the juvenile SBT found 
within Australian waters. The high return rates from NSW and high proportion of 
NSW returns from NSW releases combined with increased catches in the late 1960s 
suggests the possibility of a substantial degree of ecological structuring and separation 
among juvenile SBT between NSW and other areas (WA and SA in particular). This 
further suggests a high degree of vulnerability to over-exploitation and localized 
depletion for the NSW component, which could have implications for the rebuilding 
of the SBT stock.    
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Appendix 20: Review of historical SBT tagging data for mortality estimation 

Table 1: Number of tags released by cohort and estimated age for tagging experiments 
conducted between 1960 and 1984. 
 

 Age of release 
Cohort 0 1 2 3 4
1957 0 0 23 28 4
1958 0 34 72 30 1
1959 0 1 57 3 41
1960 0 169 886 884 151
1961 113 4456 465 611 11
1962 18 5954 2365 235 33
1963 25 5054 825 944 72
1964 276 1937 522 82 0
1965 75 857 293 18 0
1966 196 8150 198 19 0
1967 471 4273 242 9 0
1968 0 2870 494 0 0
1969 1 1376 0 0 0
1970 266 14 0 0 0
1971 0 137 3 0 0
1972 16 864 3 0 0
1973 221 382 1 0 0
1974 359 781 0 0 0
1975 103 3 49 0 0
1976 0 1361 0 0 0
1977 0 30 0 0 0
1978 1000 0 72 0 0
1979 0 481 0 0 0
1980 0 0 0 7 14
1981 0 0 461 62 0
1982 0 5528 712 0 0
1983 871 2333 0 0 0
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Appendix 20: Review of historical SBT tagging data for mortality estimation 

Table 2: Number and percent of tag releases in each year where the tagger is unknown 
for tags released prior to 1990. 
 

Year 

 
Total 

number 
releases 

Number 
releases by 

unknown 
taggers

Percent 
releases by 

unknown 
taggers

1959 57 57 100.0
1960 104 104 100.0
1961 375 227 60.5
1962 5369 351 6.5
1963 7408 5732 77.4
1964 8502 5229 61.5
1965 3099 2162 69.8
1966 2593 22 0.8
1967 9145 82 0.9
1968 4552 0 0.0
1969 3150 1 0.0
1970 2154 1328 61.7
1971 14 14 100.0
1972 154 154 100.0
1973 1088 1088 100.0
1974 745 745 100.0
1975 885 885 100.0
1976 3 3 100.0
1977 1414 506 35.8
1978 1037 1037 100.0
1980 555 1 0.2
1983 6885 0 0.0
1984 3135 0 0.0
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Appendix 20: Review of historical SBT tagging data for mortality estimation 

Table 3: Number of SBT tagged, number of tagged fish returned, and return rate 
(number returned divided by number released) by tagger type for various partitions of 
the tag data from the 1960s. (SA = South Australia, NSW = New South Wales, WA = 
Western Australia.) 

 
Release 

Years 
Release 
Length 

Days at 
Liberty 

Release 
Location

 
Fisher

 
Scientist 

Unknown 
tagger

Number released 17616 12771 13967
Number returned 5172 786 603

All All

Return rate 0.294 0.062 0.043
Number returned 3297 307 173<270 All

Return rate 0.187 0.024 0.012
Number returned 1875 479 430

1959-1969 All 

>270 All
Return rate 0.106 0.038 0.031

Number released 1338 12285 13884
Number returned 134 706 592

All

Return rate 0.100 0.057 0.043
Number released 578 4851 462
Number returned 16 255 37

SA

Return rate 0.028 0.053 0.080
Number released 743 1592 1319
Number returned 115 285 112

All  All 

NSW

Return rate 0.155 0.179 0.085
Number released 2932 5079 110
Number returned 9 87 7

SA

Return rate 0.003 0.017 0.064
Number released 612 1149 917
Number returned 97 263 91

NSW

Return rate 0.158 0.229 0.099
Number released 0 5787 11994
Number returned 0 157 426

1959-1966  

<80cm All 

WA

Return rate  - 0.027 0.036
Number released 16278 486 83
Number returned 5038 80 11

All All All

Return rate 0.309 0.165 0.133
Number released 16072 292 78
Number returned 4958 69 10

All

Return rate 0.308 0.236 0.128
Number released 8414 117 73
Number returned 3899 10 9

NSW

Return rate 0.463 0.085 0.123
Number released 2645 175 1
Number returned 888 59 1

1967-1969 

<80cm All 

SA

Return rate 0.336 0.337 1.000
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Appendix 20: Review of historical SBT tagging data for mortality estimation 

Table 4: The number of vessels that returned tags from releases by scientist, 
fishermen or unknown tagger. 
   

 Release Years 
Tagger 1959-1966 1967-1969
Scientist 175   41
Fishermen  47 170
Unknown 148   10

 
 
Table 5:  The number of surface tag returns by recapture location (SA, NSW, TAS) 
and the number of longline tag returns for tags released in WA, SA, NSW and TAS in 
the 1960s, using only recaptures that were at liberty more than 270 days. (SA = South 
Australia, NSW = New South Wales, WA = Western Australia, TAS = Tasmania) 
 

Surface returns LonglineRelease  
Location SA NSW TAS returns
WA 278 166 1 128
SA 179 128 0 144
NSW 47 1622 1 77
TAS 3 1 0 3
 
 
 
Table 6: The number of surface tag returns by recapture location (SA, NSW, TAS) 
and the number of longline tag returns for tags released by scientists in WA, SA, 
NSW and TAS in the 1960s, using only recaptures that were at liberty more than 270 
days. (SA = South Australia, NSW = New South Wales, WA = Western Australia, 
TAS  = Tasmania) 
 

Surface returns LonglineRelease  
Location SA NSW TAS returns
WA 1 0 0 1
SA 95 13 0 103
NSW 15 110 0 23
TAS 0 0 0 2
 
 
 
Table 7: The number of surface tag returns by recapture location (SA, NSW, TAS) 
and the number of longline tag returns for tags released by fishermen in WA, SA, 
NSW and TAS in the 1960s, using only recaptures that were at liberty more than 270 
days. (SA = South Australia, NSW = New South Wales, WA = Western Australia, 
TAS = Tasmania) 
 

Surface returns LonglineRelease  
Location SA NSW TAS returns
WA 56 43 0 34
SA 63 112 0 20
NSW 28 1464 1 49
TAS 0 0 0 1
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Appendix 20: Review of historical SBT tagging data for mortality estimation 

 
Table 8: The number of surface tag returns by recapture location (SA, NSW, TAS) 
and the number of longline tag returns for tags released by unknown taggers in WA, 
SA, NSW and TAS in the 1960s, using only recaptures that were at liberty more than 
270 days. (SA = South Australia, NSW = New South Wales, WA = Western 
Australia, TAS = Tasmania) 
 

Surface returns LonglineRelease  
Location SA NSW TAS returns
WA 160 87 1 84
SA 14 3 0 18
NSW 4 48 0 5
TAS 3 1 0 0
 
 
 
Table 9:  The number of longline tag returns by longitude (°E) for tags released in 
WA, SA, NSW and TAS in the 1960s, using only recaptures that were at liberty more 
than 270 days. (SA = South Australia, NSW = New South Wales, WA = Western 
Australia, TAS = Tasmania) 
  

Recapture Longitude Release 
Location <115 115-145 >145
WA 66 27 35
SA 61 25 58
NSW 12 7 58
TAS 0 0 3

 
 
 Table 10:  Comparison of the number of tag returns by recapture location (SA, NSW, 
TAS, or high seas) for tags released in WA, SA, NSW and TAS between 1959-66 and 
between 1967-69, using only recaptures that were at liberty more than 270 days.  
(SA = South Australia, NSW = New South Wales, WA = Western Australia, TAS = 
Tasmania. – these are all surface recaptures) 
 

Recapture Location Release 
Years 

Release 
Location SA NSW TAS High Seas

1959-66 WA 222 123 1 94
 SA 116 17 0 124
 NSW 20 182 0 34
 TAS 3 1 0 2
1967-69 WA 56 43 0 34
 SA 63 111 0 20
 NSW 27 1440 1 43
 TAS 0 0 0 1
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Appendix 20: Review of historical SBT tagging data for mortality estimation 

 
 
Figure 1: The number of tags released in the 1960s by month by scientist, fishermen 
and unknown tagger. 
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Appendix 20: Review of historical SBT tagging data for mortality estimation 

 
 
Figure 2: The size distribution of fish tagged in the 1960s by scientist, fishermen and 
unknown tagger and the release size distribution for those fish that were subsequently 
recaptured.  
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Appendix 20: Review of historical SBT tagging data for mortality estimation 

  
 
Figure 3: The size distribution of fish tagged in the period from 1960-1966 by 
scientist, fishermen and unknown tagger and the release size distribution for those fish 
that were subsequently recaptured.   
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Appendix 20: Review of historical SBT tagging data for mortality estimation 

Figure 4: The size distribution of fish tagged in the period from 1967-1969 by 
scientist, fishermen and unknown tagger and the release size distribution for those fish 
that were subsequently recaptured.   
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Appendix 20: Review of historical SBT tagging data for mortality estimation 

Figure 5: Comparison of the days at liberty for tags recovered from releases by 
fishermen and scientists. 
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Figure 6: The number of SBT caught in New South Wales by quota year (from Caton 
1991).  
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Appendix 20: Review of historical SBT tagging data for mortality estimation 

Figure 7: Estimated probability of a double-tagged fish having lost both of its tags for 
SBT tagging experiments conducted in the 1960s (estimates taken from Hampton and 
Kirkwood 1989). Note experiment 1 corresponds to releases in NSW by CSIRO in 
1963-70; experiment 2 corresponds to releases in NSW by fishermen in 1963-70; 
experiment 3 corresponds to releases in SA by CSIRO in 1964-69, and experiment 5 
corresponds to releases in WA by CSIRO in 1963-67. 
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