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1 Non-Technical Summary  

2011/239 Incorporation of predictive models of banana prawn catch for MEY-based harvest 

strategy development for the Northern Prawn Fishery 

 

Project details 

PRINCIPAL INVESTIGATOR: Dr Rik C. Buckworth 

ADDRESS: CSIRO Marine and Atmospheric Research 
 Queensland Biosciences Precinct 
 306 Carmody Road 
 St Lucia QLD 4102 
   
 Telephone: 07 3833 5902  

Objectives  

1. Investigate the use of robust statistical methods to stabilise and improve the performance of the 
catch prediction model of Venables et al. (2011) against historical catches. 

2. Calculate estimates of uncertainty for the catch prediction model. 
3. Investigate retrospective and prospective analyses, examining how the predictive models would 

have performed in recent years, including 2012. 
4. Investigate refinements to the spatial scale and other structural aspects of the model. 
5. Develop economic indicators of dependence between catch and price, and price elasticity for 

banana prawns. 
6. Develop an MEY analysis for the common banana prawn fishery. 

 

Outcomes achieved to date 

The methods developed in this project are a means of predicting potential catch in the White 

Banana Prawn fishery of the Northern Prawn Fishery catch. This is an essential basis for setting 

pre-season management controls for the banana prawn fishery that target and deliver Maximum 

Economic Yield (MEY). A prediction of potential catch is necessary in this fishery to determine either 
a Total Allowable Catch (TAC) or a catch rate-based trigger, based on a Maximum Economic Yield 
(MEY) target. Because prawn prices are affected by catch levels, a prediction of potential catch is 
necessary to both calculations.  

The approaches developed here have increased the suite of tools available to improve 

management performance of fisheries. Many fisheries are subject to large, environmentally-driven 
fluctuations in the abundance of target species. This study provides an example of the analysis of the 
response of these fisheries to the environmental drivers. The outcome of this tool development is 

that, ultimately, assessments might be developed for such fisheries and, moreover, it might then 

be also possible to ascertain economic attributes to address MEY targets. 

The outputs from this work were a necessary requirement for a subsequent management strategy 

evaluation project, to compare the performance of TACs and catch rate triggers set using the 
current project’s outputs, with the existing management controls. The ultimate outcome from both 
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projects will be the improved economic performance of the Northern Prawn Fishery, and 

concomitant community benefit. 

The project has been generally well-accepted by industry and fishery managers, as well as the 

scientific community.  

 

Non-technical summary 

Australian Government fisheries management policy has generated an impetus for output controls for 
management in the NPF and, consequently, a need to predict potential catch on which to establish annual 
TACs. Alternative controls include catch rate triggers (the current approach) and a modification of the latter 
approach, in which catch rate triggers are calculated to achieve an MEY target. The White Banana Prawn, 
Penaeus merguiensis, is a short-lived, fecund, tropical species whose annual catches have varied markedly – 
around eight-fold – over the history of the fishery. Although fishermen and others associated with prawn 
fisheries have long known that there is a strong relationship between banana prawn catches and rainfall, 
description of statistical relationships that are adequate for predictions of catch at the large spatial scale of 
the Northern Prawn Fishery (NPF) has been elusive. A further constraint, given the short life cycle of 
P. merguiensis, is that the annual opening of the season is around 1 April each year, which follows closely 
their recruitment to the fishery. Therefore, factors affecting recruitment strength can only be measured up 
to February in the same year; later influences, or information available later, simply cannot be included.  

A feasibility project (Venables et al. 2011) built a partially-linear model relating the annual total catches to 
rainfall indices for each of nine separate common banana prawn stock regions within the Northern Prawn 
Fishery (NPF). The predicted potential catch for the fishery was simply the sum across predictions for nine 
individual stock regions. Although successful, the model was unstable and difficult to fit in some regions. In 
this project, we built upon this earlier work, particularly to make the model more stable and to investigate 
the uncertainties in the model and its predictions. We developed the economic tools necessary to address 
MEY goals. These tools enable the prediction of the response of prawn price to landings of banana prawn, 
and the calculation of catch and effort combinations that represent MEY. 

We investigated various methods of making the models more robust with three different forms of the 
model resulting: 

1. The separate regions model (the original form) essentially predicted catches by region based on 
rainfall. This was altered to reduce the influence of “spikes”, of outlying historical rainfall events; 

2. A “fixed weight” form used information from across the regions to estimate single (fixed) “early” 
and “late” distribution of rainfall weights to be applied across all regions; and,  

3. A “variable weight” form imposed a link between the parameters for the “early” rainfall 
distributions for the different regions, and similarly for the parameters for the “late” rainfall 
distributions. This was a compromise between the first two forms, making use of information 
across the regions yet adding flexibility to the fixed weights single model approach.  

With their additional stability, we consider the fixed weight and variable weight models to be the most 
viable alternative models. Actual catch and predicted catch trends were closely matched. Individual years 
were, however, subject to substantial deviation between actual and predicted (potential) catch. While 
deviations could be due to a variety of reasons, a systematic problem is that the performance of all models 
is constrained by the requirement that, for the prediction to be timely, only data available by the end of 
February each year can be used. In years such as 2012, in which there was substantial rainfall in March and 
April, a marked difference between the prediction and actual catch was anticipated. In 2012, landings had 
exceeded the prediction of potential catch by roughly 50%, by July 2012. 

The project refined the spatial division of the model, to improve the fit, stability, and predictive power. In 
this work, the Fog Bay region has been separated from the remainder of the Coburg stock region, as it was 
suspected that the catches of the two parts of the stock region were showing different patterns. The 
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process requires significant work and care; however, we suggest that further subdivision or re-definition of 
the regions might enhance stability and predictive power.   

To address uncertainty in the models, we measure of goodness of fit, using a Bayesian bootstrapping 
approach, as well as estimates of uncertainty for predictions. We also initiated retrospective analysis 
(where the models are built progressively, separately introducing each year’s data). We found this 
approach could not be implemented, as there is only just enough data available to fit the models using the 
full data set.  

An annual survey to monitor recruitment of tiger prawns (Penaeus esculentus and P. semisulcatus) in the 
Gulf of Carpentaria has been conducted since 2003. Although the survey design and a number of statistical 
approaches have attempted to make use of information on P. merguiensis abundance from the survey data 
set, these were not successful. This problem might be resolved through time, as more data and contrast 
accumulate each year. 

Other factors and information could not be captured in the model. Rainfall data from late seasonal rain, for 
example, cannot be included in the predictions. Some inaccuracy is irreducible. This must be acknowledged 
and accommodated when management measures are put in place.  

We used the predictions of potential catch as a proxy for abundance, to calculate MEY for the 
P. merguiensis fishery. The total of prawn landings also affects the price received – termed ‘price flexibility’ 
(and related to demand elasticity). To predict the economic attributes of the fishery, and to address an MEY 
target, it was thus first necessary to investigate the price flexibility in prawn prices with respect to landings. 
We supported this requirement in two separate approaches, which were corroborative. This work provides 
a basis for providing MEY-based TAC or catch-rate trigger predictions for the fishery.  

The study also suggests several ways indicated in which further data gathering and analysis will improve the 
quality of predictions of potential catch. The models presented in this report will, however, enable the 
managers of the fishery to better comply with Commonwealth fisheries policy by addressing MEY targets, 
either by using catch-rate triggers or moving to output controls, and so enhance profitability of the fishery. 
They will contribute and create further opportunities for effective research and the sustainable 
development of the NPF. The approach and outcomes of this project may also be useful in other Australian 
fisheries. 

 

KEYWORDS: White banana prawns, Penaeus merguiensis, northern Australia, rainfall, environmental 
correlation, environmental drivers, catch prediction, abundance estimation, partially-linear models, 
Maximum Economic Yield, price elasticity, bioeconomic model. 
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3 Background 

One of Australia’s most valuable fisheries, the Northern Prawn Fishery (NPF) landed catches in 2010-11 
valued at $88.8 million (Woodhams 2011). The fishery is essentially two sequential fisheries, one that 
targets the White Banana Prawn (WBP), Penaeus merguiensis, and a mixed species fishery, targetting tiger 
(P. esculentus and P. semisulcatus), endeavour (Metapenaeus endeavouri and M. ensis) prawns, and Red-
legged Banana Prawns (P. indicus). Although the mixed species fishery has been amenable to assessment 
and is now closely managed with a bioeconomic model (Punt et al. 2011; Dichmont et al. 2012), assessment 
and modelling of the WBP fishery has been less tractable. This fishery comprises an “annual crop”, 
characterised by very high inter-annual variability in recruitment and landings. Landings have ranged from 
less than 2000 to more than 12000 tonnes. Prawn prices also vary, so that total value of the fishery also 
varies substantially from year to year. In recent years the WBP fishery has provided around two thirds of 
the Gross Value of Production (GVP) from the fishery (Woodhams 2011); it has been fully fished since the 
mid 1970s (Lucas et al. 1979; Zhou et al. 2007). The large variation has made stock assessment difficult, 
with the relationship between spawning stock size and recruitment being obscured by the recruitment 
variation.  

An apparent association between environmental factors, particularly rainfall, and banana prawn catches 
was borne out by statistical analyses (Vance et al. 1985). The strength of the relationships between catches 
and environmental variables, however, were not consistent over time and varied markedly between 
regions of the fishery (Vance et al. 1985, 2003). Environmental factors other than rainfall had variable 
influence on WBP catches across regions and between years. Confounding between spatial ecological and 
operational factors also appeared to generate strong variation between regions in the assessments (Vance 
et al. 2003). Clearly, any explanatory or predictive relationship between total catch for the fishery and 
environmental drivers would need to be based on the fine scale patterns of the catch and the potential 
environmental drivers.  

The impetus for output control-based management in the NPF has generated the need for a mechanism to 
determine a Total Allowable Catch (TAC) for the WBP. Thus the prediction of a potential catch, rather than 
the need to explain inter-annual variation as a component of fishery assessment, has driven this further 
investigation into the statistical relationships between environmental variables and WBP catches. 
Venables et al. (2011) provided a successful feasibility study of catch prediction for the whole WBP fishery, 
using statistical modelling of catches against fine-scale rainfall information.  

Requested by the Northern Prawn Resource Assessment Group (NPRAG; 08/2011), this project continues a 
long dialogue between the Australian Fisheries Management Authority (AFMA), the Northern Prawn 
Fishery Management Advisory Committee (NORMAC), NPRAG and industry, as well as valuable prior studies 
(MRAG 2007; Hutton et al. 2009), seeking a satisfactory way to determine TACs for the WBP fishery. This 
project builds on the collective experience developed in previous projects: Integrating assessment with 
economics, (Dichmont et al. 2008) provided a win-win combination of profitability and sustainability for the 
tiger prawn fishery, under-pinning TAC-setting methods for the tiger and red-leg banana prawn fisheries 
suitable for the introduction of output controls (Dichmont et al. 2010). However, the lack of a suitable 
assessment or predictive model for WBP in previous studies (MRAG 2007; Hutton et al. 2009) meant that 
only an empirical approach was available for the WBP fishery, due to the inability to predict WBP 
abundance and its large variation. The TAC-setting trial in 2010 produced a TAC that was “not appropriate 
to the scale of catch under inputs”; requiring “urgent revision” (Dichmont et al. 2010). Industry and 
management were justifiably concerned that without a better basis for TAC-setting, a TAC could lead to 
substantial revenue being foregone - counter to the Commonwealth policy of maximal economic 
performance.  

Reported at NORMAC (06/2011) and NPRAG (08/2011), Venables et al. (2011) used rainfall to predict WBP 
catches. The inception and completion of the current project is recognition by NORMAC and NPRAG of the 
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approach in predicting WBP potential catch. The analysis by Venables et al. (2011) demonstrated feasibility, 
but nevertheless was incomplete, requiring the improvement, testing and evaluation undertaken here. This 
project addressed statistical stability, and the investigation of uncertainty structures that could not be 
addressed in a feasibility study. Dichmont et al. (2008; 2010; 2012) demonstrated the value of economic 
tools, rather than proxies, for developing MEY-based TACs. With this experience as a basis, this project 
incorporated economic analyses addressing Maximum Economic Yield (MEY) goals, thus addressing the 
management policy of maximal fishery profitability. If output controls are deemed to be unsuitable for the 
fishery, input controls based on MEY targets, such as catch rate triggers, still require catch and price 
predictions, as prices respond to the amount of WBP landed. Even under fluctuating conditions and 
alternative management controls, the project provides a means of setting fishery targets that provide 
maximal value. 
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4 Need 

Under Commonwealth harvest policy, fisheries are to be managed to maximise economic performance. 
Most Commonwealth fisheries have/ are developing harvest strategies based on an MEY target and TAC 
controls. Following Ministerial Direction, the NPF may adopt an ITQ management system from 2014. 
Alternatively, the fishery for white banana prawns (WBP) may adopt a catch rate-based trigger system that 
also addresses an MEY target. In both cases, this transition requires: 1, reliable methods for predicting the 
total sustainable, available catch; and, 2, understanding of the economics of the fishery, providing for 
setting total allowable catches (TACs) that maximise value rather than catch.  

This project addresses these components. Unlike the NPF tiger prawn fishery, the WBP fishery, in which 
annual catches vary dramatically, has not been amenable to assessment and predictive modelling, as 
recruitment varies markedly with environmental conditions. 

Fishermen have known for many years that banana prawns catches depend upon the amount and timing of 
rainfall. Considerable research has explored the ecology behind this e.g. relationships between rainfall and 
catches of WBP, (Vance et al. 1985), emigration of WBP from estuaries as salinity decreases (Staples 1980; 
Staples and Vance 1986; Vance and Staples 1992), temperature and wind (Vance et al. 2003) and the effect 
of fishing effort (Venables and Poloczanska 2006). Venables et al. (2011) explored the feasibility of 
predicting the fishery-wide potential annual catch for WBP. In a manner suitable for TAC-development, it 
uses information available before the fishery begins each year. The second component follows the 
successful incorporation of economic objectives into the harvest strategy for tiger and endeavour prawns 
(Dichmont et al. 2008) and would redress the lack of suitable techniques for TAC-setting for WBP, as noted 
in FRDC 2007-018 (Dichmont et al. 2010). The process is relatively simplified in this case, as there is no large 
interdependence in the fishery and economic modelling entailed. 
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5 Objectives 

1. Investigate the use of robust statistical methods to stabilise and improve the performance of 
the catch prediction model of Venables et al. (2011) against historical catches. 
Outcome: This objective has been achieved. 

2. Calculate estimates of uncertainty for the catch prediction model 
Outcome: This objective has been achieved. 

3. Investigate retrospective and prospective analyses, examining how the predictive models 
would have performed in recent years, including 2012. 
Outcome: This objective has been partially achieved. It was not feasible to undertake the full 
retrospective analysis because, as we discovered, there is simply insufficient information in 
available data to do so properly. A prediction has been provided for the 2012 catch, and 
prediction intervals, indicating the uncertainty in predictions, were also developed; 

4. Investigate refinements to the spatial scale and other structural aspects of the model. 
Outcome: This objective has been achieved; Fog Bay is now incorporated as a separate 
region in the model from Coburg; further refinements could be addressed in future; 

5. Develop economic indicators of dependence between catch and price, and price elasticity for 
banana prawns. 
Outcome: This objective has been achieved. Two distinct methods were applied, providing 
corroborating analyses.  

6. Develop an MEY analysis for the white banana prawn fishery. 
Outcome: This objective was achieved. 
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6 Methods 

6.1 Prediction of “Potential Catch” from Rainfall and Historical Catch 

6.1.1 MODELLING STRATEGY 

Venables et al. (2011) built separate models relating the Annual Total Catch (ATC) to daily rainfall data for 
each of the nine Banana Prawn stock regions; the technical details of the models described here are 
provided in Venables et al. (2011). In summary, the primary model was a partially-linear model. It also 
included an intercept and a linear term in “years since 1970” to allow for possible systematic annual 
proportional increments or decrements in the banana prawn catch. The form of the model was:  

(1)  log�� = �� + �
�� − 1970� + ∑ �������α
, β
; y� + ������α , β ; y�! + "��∈$  

where: 

• B  is the set of basins to be used to generate predictors for the particular region 

• ��� and ��� are the rainfall indices for basin b for the “early” and “late” season respectively 

• "� = %�0, & � 
 

For any given basin b, the rainfall indices are weighted linear combinations of the estimated daily aggregate 
rainfall for the entire basin. The parameters α  and β  determine the shape of the weighting, or 

importance distribution. We assume these are the same for all basins within a stock region, but may vary 
from stock region to stock region. The “Early” index focuses on the rainfall that occurred prior to the 
season, with a peak weight typically near September, when a population spawning mode, that corresponds 
to peak recruitment in the following April, has long been hypothesised to take place (Rothlisberg, Van der 
Velde and Venables, in prep.). The “Late” index by contrast focuses on the time of year leading up to the 
opening of the season, but for logistic reasons has to use only rainfall up to the end of February. These 
importance distributions are also determined by calibration from the catch data, but are non-linear, in 

contrast to the γ , δ  and θ  coefficients in model (1) above, which are included linearly. 

 
For reasons both of practicality and parsimony, the estimation of the coefficients in (1) proceeds in a two-
stage process: 

• Initially the model is fitted by non-linear least squares, using all basins affecting the stock region 

• At a second stage, the non-linear parameters α  and β , which only determine the focusing 

weights, are held fixed, and the model is pruned by stepwise methods to remove indices (either 
early or late, or both for any given basin) which appear not to contribute to the effectiveness of the 
prediction, again for reasons parsimony. 

The model was then refined using stepwise methods, keeping the rainfall indices fixed, to avoid over-fitting 
that could undermine predictive capacity. An estimate of the mean annual potential catch was calculated 
using the Finney estimator (Shen and Zhu 2008) to provide an unbiased estimate of the mean catch on the 
natural scale. Finally, the models were adjusted to incorporate the WBP stock indices from the monitoring 
surveys, in stock regions where a relevant index was available, using an ad hoc process. This was done by 
fitting a simple linear regression model with log ATC as the response, the estimated mean potential catch 
(ignoring the survey) as an offset and the log survey index as an explanatory variable. After fitting the 
models, adjusted estimates of potential catch were then obtained, again using the Finney estimator. The 
estimate for the potential catch for the total NPF was obtained by summing the estimates, (adjusted where 
possible), for all nine regions. 
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The models described by Venables et al. (2011) were fitted using both unweighted and weighted least 
squares approaches. For the weighted version, the case weights used were the nominal WBP effort levels, 
i.e., the number of boat-days for that year and region for which the imputed target species was WBP. The 
weighted approach, giving more influence in the model fitting process to the catches where the associated 
effort was high, was shown to produce the more stable and heuristically reasonable predictions. It also has 
the advantage, for automatically accounting in the model fitting process for changes in spatial and 
temporal attributes of the fishery, for example, of closures. It is critical to note that while the model 
response variable is actual catch, the model predictions are ‘potential’ catch. In particular we are weighting 
heavily the regions and years where a high amount of effort was expended, but the model predictions also 
include potential catch in areas where little or no effort was expended. This is because we are not trying to 
model what the fishermen caught (if we were, we would include other explanatory variables such as tiger 
prawn catch, price information etc.), but are attempting to develop a measure of abundance that could be 
used as one input in a TAC- or target-setting process. It is critical to note that this would not be the only 
input in such a process.  

The SILO data on which the project relies for its rainfall inputs was extensively revised and updated in early 
March 2012, with some major and unexpected changes. These are described in some detail in the Results 
and Discussion section. Due to changes in the data, the separate region models built in the previous project 
were re-built using the updated rainfall data. All of the modelling that has taken place throughout this 
project has included rainfall data up to 28th February 2012. 1 

The instability of the models fitted in some of the stock regions were a cause for concern during the work 
by Venables et al. (2011). In this project we investigated various methods of making the models more 
robust, namely: 

1. Capping the rainfall weight distribution to prevent “spikes”, that is one or a small number of 
contiguous daily rainfall totals driving the entire rainfall index for that region, and hence forcing 
the model outcomes to rely unduly on a few capricious historical rainfall events; 

2. Severely reducing the number of model parameters by constraining the “early”, and the “late”, 
rainfall weight distributions to be the same across all regions; and,  

3. Reducing the number of model parameters by imposing a link between the “early” rainfall weight 
distributions for different regions, while still allowing some flexibility from region to region; the 
same process is also applied to the “late” rainfall weight distributions.  

The statistical methods used are described in the following sections.  

6.1.2 MODIFYING THE RAINFALL WEIGHTS 

The modelling approach used in Venables et al. (2011) resulted in weight distributions for rainfall that 
would be considered unrealistic, in some regions. Despite the fact that empirically they appeared not to 
produce particularly unreasonable results, this was considered a potential flaw in the model that could lead 
to anomalies in future. For example, the effort weighted model for the Mornington region resulted in an 
“early” rainfall distribution with a weight greater than 0.5 for the first day of the arbitrarily defined “early” 
rainfall period, (1 June), i.e. any rainfall recorded on the 1st of June, (admittedly a rare event), would 
nevertheless have received more weight than rainfall recorded on all the other 181 days combined. 
Similarly the models for the North Groote and Vanderlins regions had particular days associated with 
estimated daily weights greater than 0.25. As it is highly unlikely that the rainfall on one particular day 
drives the number of banana prawns caught in the season that follows, in this project the maximum weight 
is capped at 0.025. If each day were weighted equally, they would each receive a weight of 0.0056 so 

                                                           

 
1 Note that catch and effort data is only available up to the end of calendar year, 2011, so estimation of model parameters only 
relies on rainfall data up to 28

th
 February, 2011; results using rainfall for the period ending 28

th
 February 2012 can only be model 

predictions. 
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capping the weight at 0.025 results in no one day being given a weight greater than 4.5 days combined 
(under the uniform weights case). 

This ad hoc adjustment of weight distribution was only needed for the separate models, (strategy 1) as 
listed above. For strategies 2) and 3) the weight distributions were more stable, with fewer spikes, so that 
capping was not assessed to be needed. 

6.1.3 SINGLE MODEL 

Fixed weights 

Venables et al. (2011) fitted a separate model to each of the WBP stock regions. This resulted in a separate 
rainfall weights distribution for each region and required four degrees of freedom to estimate the 
associated model parameters ( '
, (
 defining the shape of the “early” interval weights and ' , (  defining 
the shape of the “late” period weights for each region). This large number of model parameters, the highly 
variable nature of the rainfall data and the small sample size led to the models being very unstable and 
difficult to fit in some regions. This was particularly the case in regions where catch and effort were low or 
highly variable. To produce credible results, Venables et al. (2011) found it necessary to adjust some of the 
models, including omitting the rainfall data from particular basins in some regions and entire indices from 
others. This process was fairly ad hoc and time consuming and thus would not be a desirable feature of 
models that need to be accurate and run quickly in the lead up to setting a TAC. In this project a single 
model was considered, essentially “borrowing strength” across the regions to estimate a single (fixed) 
“early” and “late” distribution of rainfall weights to be applied across all regions.  

The model is based on a re-parameterisation of the rainfall weights distribution described in Venables et al. 

(2011), where the non-linear parameters estimated by the model are no longer α and β, and instead are η 

and ϕ. One advantage is that η  and ϕ are unrestricted, whereas α and β are constrained to be positive. 

η = log * +

,+-    where  . = /

/01, the mean of the beta distribution   

 2 = log	�' + (� 
We note that the parameter  µ  is included here for illustration of the formal derivation of the parameters. 

It does not appear in equation 2 below and, more simply, 

 )log( βαη =  

The model then takes the form: 

(2) log��,4 = ��,4 + �
,4�� − 1970� + ∑ �������η
, φ
; y� + ������η , φ ; y�! + "�,4�∈$  

where: 

• B  is the set of basins to be used to generate predictors for the particular region, 

• ��� and ��� are the rainfall indices for basin b for the “early” and “late” season respectively 

• "�,4 = %�0, & � 
Importantly, η
, 	η , φ
	678		φ 	are estimated simultaneously across all regions and therefore have the 
same values regardless of the region. 

Variable weights 

To incorporate more flexibility into the fixed weights single model approach (Section 1.2.1), whilst 
maintaining the single model structure, a further modelling approach was investigated. This approach 
allows  η
 and η  to vary by region but maintains a fixed φ
 and φ .  

The model then takes the form: 

(3) log��,4 = ��,4 + �
,4�� − 1970� + ∑ ������9η
,:, φ
; y; + �����9η ,:, φ ; y;! + "�,4�∈$  
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Survey index 

The NPF recruitment monitoring survey has only been in operation since 2003. As this time series is so 
short, it is not possible to include this index in the previously described models in the typical way i.e. to 
include it, where appropriate, as an extra covariate. Instead we investigated the potential usefulness of 
including the monitoring surveys information in a number of ways, including: 

1. The predictions from the environmental model - 2) and 3) - were used as an offset in a simple linear 
regression and used the log index as an additional predictor, thereby estimating a coefficient for 
the log index only. 

2. The predictions from the environmental model and the log index were used as predictors, 
estimating a coefficient for each. 

3. Stepwise methods were used in conjunction with 2). 

6.1.4 REFINING THE SPATIAL SCALE 

The current banana prawn model was developed using the stock regions for Banana Prawns as previously 
defined (with minor adjustment to exclude the Red-leg Banana Prawn management region). Other regional 
partitions of the data were not considered in Venables et al. (2011), largely due to time constraints. We 
have now investigated the effect of splitting the Coburg stock region into two sub-regions, namely Fog Bay, 
the region South of Melville and Bathurst Islands and the remainder, namely the region north of those 
islands and of the Coburg Peninsula. See Figure 1 below.  

 

Figure 1. Extended stock regions showing the partition of The Fog Bay sub-region from Coburg. 

We have implemented this split for the three modelling approaches described above (separate models with 
modified weights, single model with fixed weights, and single model with variable weights).  

6.1.5 ESTIMATES OF UNCERTAINTY 

The Banana Prawn model presented in Venables et al. (2011) was not accompanied by estimates of 
uncertainty. In this project we have produced confidence and prediction intervals for the predicted 
potential catch for what we consider now to be the most important candidate models. These are the fixed 
weight and variable weight models, estimated using effort weighting. The uncertainty estimates are 
generated using a variant on standard bootstrapping, originally due to Rubin, (1981) known as “Bayesian 
bootstrapping”. We found this more convenient than standard bootstrapping as it ensures that no 
observation is completely omitted from the re-sampling, which seems to have intuitive advantages.  

To calculate Bayesian bootstrap estimates, the models were refitted giving each observation an additional 
random weight, drawn from an exponential distribution with mean 1. These random weights are then 
multiplied by the original effort weights and the model re-fitted. Each re-fit then produces an estimate of 
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the mean and variance of the catch on the log scale. These are then converted to estimates of mean catch 
on the natural scale. This process was carried out 1000 times to produce 1000 bootstrap replicates. The 
estimate of the mean total catch was calculated for each replicate by summing the estimates for each 
region within that replicate. The 95% bootstrap confidence intervals were then calculated by taking the 
2.5th and 97.5th percentiles of the estimates.  

The 95% prediction intervals are generated by an additional step of simulating a notional log-catch for each 
re-sampling, according to the mean and variance estimate from the re-fit. These notional log-catches are 
then handled in the same way as the predicted mean catches, to arrive at uncertainty measures that apply 
to the actual potential catch, as opposed to its mean value. The distinction is important for management 
purposes, and is further discussed in the Results and Discussion and Further Development sections. Note 
that this method is somewhat heuristic at this stage, but empirical studies we have undertaken show that it 
does produce reasonable estimates of uncertainty in the sense of prediction intervals. These estimates of 
uncertainty only cater for uncertainty in the linear model (that is, in the fixed weight and variable weight 
models), essentially assuming that <
, 	< , φ
	678		φ  are known with certainty, and we emphasise that at 
this stage, the methods only give an under-estimate of the fully realistic assessment of uncertainty. 
Extending this to cover the additional uncertainty associated with the estimation of rain weights will 
require some methodological development and the implications of this are discussed in Further 
Development.   

6.2 MEY and Price Elasticity and for NPF Banana Prawns: Modelling 
Approach 1 

6.2.1 INTRODUCTION AND CAVEATS  

Both economic modelling approaches presented here use the measure of ‘potential catch’ resulting from 
the statistical model above as a proxy for ‘abundance’ and calculate Maximum Economic Yield (MEY) for 
the NPF White Banana Prawn fishery. MEY is the catch or effort level that creates the largest difference 
between the total revenue and the total cost of fishing. In other words, it is a catch or effort level that 
equates the marginal revenue and the marginal cost of fishing, ensuring that profits are maximized. To 
compute this estimate, both revenue and variable cost data are needed, along with measures of the price 
elasticity of demand and the harvest function. The price elasticity of demand measures the responsiveness 
of price to harvest, thus determining changes in the total revenue of fishing with a change in catch, and the 
harvest function specifies the relationship between effort and catch, providing an additional measure of 
‘abundance’.  

There are three important caveats to indicate at the outset: 

• The limited amount of available data prevents the use of more elaborate econometric or statistical 
specifications. As a result, specifications have a limited number of parameters. Data for the 
estimates of price elasticity are drawn from publically available data provided by ABARES and 
relevant international datasets. There are 19 observations in total. Although unit-root tests for the 
order of integration indicate that the series is stationary, the limited number of observations does 
not allow for more elaborate diagnostic tests. The amount of data used to estimate the harvest 
function - given the structural change in the fishery after the vessel buyback scheme and the 
dramatic reduction of the fleet - is also limited. We use several different approaches to estimating 
the harvest function: a standard ‘production function’ approach and more a simple function that 
more adequately captures the convexity in fishing costs (or the relationship between catch and 
effort).  

• The MEY estimates rely on the measure of ‘potential catch’. Formally, this enters the analysis as a 
realization of ‘abundance’ in the estimated harvest function. The measure of potential catch is 
different than actual recorded catch in the historical series from 1970 to 2011, and potentially so 
this is also the case going forward in time. In cases where potential catch is larger than actual catch 
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this will normally not be a problem for MEY calculations, since given the price elasticity of demand 
it is generally the case that MEY catch will be lower than potential catch and, in some, if not many 
cases, actual catch as well. On the other hand, there are 9 years in the overall series where 
potential catch is less than actual catch, using the ‘effort weighted’ index, and one case where 
potential catch is less than actual catch, using all of the various measures (i.e., weighted, un-
weighted, capped, etc.) of ‘abundance’. Whether this is a problem for MEY estimation depends on 
the actual measure of profits in that year, compared to MEY forecasts.  

• The measure of ‘profit’ in this part of the report is not a measure of actual profit in the fishery, or in 
any component part of the fishery. There are two reasons for this. First, the data used here are 
mean-response or average measures of prices and costs. Individual operators may realize different 
values for the cost of fishing and the price of prawns (when actually sold), and thus actual profits 
for an individual operator can vary considerably. Second, and more importantly, the MEY measure 
of profit is based only on variable cost components. Fixed costs (e.g., licence fees) and other 
administrative costs that clearly affect the ‘bottom-line’ for a fishing operator are excluded. This is 
at it should be. MEY depends only on variable cost components to determine profit-maximizing 
catch.  

6.2.2 ESTIMATING THE PRICE ELASTICITY/FLEXIBILITY FOR BANANA PRAWNS 

The quantity supplied, or in this case, the harvest of prawns brought to market, generally affects the price 
of prawns. This is almost certainly true in domestic markets, but it can also be the case in international 
markets, at least if the quantity of product normally supplied is sufficiently large, or there are significant 
changes in the exchange rate. In the past, with most of NPF prawns destined for large East Asia and Japan 
markets, it was common to model prices as ‘given’ to Australia by the international market. The MEY 
forecasts for tiger prawns in the NPF indeed assume that prices are unaffected by harvest in Australia. With 
the growing reliance on domestic markets for prawns, as well as with dramatic changes in the exchange 
rate, this is no longer a valid assumption.  

To determine the sensitivity of prawn prices to harvest, it is typical for economists to estimate a ‘price 
elasticity of demand’, or the percentage change in the quantity demanded of a product in response to a 
one percent change in its price. Price elasticities are almost always negative, since an increase in the 
quantity brought to market generally results in a fall in price. The important issue is how sensitive is the 
change in demand to a change in price. The greater is the price elasticity (in absolute value) the more 
responsive or the larger the effect on the quantity of the good demanded and thus total revenue.  

To estimate the elasticity for NPF banana prawns, we use data on catch, prices and nominal revenue from 
1992-93 to 2010-11, provided by ABARE. Nominal revenue is converted into 2010-11 Australian dollars to 
take away the effect of any general inflation on the price of prawns. The choice of the base year is arbitrary, 
and 2010-11 is simply convenient due to the fact that all cost data in the NPF used here was measured in 
2010-11 dollars. The deflator used for this conversion is the annual Australian CPI index.  

A formal estimate of demand elasticity requires a statistical procedure, based on a given relationship 
between price and catch. Due to modest sample size, we use the simple constant-elasticity specification 
and limit the number of parameters. Specifically, the relationship between the price and the catch of 
banana prawns in year i is specified by the equation: 

  
pi ci( ) = Ai ci( )α

 or in the log form logpi( ) = log Ai + α log ci( ) 

where  pi is the annual average price (in $A1000/ton, 2010-2011 dollars), ci is the annual catch (in tonnes), 
α is the inverse of the price elasticity and Ai captures the effect of factors other than catch in year i. The 
value of α is formally a measure of ‘price flexibility’ or an approximation of the inverse of the usual price or 
demand elasticity.  

With a more substantial data set, the specification above might include the effect of substitute goods, since 
changes in the price (say) of other fish products may affect the price of prawns, and measures of income. 
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Changes in the international markets, can also affect the measure of elasticity so that apart from the catch, 
the price of prawns can be influenced by changes (for example) in Japan’s income or inflation rate and the 
exchange rate between Japanese and Australian currencies. For this reason, we estimate the elasticity in 
two separate cases, namely one with and without exchange rate effects.  

For the purpose of the MEY analysis, we choose a base-scenario (inverse) elasticity of -0.25 (varied later 
with sensitivity analysis) to build up a demand function for banana prawns, mapping catch to price. In this 
demand function, to avoid any over-fitting caused by the modest sample size, the coefficient Ai in the 
demand function is allowed to vary between pre- and post-2004, given the significance of the dummy 
variable, but not from year to year. These two pre- and post-2004 coefficients are chosen to minimize the 
sum of squared residuals between the actual and estimated revenues. 

6.2.3 ESTIMATING THE HARVEST FUNCTION: A NON-LINEAR APPROACH  

The catch-effort relationship for a typical vessel depends on ‘abundance’. We first fit the actual weekly data 
for catch and effort from 2008-2011 (the period since the fishery was “re-structured”) to a standard Cobb-
Douglas ‘production function’. Specifically, the assumed relationship is: 

( ) ( ) ( ) ( )0 0 or in the log-linear form log log log logi i i ic e Q S e c Q S e
α β α β= = + +

 

where is the 
  S0

i  index for potential catch (or rainfall) for year i = 2008-2011,
 

( )ic e is the catch in tonnes at 

year i for effort e and   Q,α ,β  are the three parameters to be estimated (with  β < 1  implying that an 

increase in effort will increase catch but at a decreasing rate). 

To better capture the convexity in the relationship between actual catch and effort, we also used a 

nonlinear least-squares model. We denote 0
iS
 
as the ‘potential catch’ of the prawn in year i and ( )is e as 

the catch at year i after e fishing days. If the proportion of the actual to potential catches is denoted as C(e) 
then the harvest function at year i will be  

   
si e( ) = S0

iC e( )   

The proportion C(e) should satisfy the following conditions: (a) if there is no effort, there is no catch; (b) 
actual catch cannot fall when effort rises; (c) increasing effort will increase catch but at a decreasing rate; 
and (d) actual catch is bounded by potential catch.  

The data used to estimate the harvest function covers three years (i = 2009, 2010, 2011), and is given in 
Appendix 4. For convenience, we choose a non-linear specification that satisfies (a)-(d), or:  

 ( ) ( )1
02 1C e eββ = Λ −     

where 

 
  
Λ x( ) = 1

1+ e− x   

is the standard logistic function, and
 β0  and β1

 are the only two parameters to be estimated. It is 

straightforward to relax condition (d) with a ‘neural network’ framework to ‘fit’ the data.  

6.2.4 THE COST OF FISHING FOR WHITE BANANA PRAWNS  

The unit cost (for 1 ton) of banana prawns depends on the productivity of boats (as specified by the harvest 
function) and the cost of one fishing day. The cost of one fishing day, in turn, for an MEY analysis depends 
on variable cost components, such as labour, fuel, gear and other costs. Fuel costs often play a significant 
role (Vieira and Perks 2010; Woodhams et al. 2011). 
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For the base-case scenario, we use the estimate for the cost of one fishing day provided in Kompas (2012) 
which is roughly $A8,800 per day (2010-11 dollars) --- the values for capital, fuel and gear are taken directly 
from that report, the cost of crew and skipper payments is converted from a per kg measure to a fishing 
day. These measures are based on survey data provided by industry as given in Barwick (2011, 2012) and 
Evans (2009).  

6.2.5 DETERMINING MEY 

Having estimated the cost of one day of fishing for banana prawns, we can further estimate the unit cost 
for one ton. Specifically, the harvest function determining the relationship between catch and effort allows 
a mapping between catch and effort in any year as:  

( ) ( ) 1

1

0 0

0

log logi iS c S c
e

β

β
 + − −

=  
    

Putting together the revenue and total operating costs (effort times the cost of one fishing day), we can 
derive operating profit in year i as a function of the catch as: 

( ) ( ) ( ) ( ) 1

1

0 01

0

log logi iS c S c
c p c c C e Ac C

β
απ

β
+

 + − −
= × − × = −  

  
 

where   A and α  are the coefficients and the (inverse) elasticity in the demand function (as described 

above), 
 β0  and β1

 are the parameters in the harvest function (as described above) and C is the cost of one 

fishing day (from above). 

Given the measure of operating profit, the MEY catch that maximizes profit (contingent on the potential 

catch 0
iS ) will satisfy the first order condition which stipulates that marginal revenue equals marginal cost, 

or: 

( ) ( ) ( ) ( )
( ) ( ) 1

1
1

0 00

00 1 0 0

log log2
' 0 1

i ii

i i

S c S cCS
c A c

S c S c

β
απ α

ββ β

−
 + − −

= → + =  
+ −   

 

This equation cannot be solved analytically given the estimated parameters. However, numerical solutions 
can be easily calculated and graphically illustrated, so we have adopted this approach below.  

6.3 MEY and Price Elasticity and for NPF Banana Prawns: Modelling 
Approach 2 

6.3.1 BASIC MODEL ASSUMPTIONS 

Assume the catch function can be given by 0C qx E λ= , where q represents the proportion of the stock 

removed by one unit of effort (a constant) and x0 is the starting stock size with zero effort. Non-linearity in 

the relationship between catch and effort is represented by λ , which in economic terms represents the 

effort elasticity, such that a 1 per cent increase in fishing effort results in a λ  per cent change in catch. The 

value of λ  is typically less than or equal to 1 (i.e. 1λ ≤ ), which implies that more effort will increase 

catches but at a less than proportional rate. The stock is assumed to become depleted as effort is applied, 

so that the marginal catch rate declines as effort increases. i.e. 1
0dC dE qx E λλ −= . 
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In the case of constant prices, the profit function is given by 0pqx E cEλπ = − , where p is the constant 

price and c is the constant cost per unit effort. Profits are maximised when 1
0pqx E cλλ − = , which is 

essentially when the marginal revenue ( )p dC dE  is equal to the marginal cost. From this, 

1

0

c
E

pqx
λ

λ
− =  and 

1/( 1)

*

0

c
E

pqx

λ

λ

−
 

=  
 

, where E* is the level of effort that maximises profits given c, p, 

q, x0 and λ . For a given E*, the optimal catch is given by * *
0C qx E λ=  

With variable prices, and assuming a constant price flexibility f,2 the profit function becomes 

0 0[ln ln( )]
0

p f qx Ee qx E cE
λ λπ −= − . Profits to the industry are maximised when 
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1
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from which  

( ) ln( ln( ))1

0(1 )
o oP f qx E c

E e
qx f

λλ

λ
−− =

−
 

From the above, when f is zero (i.e. demand is said to be perfectly elastic and prices perfectly inflexible), 
this collapses back to the constant price conditions with p=P1. 

Given a current quantity (Q1) and price (P1), we can approximate price under different quantities as 

( )( )1 1 1 /  1P P f Q Q= + − . This is a linear approximation of the logarithmic function above, and is valid 

for changes in quantities close to the current quantity. Substitution this into the equation above gives  

( )1 0 1

1 0 1

1
(1 )

qx E Q c
E f

Q qx P f

λ
λ

λ
−  −− =  −   

Again, when f=0 this collapses back to the constant price condition (i.e. 1
0pqx E cλλ − = ). 

6.3.2 PRACTICAL BIOECONOMIC MODEL 

The above model is highly non-linear and needs to be solved numerically rather than algebraically. It is also 
relatively restrictive in the assumptions about the relationship between catch and effort. Given this, the 
approach adopted was to estimate the components of the model separately and optimise profits for the 
fleet as a whole.  

The objective function of the model was given by Max *P C cEπ = − where P* is the effective price 

received for the prawns (net of crew share and also marketing costs), C is the catch level (C=f(E, S), where S 
is the stock index, which is assumed to be exogenously determined independent between years), c is the 
variable cost per unit of effort and E is the level of effort in the fishery. As we are optimising over a single 
year and are assuming that the fleet size is fixed and hence we are not optimising vessel numbers as well as 
days fished, we ignore fixed and capital costs. As shown above, the estimated profit is subsequently not a 
true profit measure, but a measure of revenue less variable costs (i.e. the gross margin). This differs from 
the NPF tiger prawn model (Punt et al. 2011; Dichmont et al. 2012), which optimises over time, 
constraining with lower bounds on profitability (i.e. non-negative profits) in any one year and consequently 
needs to consider all the costs, not just variable costs. 
                                                           

 
2 Price flexibility represents the percentage change in price given a one percent change in quantity landed. 
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We estimate the effective price as * (1 )P P crew m= − − , where P is the prawn price, crew is the crew 

share of revenue (0.23) and m is the marketing costs ($1.03/kg). The prawn price was estimated as 

( )( )1 1 1 /  1P P f Q Q= + − , where P1 is the price in the most recently available year (in this case 2011) 

and Q1 is the quantity landed in that year (again 2011), and f is the price flexibility. 

Catch is given by 3 

2
0 1 2 3 4ln ln ln ln i i

i

C S E E t Dβ β β β β δ= + + + + +∑   

where t is a time index to capture technical change (or efficiency change) over time and Di are a series of 
year-specific dummy variables that represented major management changes (e.g. buybacks, changes to 

gear units etc). We allow for a variable λ  through the addition of the quadratic effort term, which provides 

a more flexible functional form than the theoretical basic catch function specified above.  

 

                                                           

 
3 A range of other specifications were also tested, including models with quadratic and cubic time terms, models without the quadratic effort term, 
models imposing a constant unitary stock elasticity, as well as models with interactions between the stock index, effort and also time. The identified 
model was the best given the data. 
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7 Results/Discussion 

7.1 SILO data update 

The SILO data set was available in early March 2012. The grid over which the daily rainfall estimates were 
provided remained the same, but the interpolation methods used to generate the data from the measuring 
stations were extensively revised. The overall effect of this change in the SILO data is likely to be a 
considerable improvement in the reliability of the rainfall estimates provided. Small changes are apparent 
in all rainfall basins bordering the NPF, and in some they appear to be fairly substantial. There have been  

The SILO data set was available in early March 2012. The grid over which the daily rainfall estimates were 
provided remained the same, but the interpolation methods used to generate the data from the measuring 
stations have been extensively revised. The overall effect of this change in the SILO data is likely to be a 
considerable improvement in the reliability of the rainfall estimates provided. Small changes are apparent 
in all rainfall basins bordering the NPF, and in some they appear to be fairly substantial. There have been 
other minor changes of protocol, including changes in the file naming scheme, which meant the data access 
scheme for the project also required revision. For future reference we note that an annual modelling 
process will need to be flexible and adaptable enough to accommodate this kind of minor change in data 
protocol, which will inevitably occur from time to time.  

7.2 Separate stock region models 

The separate stock region models described in Venables et al. (2011) were calibrated using rainfall data up 
to the 28th February 2011. For this project we have recalibrated the models using the updated SILO data up 
to 28th February 2012 and the catch and effort from the 2011 season. The results for the total NPF based on 
the unweighted (UW) and effort weighted (EW) versions of these models are compared to the feasibility 
models Figure 2. The range of the predictions is truncated above to prevent large predictions from 
dominating and obscuring the useful part of the scale. Figure 2 shows the actual catch (in black) for the 
WBP region for 1970-2011, along with predictions from the four models (old and new, UW and EW). The 
diagram uses black for the recorded catch, open symbols for the models as used in the feasibility study, 
solid symbols for the revised models, and red for the UW models and blue for the EW models. The fragility 
of the models, referred to several times above, is clearly apparent, particularly for the earlier years and for 
the UW models. This effect appears to be less with the new SILO data. The predictions are shown by region 
for 2011 and 2012 in Table 15 (Appendix 3).  

The differences and relative differences between the model predictions (potential catch) and the recorded 
catch are shown in Figure 3 and Figure 4. These should not be interpreted as typical residuals as we have 
allowed the model to predict catch in areas where little was taken (according to the model, because little 
effort was expended). With this in mind, the positive divergences are somewhat expected, while the 
negative divergences are more of a concern (as potential catch should be larger than actual catch) and 
indicate where rainfall up to the end of February is not a good predictor of WBP catch. The large negative 
divergences occur in the years 1971, 1985, 1989 and 2008. The mean divergence is 770 tonnes (29%), 
although this includes one value of over 10,000 tonnes in 1975. The 2012 value does not appear in the plot 
as the 2012 season information was not available at the time of the preparation of the report but it is 
expected that the residual will be large as the catch for the season was already over 4600 tonnes at the end 
of June 2012, compared to the effort-weighted prediction around 3000 tonnes. 
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Figure 2. A comparison of recorded Banana Prawn Catch for the TAC region with four predictions.  

The recorded catch is shown in black. The blue symbols and lines refer to the EW models and the red to UW 
models. Solid symbols refer to the new models using updated SILO and catch data. Open symbols refer to 
the models directly taken from the feasibility study. Each panel covers a 12 year period, with a two year 
overlap from one panel to the next. 
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Figure 3. Difference between model predictions (potential catch) and recorded catch taken for the effort weighted, 

separate stock regions model based on the updated SILO data. The red line shows the mean residual of 770 tonnes.  

 

Figure 4. Relative difference between model predictions (potential catch) and actual catch taken for the effort 

weighted separate stock regions model based on the updated SILO data. The red line shows the mean residual of 

29%. 

The updated models were refitted restricting the rainfall weights to a maximum value of 0.025. The 
changes to the distributions of the rainfall weights for North Groote and Vanderlins for the effort weighted 
models are shown in Figure 5 and Figure 6, as examples of regions that may benefit from restricted 
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weights. The rainfall distributions for all effort weighted and unweighted models are given in Appendix 3.2. 
In North Groote, a very peaked late rainfall distribution is replaced by a uniform distribution, while in 
Vanderlins very heavy weights previously allocated to the start of both the early and late seasons are 
replaced by much lower weights. These distributions are considered much more likely to reflect reality.  

The predictions for the total NPF obtained by restricting the weights for the effort weighted and 
unweighted modelling approaches are compared to the original approach in Figure 7 and Table 16 in 
Appendix 3.2. While the weight restricted model improved fits in some years for the EW models, it made 
others worse. However for the effort unweighted models, the weight restriction resulted in a large 
improvement to the overall model fits. The divergence of the model predictions from the actual catches are 
shown in Figure 8 and Figure 9. While the large divergence for 1975 that appeared in Figure 3 is no longer 
apparent, the average divergence is very similar (774 tonnes) due to an increase in the number of positive 
divergences between 1000 and 3000 tonnes. Again, 2012 will be associated with a large negative 
divergence based on the Banana prawn catch to date at end June 2012. 

 

 

Figure 5. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for North Groote. Solid 

line is the original model, dotted line is the model where weights are capped to 0.025. 
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Figure 6. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for Vanderlins. Solid line 

is the original model, dotted line is the model where weights are capped to 0.025. 
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Figure 7. A comparison of recorded Banana Prawn Catch for the TAC region with four predictions. The recorded 

catch is shown in black. The blue symbols and lines refer to the EW models and the red to UW models. Solid 

symbols refer to the new models using updated SILO and catch data. Open symbols refer to the models with 

restricted weights. Each panel covers a 12 year period, with a two year overlap from one panel to the next. 
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Figure 8. Difference between model predictions (potential catch) and recorded catch taken for the effort weighted 

model based on the updated SILO data. The red line shows the mean residual of 774 tonnes. 

 

Figure 9. Relative difference between model predictions (potential catch) and recorded catch taken for the effort 

weighted model based on the updated SILO data. The red line shows the mean residual of 29%. 
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7.3 Single Model 

7.3.1 FIXED WEIGHTS 

The catch and predictions for the total NPF banana prawn region using the single model with fixed weights 
are show in Figure 10. The predictions at the individual stock region level can be found in Appendix 3.3. The 
effort weighted model (blue circles) provides quite a good fit to the data at the whole of fishery level (black 
circles), while the unweighted model (red circles) clearly, consistently overestimates the catch. The mean 
divergence (Figure 11) is around 100 tonnes lower than for the separate region models (Figure 2 and Figure 
7), but we note that this is mostly due to an increase in the number of negative divergences. 

 

Figure 10. Catch and predictions for NPF region using the single model with fixed weights. The recorded catch is 

shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 
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Figure 11. Difference between model predictions (potential catch) and recorded catch taken for the effort weighted 

single fixed weights model. The red line shows the mean divergence of 654 tonnes. 

 

Figure 12. Relative difference between model predictions (potential catch) and recorded catch taken for the effort 

weighted single fixed weights model. The red line shows the mean divergence of 25%. 

7.3.2 VARIABLE WEIGHTS 

The catch and predictions for the total NPF banana prawn stock region using the single model with variable 
weights are shown in Figure 13. The recorded catch is shown in black, the effort weighted predictions in 
blue and the unweighted predictions in red. The predictions at the individual stock region level can be 
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found in Appendix 3.4. The effort weighted model provides quite a good fit to the data at the whole of 
fishery level, while the unweighted model clearly consistently overestimates the catch, consistent with the 
fixed weights model. The effort weighted model fits are similar or slightly better using the variable weights 
approach in the Coburg, Arnhem, Mornington, Karumba, Mitchell and Weipa. In North and South Groote 
the variable weights lead to a better fit in some years and worse in others. The variable weights lead to one 
very large residual in the Vanderlins where the estimate for 1994 is around 2500 tonnes when less than 100 
tonnes were caught. The estimated potential catch is also large for the fixed weights case but only around 
half the size. The variable weights improve the unweighted model fits in many cases; however the fits are 
still much worse than the effort weighted models. The unweighted models have not been pursued any 
further in this project due to the evident better predictive capacity of the effort weighted models. 

 

Figure 13. Catch and predictions for NPF region using the single model with variable weights. The recorded catch is 

shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 
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Figure 14. Difference between model predictions (potential catch) and recorded catch taken for the effort weighted 

single variable weights model. The red line shows the mean divergence of 645 tonnes. 

 

Figure 15. Difference between model predictions (potential catch) and recorded catch taken for the effort weighted 

single fixed weights model. The red line shows the mean divergence of 28%. 

7.3.3 NPF RECRUITMENT MONITORING SURVEY INDEX 

None of the exploratory steps proved satisfactory. We feel that the tentative suggestion made in Venables 
et al. (2011) should no longer be followed, and that the survey information should only be used as an 
informal ancillary piece of information that could conceivably be used for management purposes at some 
time in the future.   



30 | Incorporation of predictive models of banana prawn catch for MEY-based harvest strategy development for the Northern Prawn Fishery 

There are at least three reasons why we are now of this view, namely: 

1. The survey is designed specifically to gain a pre-season index of Tiger prawn abundance; 
information on WBP is only a by-product of the survey; 

2. With only nine years of data, any statistical relationship between the survey index and later WBP 
potential catch cannot be reliably calibrated, statistically; and, 

3. On a purely practical level, there can be no guarantee the indices will be available at the time they 
are needed to use in setting the WBP TAC, since the timing of the survey is linked to moon-phase, 
which will often mean it takes place well into February. 

For completeness, we outline the results of a new investigation into the potential use of the survey indices 
as an adjustment device, should they be available in time.   

Let I be a survey index for a specific stock region. We can in principle transform this into an estimator of 
potential catch for the region by a scale change, �=. Let �> be the predicted potential catch for the region 
using any of the models detailed above. Our task is to combine these two predictors of potential catch 
optimally into a single predictor. A natural way to do so is to consider a weighted geometric mean, that is, 
� = 	 ��=�/�>
,/ where	0	 ≤ 	'	 ≤ 1. Taking logs and incorporating sampling errors then leads to an 
adjustment model of the form 

log � = ( + 	'�log = −	 log�>� +	 log�> + 	" 

where, as before, � is the recorded catch as a proxy for the potential, and ' and (	�= 	' log �� are to be 
estimated. The restriction 0	 ≤ 	'	 ≤ 1 implies this is a non-linear regression, but we estimate it as a linear 
regression and check that the restriction applies, as a diagnostic check on the model. 

Note that this equation differs from that used in the feasibility study. We consider the present form, 
though similar to the last, is both statistically more defensible and if anything, slightly more robust than the 
exploratory version used previously. 

The Recruitment Monitoring Survey is confined to the Gulf of Carpentaria and hence provides no reliable 
information for the 3 regions outside the Gulf. WBP survey indices are provided for 5 survey regions, which 
only broadly match the 7 WBP stock regions in the Gulf. Stock regions Vanderlins, Mornington, Karumba 
and Weipa all have direct survey indices available. We have use the Groote survey index for both North and 
South Groote stock regions, and the Karumba survey index for the Mitchell stock region, also. 

The adjustment equations above were also estimated using Effort weights, for reasons similar to those 
given for the primary prediction models. This weighting makes little difference in most regions, but is quite 
influential in North and South Groote regions, where there is a wide variation in effort, most likely due to 
periods of closure.  

Table 1 below shows the estimates of the parameter α for the 7 stock regions and for primary predictions 
from all three modelling strategies. As anticipated, no estimate is larger than 1, and only one, that for 
Karumba with the Varying model, is below 0. These estimates give the estimated weight to be given to the 
survey index in the combined potential catch prediction, with the arithmetical complement going to the 

initial prediction, @A. The only place where these weights become appreciable is in Weipa, for all three 
models. This consistency across models suggests that Weipa is a special case and the additional information 
may well be useful there. 
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Table 1. Estimates of the α parameter for 7 stock regions and three prediction models. 

REGION FIXED VARIABLE SEPARATE 

N. Groote 0.1839 0.1891 0.1451 

S. Groote 0.2164 0.0136 0.0096 

Vanderlins 0.1519 0.1523 0.1455 

Mornington 0.2250 0.2298 0.2240 

Karumba 0.0174 -0.0959 0.1252 

Mitchell 0.2800 0.2200 0.1514 

Weipa 0.6832 0.6431 0.7086 

 

To give some indication of the likely effectiveness of the adjustment model, the multiple correlation 
coefficients for each are shown in Table 2 below. Although these estimates include a bias correction, with 
only 9 observations and 2 estimated parameters, these must be interpreted with some caution. Again, 
though, there is some consistency within regions across modelling strategies, with Karumba consistently 
high near 80% and Weipa around 60%. The other regions are mostly lower. 

Table 2. Estimated multiple correlation coefficients for the adjustment models. 

REGION FIXED VARIABLE SEPARATE 

N. Groote 0.4675 0.3826 0.3698 

S. Groote 0.3204 0.3471 0.6148 

Vanderlins 0.1951 0.3082 0.3871 

Mornington 0.3797 0.3237 0.6872 

Karumba 0.8340 0.8477 0.8254 

Mitchell 0.4498 0.4612 0.3613 

Weipa 0.6350 0.6418 0.6386 

 

Figure 16 below shows the effect of making these survey adjustments in the individual stock regions (where 
available) and aggregating up to the entire NPF. The black lines and points show the recorded catch (in 
tonnes), the red dashed lines show the model predictions (Fixed, Variable and Separate models) and the 
vertical green lines and points show the size and direction of the survey adjustment. In general the effect is 
usually a small improvement, in the sense of bringing the estimate closer to the actual catch, but overall 
the effect is insignificant (as well as being statistically non-significant). 

For reference, the effect of the survey adjustment in each of the 7 stock regions where survey information 
is available, is shown in a series of similar graphical displays in Figure 80 to Figure 86 (Appendix 3). The 
effect is most noticeable in Weipa (Figure 86), although it is by no means a uniform improvement. In the 
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case of Weipa, the catch seems to be particularly difficult to predict using rainfall data alone, and while 
including survey information may offer some improvement, overall the result is very erratic. 

Our recommendation is accordingly that the survey information should not be included in any formal way. 
Informally, such abundance indices may well prove a useful adjunct to the information base to be used 
when setting the TAC, and as more experience accrues, just how this might best be done may well become 
more apparent. 
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Figure 16. Survey adjustments to model predictions of potential catch aggregated over the entire NPF. 
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7.4 Refining the spatial scale 

7.4.1 SEPARATE REGION MODELS 

Separating Fog Bay from the remainder of Coburg and fitting separate region models led to the rainfall 
weight distributions in Figure 17 and Figure 18. While the Fog Bay distribution (Figure 19) suggests an early 
peak in August and a late peak in late February, the Coburg distribution (Figure 20) suggests 
November/December and a much more uniform spread for the later months. The differences between 
these distributions provide support to separate these areas. The model predictions for Fog Bay, Coburg and 
the total NPF, are shown in Figure 19, Figure 20 and Figure 21 respectively. The model fits at the region 
level are reasonable and the fit for the total NPF is similar to Figure 2, which is expected given we have only 
altered the predictions for one of the original nine stock regions. 

 

Figure 17. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for Fog Bay based on 

effort weighted model separate region model. Solid line is the original model, dotted line is the model where 

weights are capped to 0.025. 
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Figure 18. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for Coburg (excluding 

Fog Bay) based on effort weighted model separate region model. Solid line is the original model, dotted line is the 

model where weights are capped to 0.025. 
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Figure 19. Catch and predictions for Fog Bay region using the effort weighted separate region model. The recorded 

catch is shown in black and the effort weighted predictions in blue. 
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Figure 20. Catch and predictions for Coburg region using the effort weighted separate region model. The recorded 

catch is shown in black and the effort weighted predictions in blue. 
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Figure 21. Catch and predictions for the total NPF Banana prawn region using the effort weighted separate region 

models with separate models for Fog Bay and the rest of Coburg. The recorded catch is shown in black and the 

effort weighted predictions in blue.  

7.4.2 FIXED WEIGHTS 

The model predictions and recorded catch for Fog Bay, Coburg and the total NPF using a single fixed 
weights model (with separate regions for Coburg and Fog Bay) are shown in Figure 22, Figure 23 and Figure 
24. In some years this models appears to be a better fit than the separate region models but in others it is 
worse. The model fitting process is however far more stable and statistically robust. The largest positive 
divergences occur in 1972 and 1994 (Figure 25 and Figure 26). Of more concern are the large negative 
divergences in 2008 and 2012, which would have led to an underestimate of the WBP stock available for 
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these seasons. We note that the mean divergence, 817 tonnes (Figure 25) and mean relative divergence, 
30% (Figure 26) were a little higher than for previous models, largely because most divergences were 
positive. 

 

Figure 22. Catch and predictions for the Fog Bay region using the effort weighted fixed weights model with separate 

regions defined for Fog Bay and the rest of Coburg. The recorded catch is shown in black and the effort weighted 

predictions in blue. 
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Figure 23. Catch and predictions for the Coburg region using the effort weighted fixed weights model with separate 

regions defined for Fog Bay and the rest of Coburg. The recorded catch is shown in black and the effort weighted 

predictions in blue. 
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Figure 24. Catch and predictions for the total NPF Banana prawn region using the effort weighted fixed weights 

model with separate regions defined for Fog Bay and the rest of Coburg. The recorded catch is shown in black and 

the effort weighted predictions in blue. 
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Figure 25. Difference between model predictions (potential catch) and recorded catch taken for the effort weighted 

single fixed weights model with separate regions defined for Fog Bay and the rest of Coburg. The red line shows the 

mean divergence of 817 tonnes. 

 

Figure 26. Relative difference between model predictions (potential catch) and recorded catch taken for the effort 

weighted single fixed weights model with separate regions defined for Fog Bay and the rest of Coburg. The red line 

shows the mean relative divergence of 30%. 
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7.4.3 VARIABLE WEIGHTS 

The rainfall weights distributions for Fog Bay and Coburg based on the variable weights model are given in 
Figure 27 and Figure 28. The distributions are very similar and so combining Fog Bay and Coburg would be a 
reasonable approach to this model. Although the number of model parameters is increased by having an 
extra region in the model, the sample size is increased through the addition of 42 years of data for Fog Bay 
through the disaggregation of the catches. In the future the effect of taking this level of disaggregation to a 
greater extreme (modelling at a much finer scale) could be considered. The model predictions and recorded 
catch for Fog Bay, Coburg and the total NPF using a variable weights model (with separate regions for 
Coburg and Fog Bay) are shown in Figure 27, Figure 28 and Figure 29. The model fits are not vastly different 
to the previous two modelling scenarios. 

We recommend this modelling approach as the way forward. It provides some flexibility on a regional level 
but offers a higher level of stability than modelling each stock region separately. 

 

Figure 27. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for Fog Bay based on 

effort weighted model variable weights model. 
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Figure 28. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for Coburg based on 

effort weighted model variable weights model.  
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Figure 29. Catch and predictions for the Fog Bay region using the effort weighted variable weights model with 

separate regions defined for Fog Bay and the rest of Coburg. The recorded catch is shown in black and the effort 

weighted predictions in blue. 
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Figure 30. Catch and predictions for the Coburg region using the effort weighted variable weights model with 

separate regions defined for Fog Bay and the rest of Coburg. The recorded catch is shown in black and the effort 

weighted predictions in blue. 
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Figure 31. Catch and predictions for the total NPF banana prawn region using the effort weighted variable weights 

model with separate regions defined for Fog Bay and the rest of Coburg. The recorded catch is shown in black and 

the effort weighted predictions in blue.  
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Figure 32. Difference between model predictions (potential catch) and recorded catch taken for the effort weighted 

single variable weights model with separate regions defined for Fog Bay and the rest of Coburg. The red line shows 

the mean divergence of 781 tonnes. 

 

Figure 33. Difference between model predictions (potential catch) and recorded catch taken for the effort weighted 

single variable weights model with separate regions defined for Fog Bay and the rest of Coburg. The red line shows 

the mean divergence of 30%. 
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7.5 Estimates of uncertainty 

The confidence and tolerance intervals for the fixed and variable weights effort weighted models are 
shown in Figure 34, Figure 35 and Appendix 3 (section 15.6). While the confidence intervals indicate the 
uncertainty around the mean catch value, the tolerance intervals indicate the uncertainty around the 
potential catch and so by definition are wider. We’d expect the catch for the following year to fall within 
the tolerance interval 95% of the time. It should be noted though that these intervals do not include any 
uncertainty associated with the estimation of the non-linear parameters, once this is included (in future 
model development), the tolerance intervals will be slightly wider.  

The intervals indicate a large amount of uncertainty in the fishery in the early years when the fishery was 
becoming established. The year 1994 is associated with a high amount of uncertainty; however, the actual 
catch does not fall within the bounds. The bounds are relatively tight in the early 2000’s, becoming wider 
around 2009. The tolerance interval for 2012 is unlikely to contain the total catch for the season. We expect 
that this is due to the large amount of rainfall falling early in the 2012 season (beyond the cut-off for the 
late rainfall included in the model).  
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Figure 34. Recorded catch, estimated catch, confidence and tolerance intervals for the NPF banana prawn stock 

region from 1970-2012. The results are generated using the fixed weights, effort weighted model with 10 regions 

(Coburg and Fog Bay split). Recorded catch is black, predicted blue, confidence intervals red and tolerance intervals 

green. 
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Figure 35. Recorded catch, estimated catch, confidence and tolerance intervals for the NPF banana prawn stock 

region from 1970-2012. The results are generated using the variable weights, effort weighted model with 10 regions 

(Coburg and Fog Bay split). Recorded catch is black, predicted blue, confidence intervals red and tolerance intervals 

green. 

7.5.1 RETROSPECTIVE AND PROSPECTIVE ANALYSIS 

It was suggested, and captured in the project objectives, that the potential of the models for TAC purposes 
could be investigated empirically using a ‘retrospective analysis’ study. That is, by using the data up to year 
n to predict the catch for year n+1, for a series of back years. While this suggestion is intuitively appealing, 
we found it impractical to implement, simply because we found that the models are already at a complexity 
level where they stretch the capacity of the mere 42 years’ data currently available. The non-linear part of 
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the model is particularly sensitive to fit and doing so with a reduced data set, as would be required if the 
suggestion were to be implemented
difficult. We note, also, that the rainfall is extremely variable in northern Australia, and one extreme 
heavy rainfall or very low-rainfall - year can make an appreciable diffe

7.6 Results of Economic analyses: Modelling Approach 1

7.6.1 PRICE ELASTICITY 

To illustrate the attribute of elasticity for banana prawn prices
price (in 2010-11 Australian dollars) for banana prawns. The two time series are negatively correlated, and 
especially so in recent years when more product

Figure 36. Annual catch and price of banana prawn in 2010

It turns out that estimates of elasticity with and without exchange rate effects are close
-0.244% and -0.217%. This result implies that if the catch increases by 1%, then the price will fall by 0.244% 
or 0.217%, thus increasing the revenue by only 0.756% or 0.783%. Details of the estimates are reported in 
Table 3a, the results of unit-root tests in 
correlation in Table 5. All data used for these estimates are reported in 
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the model is particularly sensitive to fit and doing so with a reduced data set, as would be required if the 
suggestion were to be implemented in full, is not only statistically very sensitive, but computationally very 
difficult. We note, also, that the rainfall is extremely variable in northern Australia, and one extreme 

year can make an appreciable difference to the model predictions.

Results of Economic analyses: Modelling Approach 1 

attribute of elasticity for banana prawn prices, Figure 36 plots the catch (in tonnes) and the 
11 Australian dollars) for banana prawns. The two time series are negatively correlated, and 

especially so in recent years when more product has been sold domestically.  

 

Annual catch and price of banana prawn in 2010-11 dollars. 

It turns out that estimates of elasticity with and without exchange rate effects are close
0.217%. This result implies that if the catch increases by 1%, then the price will fall by 0.244% 

or 0.217%, thus increasing the revenue by only 0.756% or 0.783%. Details of the estimates are reported in 
root tests in Table 4 and general goodness-of-fit tests including serial 

All data used for these estimates are reported in Appendix 4.1

based harvest strategy development for the Northern Prawn Fishery 

the model is particularly sensitive to fit and doing so with a reduced data set, as would be required if the 
in full, is not only statistically very sensitive, but computationally very 

difficult. We note, also, that the rainfall is extremely variable in northern Australia, and one extreme - 
rence to the model predictions.  

 

plots the catch (in tonnes) and the 
11 Australian dollars) for banana prawns. The two time series are negatively correlated, and 

It turns out that estimates of elasticity with and without exchange rate effects are close, respectively            
0.217%. This result implies that if the catch increases by 1%, then the price will fall by 0.244% 

or 0.217%, thus increasing the revenue by only 0.756% or 0.783%. Details of the estimates are reported in 
fit tests including serial 

Appendix 4.1. 
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Table 3. Parameter estimates for demand elasticity, with log(Price) as the dependent variable. Price is 

$A1000/tonne inflation-adjusted with 2010-11 as the base year. Model A includes an exchange rate term, while 

model B does not. Both models include predictors log(Annual Catch) and the difference in mean log(Price) between 

the periods 1992-2003 (12 years) and 2004-2010 (7 years). Significance level (0.1%, 1% or 5%) is indicated by 

symbols ***, **, or * respectively. 

PARAMETER MODEL ESTIMATE STD. ERROR T VALUE SIG. LEVEL 

Intercept A -2.608 0.515 -5.060 *** 

B -2.728 0.622 -4.389 *** 

Log(Annual Catch) A -0.244 0.060 3.935 *** 

B -0.217 0.074 -2.928 *** 

Difference in mean log(Price) pre- 
and post-2004 

A 0.334 0.050 6.664 *** 

B 0.419 0.049 8.558 *** 

Log(Japan CPI/Exchange Rate) A 0.594 0.205 2.902 *** 

B n/a n/a n/a n/a 

 

Table 4. ADF unit root tests for the response and predictor series used for modelling demand elasticity over the 

period 1992-2010 inclusive. 

VARIABLE T VALUE PROBABILITY 

Log(Price) -1.451 0.808 

Log(Annual Catch) -3.143 0.127 

Log(Japan CPI/Exchange Rate) -2.676 0.250 

 

Table 5. Model fit statistics for modelling demand elasticity over the period 1992-2010 inclusive. Model A includes 

an exchange rate term, while model B does not. 

CRITERION MODEL A MODEL B 

R-squared 0.904 0.850 

Adjusted R-squared 0.885 0.831 

DW statistics 2.031 1.411 

Probability for AR(2) using BG test: 
     F-statistic 
     Chi-square statistic 

 

0.633 

0.524 

 

0.627 

0.542 
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The estimated demand function (used in the MEY analysis) and how the revenues built from this estimate 
fit with recorded data are presented in

Figure 37. Demand function for banana prawn used for MEY analysis and the

fishing revenue. 

7.6.2 ESTIMATION OF THE HA

The estimates for the harvest function based on a 
reported in Table 6, and the dataset is given in 
adjusted R-squared value of 0.960 suggesting a good fit
function to the actual cumulative weekly catch and effort
adequately capture the convexity of the actual relationship between catch and effort (see 
especially for 2008 and 2011. This convexity is important to capture, since it indicates that in the fishery 
increases in effort produce increases in catch, but at a dec

Table 6. Parameter estimates for the harvest function based on model 1, with log(Cumulative Weekly Catch) as the 

dependent variable and predictors log(Cumulative Weekly Effort) and log(Annual Abundance Index, S

from 2008 to 2011 inclusive (117 records in tot

**, or * respectively. 

PARAMETER ESTIMATE

Intercept 0.438

Log(Cumulative Weekly Effort) 0.765

Log(Annual Abundance Index) 0.241
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estimated demand function (used in the MEY analysis) and how the revenues built from this estimate 
data are presented in Figure 37.  

 

Demand function for banana prawn used for MEY analysis and the comparison of estimated and actual 

ESTIMATION OF THE HARVEST FUNCTION  

harvest function based on a standard log-linear production function (model 1)
, and the dataset is given in Appendix 4. The table shows valid estimates

squared value of 0.960 suggesting a good fit. However, when we compare 
cumulative weekly catch and effort data, it is clear that the specification does not 

adequately capture the convexity of the actual relationship between catch and effort (see 
especially for 2008 and 2011. This convexity is important to capture, since it indicates that in the fishery 

increases in catch, but at a declining rate.  

for the harvest function based on model 1, with log(Cumulative Weekly Catch) as the 

dependent variable and predictors log(Cumulative Weekly Effort) and log(Annual Abundance Index, S

from 2008 to 2011 inclusive (117 records in total). Significance level (0.1%, 1% or 5%) is indicated by symbols ***, 

ESTIMATE STD. ERROR T VALUE SIG. LEVEL 

0.438 0.365 1.323 NS 

0.765 0.015 52.348 *** 

0.241 0.040 5.966 *** 

based harvest strategy development for the Northern Prawn Fishery 

estimated demand function (used in the MEY analysis) and how the revenues built from this estimate 

 

of estimated and actual 

production function (model 1) are 
. The table shows valid estimates, with an 

compare the fitted harvest 
data, it is clear that the specification does not 

adequately capture the convexity of the actual relationship between catch and effort (see Figure 38), 
especially for 2008 and 2011. This convexity is important to capture, since it indicates that in the fishery 

for the harvest function based on model 1, with log(Cumulative Weekly Catch) as the 

dependent variable and predictors log(Cumulative Weekly Effort) and log(Annual Abundance Index, S0). Data are 

Significance level (0.1%, 1% or 5%) is indicated by symbols ***, 
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Figure 38. Recorded catch and fitted production function estimates for the harvest function, separately for 2008 to 

2011 inclusive. Black solid circles are actual cumulative within-year catch (in tonnes) and effort (in fishing days); red 

lines are fitted values from model 1.  

The estimates for the non-linear parameters of the harvest function based on a half-logistic curve (model 2) 
are reported in Table 7. The adjusted R-squared value of 0.962 for this model was similar to that of the 
standard production function (model 1). However, as can be seen in Figure 39, model 2 has more 
successfully captured the convexity in the relationship between effort and catch for the three years (with 
different initial measures of ‘abundance’) than model 1. The figure shows that, as the total quantity of 
prawns caught rises during the fishing season, so an increasing amount of effort must be expended to catch 
the next tonne of prawns, and the decline in catch-per-unit-effort is especially marked as the fishery moves 
closer to the potential catch level. The results allow us to thus specify a harvest function for the banana 
prawn fishery, using measures of ‘abundance’ as given realizations in each of the relevant years.  

Table 7. Estimates of the two non-linear parameters for the harvest function based on model 2, with Cumulative 

Weekly Catch as the dependent variable and Cumulative Weekly Effort as the predictor. Annual Abundance Index, 

S0, is treated as a known constant. Data are from 2009 to 2011 inclusive (88 records in total). Significance level 

(0.1%, 1% or 5%) is indicated by symbols ***, **, or * respectively. 

PARAMETER ESTIMATE STD. ERROR T VALUE SIG. LEVEL 

0β
 

0.0044 0.0011 4.148 *** 

1β  0.7838 0.0310 25.274 *** 
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Figure 39. Recorded catch and fitted harvest function from the half-logistic model, separately for 2009 to 2011 

inclusive. Black solid circles are actual cumulative within-year catch (in tonnes) and effort (in fishing days); red lines 

are fitted values from model 2. 

7.6.3 FISHING COST INFORMATION  

Some of the components of the cost of fishing for banana prawns are reported in Table 8. The ratios of 
operating cost to income for NPF banana prawns in 2009, 2010 and 2011 are 55%, 45% and 49%, somewhat 
lower than that of the NPF as a whole (including tiger prawns and other products) during the years 1993-
2009 (Vieira and Perks, 2010). 

Table 8. Components of the cost of one fishing day (2010-11 dollars). Source: Kompas (2012). 

TYPE OF COST AMOUNT ($) 
 

Capital 2,212 

Fuel 3,496 

Gear 323 

Crew and skipper payments 2,658 

Other material and comm. costs 164 
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7.6.4 ESTIMATION OF MEY 

Graphically, the left panel of Figure 
2009-2011. The thin unbroken line presents the revenue from catch 
to the value of the price elasticity. The upward sloping curves represent the operating costs for the three 
years — which bend upward given the convexity in the catch and effor
between the revenue and the cost represents operating profit. 

The right panel of Figure 40 shows both marginal revenue and marginal costs, which provide information 
on the marginal gains and losses with each additional ton
revenue and the marginal cost curves determine the profit
shows that the optimal catch varies, relative to the initial value of ‘abundance’. Specifically, in year 2011 
where the initial stock abundance is relatively higher, th
only 3,869 tonnes in 2010 and 4,303 ton

 

Figure 40. Fishing revenue and costs. 

In Table 9, we compare the actual situation and MEY catch and profit. The last 
calculates actual operating profit from actual catch, price and cost data in the fishery. The ta
catch should have been less than the actual levels in 2009 and 2011 to obtain higher profits. The reason for 
this is straightforward, depending on both the effects of the price elasticity and the convexity in the catch 
and effort relationship, and thus the convexity in marginal costs. Increases in catch both decrease price and 
revenue and also increase the cost of fishing, at an increasing rate. However, in 2010 the actual profit is 
higher than what is obtained under MEY.

Table 9. Actual and MEY operating profit

YEAR CATCH (TONNES) 

MEY Recorded

2009 4,303 5,214 

2010 3,869 5,771 

2011  6,500 7,557 

* (assuming $A8,800 per fishing day) 

 

The robustness of the MEY estimates depends on the estimates of the price elasticity and the cost of a 
fishing day. Table 10 provides a sensitivity
higher elasticity will reduce the catch at MEY (keeping other things constant). 
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Figure 40 shows the revenue and the costs estimated for the three years, 
broken line presents the revenue from catch — which slightly bends downward due 

to the value of the price elasticity. The upward sloping curves represent the operating costs for the three 
which bend upward given the convexity in the catch and effort relationship

between the revenue and the cost represents operating profit.  

shows both marginal revenue and marginal costs, which provide information 
on the marginal gains and losses with each additional tonne of catch. The intersections of the marginal 

he marginal cost curves determine the profit-maximizing catch for each year. The figure 
shows that the optimal catch varies, relative to the initial value of ‘abundance’. Specifically, in year 2011 
where the initial stock abundance is relatively higher, the optimal catch is around 6,500 ton

s in 2010 and 4,303 tonnes in 2009. 

, we compare the actual situation and MEY catch and profit. The last column
calculates actual operating profit from actual catch, price and cost data in the fishery. The ta
catch should have been less than the actual levels in 2009 and 2011 to obtain higher profits. The reason for 
this is straightforward, depending on both the effects of the price elasticity and the convexity in the catch 

p, and thus the convexity in marginal costs. Increases in catch both decrease price and 
revenue and also increase the cost of fishing, at an increasing rate. However, in 2010 the actual profit is 
higher than what is obtained under MEY. 

Actual and MEY operating profit.  

OPERATING PROFIT  

(MILLION 2010-11 DOLLARS) 

Recorded Potential Estimated from 

MEY model 

Recorded

6,281 27.73 22.20 

5,794 25.12 33.61 

8,699 40.60 31.10 

The robustness of the MEY estimates depends on the estimates of the price elasticity and the cost of a 
sensitivity analysis of MEY in response to the price elasticity. It shows that a 

higher elasticity will reduce the catch at MEY (keeping other things constant).  
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shows the revenue and the costs estimated for the three years, 
which slightly bends downward due 

to the value of the price elasticity. The upward sloping curves represent the operating costs for the three 
t relationship — and the gap 

shows both marginal revenue and marginal costs, which provide information 
of catch. The intersections of the marginal 

maximizing catch for each year. The figure 
shows that the optimal catch varies, relative to the initial value of ‘abundance’. Specifically, in year 2011 

e optimal catch is around 6,500 tonnes while it is 

column of the table simply 
calculates actual operating profit from actual catch, price and cost data in the fishery. The table shows that 
catch should have been less than the actual levels in 2009 and 2011 to obtain higher profits. The reason for 
this is straightforward, depending on both the effects of the price elasticity and the convexity in the catch 

p, and thus the convexity in marginal costs. Increases in catch both decrease price and 
revenue and also increase the cost of fishing, at an increasing rate. However, in 2010 the actual profit is 

Recorded* 

The robustness of the MEY estimates depends on the estimates of the price elasticity and the cost of a 
of MEY in response to the price elasticity. It shows that a 
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Table 10. Changes in MEY catch (in tonnes) in response to changes in price elasticity, where the base case elasticity 

is 0.25 and fishing cost is fixed at $8,800 per day. 

ELASTICITY 2009 2010 2011 
 

-0.15 4,487 4,030 6,781 

-0.20 4,439 3,953 6,647 

-0.25 (base case) 4,303 3,869 6,500 

-0. 30 4,197 3,776 6,336 

-0.35 4,081 3,673 6,155 

 

Table 11 provides a sensitivity analysis of the catch at MEY in response to changes in the cost of one fishing 
day, where the cost varies between ± 20% from the base-case level. The result shows that a lower cost 
always results in higher catch at MEY (keeping other things constant).  

Table 11. Changes in MEY catch (in tonnes) in response to changes in the fishing cost where the base case is $8,800 

per day and price elasticity is fixed at -0.25.  

COST RELATIVE  

TO BASE CASE 
2009 2010 2011 

-20% 4,663 4,217 6,905 

-10% 4,481 4,041 6,700 

Base case 4,303 3,869 6,500 

+10% 4,129 3,701 6,302 

+20% 3,959 3,536 6,107 

7.7 Results of Economic analyses: Modelling Approach 2 

7.7.1 CATCH MODEL RESULTS 

The catch model (Table 12) was estimated from daily catch and effort data during the targeted banana 
prawn season (i.e. excluding banana prawns caught during the tiger prawn season) over the period 1987-
2011. The effort weighted (EW) “potential catch” estimated by in the report was taken as the stock proxy. 

The coefficient for the potential catch was less than one, indicating that catch did not increase linearly with 
the estimate of potential catch. That is, higher estimates of potential catch were greater over-estimates of 
stock abundance than lower estimates. The relationship between catch and effort decreases with 
increasing effort. Fishers’ ability to catch banana prawns increased at an average 1.6% per year over the 
period examined.4  

 

                                                           

 
4 As noted above, quadratic and cubic time trends as well as interaction terms were also considered but the linear model was the most appropriate. 
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Table 12. Regression results: catch model. The dependent variable is the log of cumulative daily catch over the year. 

Effort represents the corresponding cumulative boat days fished over the year. EW is the effort-weighted potential 

catch. Significance level (0.1%, 1% or 5%) is indicated by symbols ***, **, or * respectively. 

PARAMETER ESTIMATE STD. ERROR T VALUE SIG. LEVEL 
 

Intercept -7.068 0.319 -22.13 *** 

Log(EW) 0.747 0.013 55.82 *** 

Log(Effort) 1.717 0.081 21.20 *** 

[Log(Effort)]
 2 -0.078 0.006 -13.68 *** 

Time 0.016 0.001 20.88 *** 

Y1994 -1.039 0.018 -59.03 *** 

Y2000 -0.660 0.021 -31.36 *** 

Y2006 -0.267 0.022 -12.23 *** 

Y2007 0.043 0.022 1.91 NS 

Y2008 0.455 0.019 23.42 *** 

 

The adjusted R-squared was 0.926 for this model. A comparison of the actual and model-estimated catch 
(based on the observed effort level and the estimated potential catch) is shown in Figure 41. While the 
estimated catch closely matches the trends in the actual catch, in any one year the estimate may be out by 
as much as 40 per cent (Figure 42). 

 

 

Figure 41. Comparison of estimated and actual banana prawn catch. 
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Figure 42. Percentage error between estimated and recorded banana prawn catch. 

7.7.2 ESTIMATES OF MEY 

MEY was estimated for each year between 1987 and 2011 given the recent estimates of cost and price 
conditions. As these parameters were held constant, variations in MEY were due solely to changes in the 
initial estimate of ‘potential catch’.5 The key parameters used in the analysis are given in Table 13. The 
prices and costs were also those used in the analysis of Section 7.6 above, to provide a direct comparison of 
results, although some costs are implemented differently in the models. 

Table 13. Parameters used in the analysis for economic Modelling Approach 2. 

PARAMETER UNIT VALUE 

P1  $/tonne 8,000 

q1  tonnes 6,835 

f  -0.3 

C  $/day 3,819 

Crew  % 23 

Marketing  $/tonne 1,030 

 

The resultant MEY effort and catch, and the underlying ‘potential catch’ (effort weighted, or EW) are shown 
in Figure 43. As would be expected, the variability in optimal catch is greater than the variability in optimal 
effort. As would be expected, optimal catch also closely follows the estimate of the potential catch. 

 

                                                           

 
5 Incorporating year-specific costs and prices would add greater variability to the analysis and additional confusion as to the extent that estimates of 
the ‘potential catch’ has on optimal catch and effort. 
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Figure 43. Optimal effort and catch with current prices and costs. Effort is in total boat days. EW and MEY are in 

tonnes. 

A comparison of the MEY estimates from Section 7.6 and this approach is given in Table 14. The estimates 
correspond almost identically for 2010 and 2011, but diverge for 2009. There were differences in the 
estimate of potential catch underlying each of the models, although adjusting for these made only a small 
difference. Other key differences in methodology include capital costs (included in the analysis in Section 
7.6 but excluded from the analysis in this section) and the treatment of crew and other costs. A fixed 
amount per day was assumed in Section 7.6, while in this section these costs varied based on output per 
day. Further, the catch model used in this analysis was based on a longer time series of data than that of 
Section 7.6, with the time trend and dummy variables incorporated to capture technical change and 
significant management changes. 

Table 14. Comparison of model results from Sections 7.6 and 7.7 for MEY catch 

YEAR ESTIMATED MEY (TONNES) 

Section 7.6 model Section 7.7 model 

2009 4,303 5,776 

2010 3,869 3,844 

2011 6,500 6,514 
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8 Benefits and Adoption 

 
The direct beneficiaries of this research are industry and management associated with the Northern Prawn 
Fishery: 

1. The Northern Prawn Fishery; 

2. The Australian Fisheries Management Authority (AFMA); and 

3. The Department of Agriculture, Fisheries and Forestry (DAFF), Australian Government. 

Aspects of the research might also have benefit for industry and management of other fisheries that 
experience large variation due to environmental drivers, including fisheries for prawns and other 
crustaceans, and some finfish fisheries. 

The research provided a number of potential benefits. 

The prediction of potential catch: 

1. Is a basis on which management might set TAC values that are comparable with the catch that 
would have been available in the status quo input control system; and 

2. Provides prior information on the likely size of landings, for potential application in industry 
marketing, and so improve planning and profitability. 

The economic analyses provide the means to improve the economic performance of the NPF’s WBP fishery, 
by either: 

1. Adjusting TACs (determined using the “potential catch” from the model), to TACMEY, i.e. choose 
TACs that are close to the economic optimum; and 

2. In an input control context, as the basis to calculate a catch rate trigger, that accounts for price 
flexibility with landings volume (so using the “potential catch” calculation) and that would address 
an MEY target (and so using the economic analyses undertaken here). 

These alternatives are currently under consideration by the management of the fishery, with elaboration 
via the related, AFMA-funded project Comparison of TAC and current management for the White Banana 

Prawn fishery of the Northern Prawn Fishery (Buckworth et al. 2013). Linkage between the projects was via 
the Principal Investigator and other team members common between the projects. It is noted that both 
projects were conducted with support of NORMAC and NPRAG. It is likely that either the TACMEY strategy or 
the MEY-trigger approach will be adopted, so that the management of the fishery is able to address an 
MEY-based harvest strategy for the WBP fishery. These outcomes both depend upon the direct outputs of 
this project.  

The modelling system is a new tool which also: 

1. Can be incorporated in future simulations of the WBP fishery; 

2. Could be adapted to other fisheries driven by environmental variation; and 

3. Could be used in assessments of the fishery that accommodate the variance that has hitherto 
prevented the development of a reliable population model and assessment for the fishery. 

The effect of these tools and potential management actions are difficult to predict in terms of effects on 
profits or stability of the fishery. They will, however, enable the managers of the fishery to better comply 
with Commonwealth fisheries policy, which requires that Maximum Economic Yield (MEY) targets are 
addressed, and so enhance profitability. They will contribute and create further opportunities for further 
research and development in the NPF by providing better understanding and quantification of the variance 
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in catches that is attributable to environmental drivers, particularly rainfall. Additionally, as a model 
approach and methodology, the project may also provide additional opportunities for other Australian 
prawn fisheries.  

Benefits and beneficiaries described here are in agreement with those described in the original application 
for this work. There has been continual feedback to the main beneficiaries of the work – industry and 
management – via reports and presentations to NORMAC and NPRAG and we have endeavoured to ensure 
incorporation of any feedback that these groups have provided. To further disseminate the work and 
engender scientific feedback and peer review, seminars on aspects of this project were presented at the 
Australian Society for Fish Biology Conference in July 2012, to AFMA staff in June 2013, and to the 
International Environmetrics Society Conference in Anchorage, Alaska in June 2013. 
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9 Further Development 

There are a number of aspects of the White Banana Prawn prediction model that should be developed 
further if the model and economic analyses are to be used to predict potential annual catch in time to set a 
TAC or catch rate trigger for the upcoming season. These include: 

• Putting systems and protocols in place to ensure that the SILO data can be downloaded 
automatically, in the correct format, in or before the first week of March each year, so providing 
sufficient time for analysis, and advice to management of the fishery. This should include ensuring 
that CSIRO always has an up-to-date SILO data licence in place and allowing for flexibility around 
the data download process to accommodate changes in data schemes.  

• Investigate the potential of performing mid-season updates based on catches taken during the first 
few weeks of the season. 

• Develop methods to account for the uncertainty in non-linear model parameters and extend the 
confidence and prediction intervals to account for this uncertainty. This will have a relatively minor 
impact on the confidence and prediction intervals but should be undertaken to demonstrate the 
true model uncertainty. 

• Further investigate the spatial scale of the model. To date we have accepted the banana prawn 
stock regions as given with the exception of splitting Fog Bay from the remainder of Coburg. 
Separating a few more logically and visually separate regions with high banana prawn fishing 
intensities will increase the degrees of freedom and may improve the performance of the model.  

• Further exploration of the use of the survey data: potentially we could apply a Bayesian update 
process as a means of including recruitment survey information. 

• Develop ways to cope with future “censored data”. By this we mean that if, in the future, the catch 
is dictated by a TAC or other mechanism that depends strongly on the model, then the model 
would not be receiving new information on “potential catch”, so that the model would not be 
updated and not be able to accommodate new information. We suggest as a possible approach, 
using the catch from the first 3-4 weeks of the season versus rainfall would remove some of the 
effect of having a TAC system. Even so, the predicted changes in efficiency and behaviour that 
might arise with a TAC-based system are not known and might also need to be accommodated.  

• Timing of the survey, and so availability of the survey index, could be of issue in some years –
assuming that the survey index in future provides greater utility to the prediction model than it 
currently does. 

• If there were a TAC system in place, a default TAC would need to be decided if rainfall data were 
unavailable; alternatively, there needs to be a means of deciding what might be an appropriate 
rainfall proxy. 

We also suggest incorporating the rainfall relationships in future assessments, combining it perhaps with 
the depletion approach developed by Zhou et al. (2007) and as applied in Buckworth et al. (2013). This 
could also include or incorporate a fishing power analysis for banana prawns. 
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10 Planned Outcomes 

The principal outputs of the project are the prediction of potential catch, and economic tools for calculation 
of MEY-based management controls. 

Prediction of potential catch: 

1. Is a basis on which management might set TAC or catch rate trigger values that are comparable 
with the catch that would have been available in the status quo input control system; and 

2. Provides prior information on the likely size of landings, for potential application in industry 
marketing, and so improve planning and profitability. 

The economic analyses provide the means to improve the economic performance of the NPF’s WBP fishery, 
by either: 

1. Adjusting TACs (determined using the “potential catch” from the model), to TACMEY, i.e. choose 
TACs that are close to the economic optimum, MEY; and 

2. In an input control context, calculate a catch rate trigger, that accounts for price flexibility with the 
volume of landings (so using the “potential catch” calculation) and that would address an MEY 
target (and so using the economic analyses undertaken here). 

These alternatives are currently under consideration by the management of the fishery, with elaboration 
via the related, AFMA-funded project Comparison of TAC and current management for the White Banana 

Prawn fishery of the Northern Prawn Fishery. It is likely that either the TACMEY strategy or the MEY-trigger 
approach will be adopted, so that the management of the fishery are able to address an MEY-based harvest 
strategy for the WBP fishery. These options, both dependent upon the direct outputs of this project, are 
consistent with the Commonwealth Harvest Strategy Policy; the benefit of an appropriate strategy will be 
maximisation of the annual economic performance of the fishery.  
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11 Conclusion 

Describing the prediction of potential catch for the NPF’s banana prawn fishery, and developing economic 
tools required to address an MEY target for the fishery, the principal applications of the outputs of this 
project are in development of a MEY-based Total Allowable Catch (TAC) or a catch rate trigger for the 
fishery.  

The project successfully extended the methods of Venables et al. (2011), applying several approaches to 
improve the stability and accuracy of the model (objective 1). It would be feasible to apply (not re-fit) the 
different approaches each year; however, we recommend the “variable weights” model as a structural 
compromise that promotes stability, yet allows regional flexibility. We caution that the models are unable 
to make predictions that incorporate rainfall occurring after February each year – a reason for some major 
deviations. Additionally, we offer that the models are built on a data set of just 42 years – there will be 
future rainfall patterns and quantities outside the “experience” of the model that will potentially engender 
strong deviations between predicted and actual catches. At the same time, each new year may provide 
extra information and thus opportunities to include that information in updated models, or will see 
experience accrued as to which modelling approach is the more reliable or useful in different contexts.  

We developed methods to calculate both the uncertainties associated with estimation and prediction, so 
achieving project objective 2. We found that these measures were valuable in conveying to stakeholders 
the degree of uncertainty in the predictions. They also have utility in simulation of the management of the 
fishery and have already been applied in the management strategy evaluation of the WBP fishery by 
Buckworth et al. (2013).  

Investigating retrospective and prospective analyses, we found that there was simply insufficient data 
(there was not sufficient information to ensure that the models were sufficiently stable). This means that 
objective 3 was only partially met; nevertheless, a prediction was provided for the 2012 catch, and 
prediction intervals, indicating the uncertainty in predictions, were also developed. 

We incorporated Fog Bay as a separate region from Coburg in the model. Our investigations indicated quite 
distinct rainfall weights for the two putative regions, so the separation was considered appropriate 
(objective 4). Further refinements addressing the spatial scale of the models could be addressed, in a 
similar manner, with each similar adjustment providing greater utilisation of available data and thus 
potentially providing models with greater descriptive and predictive power.  

Although inclusion of the data from the annual NPF recruitment monitoring program was not successful, 
we believe that with the accumulation of more data and perhaps different techniques, an effective means 
to incorporate the survey information might be developed.  

Analysing the response of banana prawn prices to the size of the annual catches, the relationships between 
potential catch and economic variables, we were able to develop predictive relationships between catches, 
effort, prices and costs (objective 5) which, in turn enabled development of a MEY analysis for the fishery 
(objective 6). 

By developing and applying economic analyses, the project is a quantitative base on which a prediction of 
potential catch can be utilise to provide either a TAC, or a catch rate trigger, to address MEY for the banana 
prawn fishery. The project also demonstrates a set of statistical modelling approaches with application to 
other fisheries, particularly prawn fisheries, which are similarly subject to environmental drivers.  
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15 Appendix 3: Modelling Potential Catch 

15.1 Modelling Individual stock regions 

The following table shows the Catch for 2011 and predictions for 2011 and 2012 for each stock region and 
the NPF TAC region as a whole. Table 15 shows the results for individual stock region models, using both 
EW and UW versions, based on the updated SILO data/inclusion of 2011 (new) and the models from 
Venables et al. (2011).  

Table 15. Catch and predictions, in tonnes, for four models, 2011 and 2012, using individual stock region models and 

aggregating. The EW and UW models are re-built using data up to 2011 for their calibration; the (old) versions use 

the models from the feasibility study without change.  

 CATCH EW(NEW) UW(NEW) EW (OLD) UW (OLD) 

2011      

Coburg 879.9 1206.8 1213.6 1415.0 2353.6 

Arnhem 338.9 420.3 376.9 857.2 729.9 

N_Groote 158.9 166.4 955.5 2094.0 5219.6 

S_Groote 102.0 107.5 333.2 2.5 1994.1 

Vanderlins 148.6 166.2 193.0 23.9 91.7 

Mornington 917.1 902.6 2162.5 206.2 627.8 

Karumba 2818.3 3633.3 2784.4 211.7 264.7 

Mitchell 1045.5 1304.0 898.7 1921.0 406.5 

Weipa 757.2 791.5 776.5 821.8 476.6 

NPF 7166.5 8698.5 9694.3 7553.3 12164.5 

2012      

Coburg  831.8 770.6 700.5 680.9 

Arnhem  173.0 92.7 195.2 93.8 

N_Groote  50.2 55.0 320.0 94.2 

S_Groote  11.0 947.4 51.7 253.3 

Vanderlins  167.8 0.5 73.0 9.2 

Mornington  217.7 223.0 232.7 111.9 

Karumba  635.4 1876.3 1125.9 843.4 

Mitchell  796.0 802.7 1034.9 730.3 

Weipa  216.3 166.9 146.7 111.1 

NPF  3099.2 4935.1 3880.6 2928.1 
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15.2 Restricting rainfall weight distributions 

Table 16. Comparison of predictions (‘000 tonnes) for the total NPF obtained by restricting weights (cap) for the 

effort weighted (EW) and unweighted (UW) modelling approaches using updated SILO data (to 29 February 2012). 

YEAR TOTAL TOTAL_EW_12 TOTAL_UW_12 TOTAL_EW_12_CAP TOTAL_UW_12_CAP 
 

1970 1690 4154 11974 3587 3891 

1971 7365 6200 65831 5895 5206 

1972 4805 6548 9478 5060 6130 

1973 4239 5259 9472 4653 3702 

1974 12742 12588 14259 12938 13203 

1975 3156 13280 5123 4109 4430 

1976 4579 5485 6901 6484 8342 

1977 6329 6521 7291 6950 6613 

1978 2544 3672 4227 4054 3749 

1979 4757 4834 6974 5261 7723 

1980 2837 3160 3672 4722 4209 

1981 5410 5737 6090 5960 5897 

1982 2964 3262 2905 4749 3948 

1983 1653 2650 1823 3158 1884 

1984 2993 3407 4023 4306 2857 

1985 3779 3086 3013 3622 4328 

1986 2116 3290 2922 3524 3154 

1987 3416 3706 3861 3863 4127 

1988 2752 3275 3120 3123 2705 

1989 4855 3693 5221 3796 3960 

1990 1675 2248 1819 1903 1968 

1991 6127 6923 5544 6815 7007 

1992 2036 2909 2110 2649 2077 

1993 3492 4257 4203 4530 6242 

1994 1544 2711 2593 4113 2838 

1995 4197 3946 3461 4682 3685 

1996 3585 3137 4443 3473 4202 

1997 3557 3538 4006 4661 5047 

1998 3326 3843 3823 3814 3469 

1999 3257 3969 3378 4484 4313 

2000 1749 3360 4459 3468 3155 

2001 6874 7551 5849 8590 9708 
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YEAR TOTAL TOTAL_EW_12 TOTAL_UW_12 TOTAL_EW_12_CAP TOTAL_UW_12_CAP 
 

2002 4195 4362 3223 3515 3349 

2003 2831 3920 3236 4234 4089 

2004 2990 3347 4044 3642 5254 

2005 2566 3469 2384 2840 2511 

2006 2879 3930 3941 3877 4446 

2007 2489 3283 3189 3046 3470 

2008 5385 4163 4406 3985 3827 

2009 5067 6281 7101 7380 6594 

2010 5173 5794 6064 5083 5862 

2011 7167 8699 9694 9062 10018 

2012 NA 3099 4935 3641 2638 

 

The rainfall weight distributions for the separate region models (effort weighted and unweighted) with 
restricted rainfall weights and unrestricted rainfall weights are shown in the Figures below. 

 

Figure 44. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for Coburg for the effort 

weighted model. Solid line is the original model, dotted line is the model where weights are capped to 0.025. 
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Figure 45. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for Arnhem for the 

effort weighted model. Solid line is the original model, dotted line is the model where weights are capped to 0.025. 

 

 

Figure 46. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for North Groote for the 

effort weighted model. Solid line is the original model, dotted line is the model where weights are capped to 0.025. 
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Figure 47. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for South Groote for the 

effort weighted model. Solid line is the original model, dotted line is the model where weights are capped to 0.025. 

 

 

Figure 48. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for Vanderlins for the 

effort weighted model. Solid line is the original model, dotted line is the model where weights are capped to 0.025. 
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Figure 49. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for Mornington for the 

effort weighted model. Solid line is the original model, dotted line is the model where weights are capped to 0.025. 

 

Figure 50. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for Karumba for the 

effort weighted model. Solid line is the original model, dotted line is the model where weights are capped to 0.025. 
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Figure 51. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for Mitchell for the 

effort weighted model. Solid line is the original model, dotted line is the model where weights are capped to 0.025. 

 

 

Figure 52. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for Weipa for the effort 

weighted model. Solid line is the original model, dotted line is the model where weights are capped to 0.025. 
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Figure 53. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for Coburg for the 

unweighted model. Solid line is the original model, dotted line is the model where weights are capped to 0.025. 

 

 

Figure 54. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for Arnhem for the 

unweighted model. Solid line is the original model, dotted line is the model where weights are capped to 0.025. 
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Figure 55. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for North Groote for the 

unweighted model. Solid line is the original model, dotted line is the model where weights are capped to 0.025. 

 

 

Figure 56. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for South Groote for the 

unweighted model. Solid line is the original model, dotted line is the model where weights are capped to 0.025. 
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Figure 57. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for Vanderlins for the 

unweighted model. Solid line is the original model, dotted line is the model where weights are capped to 0.025. 

 

 

Figure 58. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for Mornington for the 

unweighted model. Solid line is the original model, dotted line is the model where weights are capped to 0.025. 
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Figure 59. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for Karumba for the 

unweighted model. Solid line is the original model, dotted line is the model where weights are capped to 0.025. 

 

 

Figure 60. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for Mitchell for the 

unweighted model. Solid line is the original model, dotted line is the model where weights are capped to 0.025. 
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Figure 61. Distribution of rainfall weights for "early" (red) and "late" (blue) rainfall seasons for Weipa for the 

unweighted model. Solid line is the original model, dotted line is the model where weights are capped to 0.025. 
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15.3 Regional predictions for fixed weight model 

 

Figure 62. Catch and predictions for Coburg region using the single model with fixed weights. The recorded catch is 

shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 
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Figure 63. Catch and predictions for Arnhem region using the single model with fixed weights. The recorded catch is 

shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 
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Figure 64. Catch and predictions for North Groote region using the single model with fixed weights. The recorded 

catch is shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 
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Figure 65. Catch and predictions for South Groote region using the single model with fixed weights. The recorded 

catch is shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 

 



 

Incorporation of predictive models of banana prawn catch for MEY-based harvest strategy development for the Northern Prawn Fishery | 87 

 

Figure 66. Catch and predictions for Vanderlins region using the single model with fixed weights. The recorded catch 

is shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 
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Figure 67. Catch and predictions for Mornington region using the single model with fixed weights. The recorded 

catch is shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 
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Figure 68. Catch and predictions for Karumba region using the single model with fixed weights. The recorded catch 

is shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 
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Figure 69. Catch and predictions for Mitchell region using the single model with fixed weights. The recorded catch is 

shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 
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Figure 70. Catch and predictions for Weipa region using the single model with fixed weights. The recorded catch is 

shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 
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15.4 Regional predictions for variable weight model  

 

Figure 71. Catch and predictions for Coburg region using the single model with variable weights. The recorded catch 

is shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 
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Figure 72. Catch and predictions for Arnhem region using the single model with variable weights. The recorded 

catch is shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 
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Figure 73. Catch and predictions for North Groote region using the single model with variable weights. The recorded 

catch is shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 
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Figure 74. Catch and predictions for South Groote region using the single model with variable weights. The recorded 

catch is shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 
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Figure 75. Catch and predictions for Vanderlins region using the single model with variable weights. The recorded 

catch is shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 
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Figure 76. Catch and predictions for Mornington region using the single model with variable weights. The recorded 

catch is shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 
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Figure 77. Catch and predictions for Karumba region using the single model with variable weights. The recorded 

catch is shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 
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Figure 78. Catch and predictions for Mitchell region using the single model with variable weights. The recorded 

catch is shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 
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Figure 79. Catch and predictions for Weipa region using the single model with variable weights. The recorded catch 

is shown in black, the effort weighted predictions in blue and the unweighted predictions in red. 
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15.5 The effects of the survey adjustment on catch predictions in 
individual regions 

 

 

Figure 80. The effect of the survey adjustment on the predicted catch for North Groote. 
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Figure 81. The effect of the survey adjustment on the predicted catch for South Groote. 
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Figure 82. The effect of the survey adjustment on the predicted catch for Vanderlins. 
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Figure 83. The effect of the survey adjustment on the predicted catch for Mornington. 
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Figure 84. The effect of the survey adjustment on the predicted catch for Karumba. 
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Figure 85. The effect of the survey adjustment on the predicted catch for Mitchell. 
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Figure 86. The effect of the survey adjustment on the predicted catch for Weipa. 
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15.6 Estimates of Uncertainty 

Table 17. Recorded catch, estimated catch, confidence and tolerance intervals for the NPF banana prawn stock 

region from 1970-2012. The results are generated using the fixed weights, effort weighted model with 10 regions 

(Coburg and Fog Bay split). 

YEAR CATCH ESTIMATE LOWER CONFIDENCE 

INTERVAL 
UPPER CONFIDENCE 

INTERVAL 
LOWER TOLERANCE 

INTERVAL 
UPPER TOLERANCE 

INTERVAL 

1970 1690 3753 3145 4266 2358 5290 

1971 7365 6604 5105 9258 4223 10612 

1972 4805 8157 6447 18368 5072 19047 

1973 4239 4203 3545 4672 2638 6156 

1974 12742 13175 10670 15589 7790 21952 

1975 3156 4867 4054 5762 3101 7601 

1976 4579 7272 6204 11070 5023 12417 

1977 6329 6568 5298 7622 3890 9966 

1978 2544 3383 2918 3809 2152 4986 

1979 4757 6607 5415 12680 4239 14537 

1980 2837 3701 3279 4055 2443 5242 

1981 5410 5844 5174 6526 3780 8845 

1982 2964 3709 3213 3949 2346 5205 

1983 1653 2489 2111 2828 1621 3506 

1984 2993 4613 3796 5475 2931 6712 

1985 3779 3099 2568 3462 2011 4621 

1986 2116 2797 2335 3735 1766 4640 

1987 3416 3456 3081 3807 2365 4835 

1988 2752 3245 2820 4026 2127 4969 

1989 4855 4390 3703 5044 2831 6641 

1990 1675 2212 1723 2551 1373 3230 

1991 6127 6826 5928 7720 4320 10106 

1992 2036 3021 2591 3643 1928 4402 

1993 3492 4744 3992 5525 3133 7416 

1994 1544 4936 3091 18943 2578 21920 

1995 4197 4144 3603 4847 2696 6234 

1996 3585 3748 3214 4102 2403 5545 

1997 3557 4577 3847 8790 3076 10273 

1998 3327 4022 3457 4660 2484 6393 

1999 3257 3925 3320 5225 2641 6105 
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YEAR CATCH ESTIMATE LOWER CONFIDENCE 

INTERVAL 
UPPER CONFIDENCE 

INTERVAL 
LOWER TOLERANCE 

INTERVAL 
UPPER TOLERANCE 

INTERVAL 

2000 1749 3976 3218 4771 2537 5834 

2001 6874 7521 5873 9113 4550 12140 

2002 4195 4308 3659 5634 2717 6956 

2003 2831 3776 3215 5366 2490 6166 

2004 2990 3868 3383 4363 2552 5689 

2005 2566 2475 2165 2772 1681 3660 

2006 2879 3548 3053 4286 2364 5363 

2007 2489 2960 2502 3649 1912 4700 

2008 5385 4483 3813 5717 2976 7000 

2009 5067 7260 6122 8697 4437 12107 

2010 5173 5217 4343 6664 3311 8124 

2011 7167 7987 6626 11030 5276 14168 

2012 NA 2726 2350 3681 1815 4517 

 

Table 18. Recorded catch, estimated catch, confidence and tolerance intervals for the NPF banana prawn stock 

region from 1970-2012. The results are generated using the variable weights, effort weighted model with 10 regions 

(Coburg and Fog Bay split). 

YEAR CATCH ESTIMATE LOWER CONFIDENCE 

INTERVAL 
UPPER CONFIDENCE 

INTERVAL 
LOWER TOLERANCE 

INTERVAL 
UPPER TOLERANCE 

INTERVAL 

1970 1690 4054 3168 5177 2600 6167 

1971 7365 6984 5740 8344 4447 10789 

1972 4805 6084 5133 8345 4042 10202 

1973 4239 5507 4655 8382 3799 9191 

1974 12742 13806 10998 15539 8596 20418 

1975 3156 3929 3288 4693 2494 6118 

1976 4579 6107 5339 7118 4271 8752 

1977 6329 6067 4927 6808 3819 9478 

1978 2544 3473 3064 3947 2381 4813 

1979 4757 6077 5114 7518 4051 8963 

1980 2837 3342 3021 3664 2244 4704 

1981 5410 5896 5035 6508 3863 8357 

1982 2964 3388 2911 3723 2246 4839 

1983 1653 3166 2484 3883 2096 4545 

1984 2993 4514 3715 5211 3013 6706 

1985 3779 3514 2970 3961 2444 4773 
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YEAR CATCH ESTIMATE LOWER CONFIDENCE 

INTERVAL 
UPPER CONFIDENCE 

INTERVAL 
LOWER TOLERANCE 

INTERVAL 
UPPER TOLERANCE 

INTERVAL 

1986 2116 3806 2557 7438 2137 8995 

1987 3416 3795 3154 5111 2568 6066 

1988 2752 3248 2820 3504 2160 4413 

1989 4855 4456 3822 5018 2961 6185 

1990 1675 1988 1561 2251 1265 2950 

1991 6127 6528 5647 7302 4184 9691 

1992 2036 2911 2536 3319 1928 4276 

1993 3492 5014 4200 6243 3313 7978 

1994 1544 5380 3141 10995 2655 13562 

1995 4197 4404 3933 4741 2919 6353 

1996 3585 3241 2773 3772 2160 4787 

1997 3557 4339 3662 5066 2954 6148 

1998 3327 3514 3005 3904 2340 4877 

1999 3257 5140 4268 6663 3429 8049 

2000 1749 3662 2985 4266 2380 5230 

2001 6874 7721 6468 9033 4989 11486 

2002 4195 4584 3795 5062 3009 6759 

2003 2831 3006 2596 3251 2075 4168 

2004 2990 3486 3077 3960 2350 4951 

2005 2566 2844 2501 3122 1959 3930 

2006 2879 3610 3146 4062 2534 4943 

2007 2489 3226 2838 3735 2130 4676 

2008 5385 3696 3222 4344 2533 5568 

2009 5067 7318 6099 9411 4586 11966 

2010 5173 4606 3978 5671 3110 6849 

2011 7167 8552 7273 11232 5734 13821 

2012 NA 2847 2399 3496 1931 4298 
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16 Appendix 4: Economic Data 

Table 19. Data used for estimating price elasticity. 

YEAR CATCH  

(TONNES) 

NOMINAL VALUE  

(MIL $A) 

EXCHANGE RATE 

AUD/JPY 

JAPAN’S INFLATION 

INDEX (2005=100) 

AUSTRALIAN 

INFLATION INDEX 

(2005=100) 

ABARE IFS database, IMF 

1992-93 4,058 42.0038 75.563822 100.124 73.453 

1993-94 2,433 26.8822 74.695368 100.813 74.845 

1994-95 4,490 46.5219 69.67748 100.689 78.316 

1995-96 4,347 43.5535 85.1871 100.822 80.362 

1996-97 4,546 45.1700 89.955579 102.598 80.563 

1997-98 3,711 35.5467 82.30019 103.278 81.251 

1998-99 3,608 42.6154 73.448615 102.938 82.442 

1999-00 2,222 31.0097 62.619716 102.266 86.131 

2000-01 6,286 84.8545 62.869723 101.444 89.904 

2001-02 5,419 71.9099 68.064903 100.531 92.604 

2002-03 3,325 42.7968 75.660444 100.282 95.170 

2003-04 3,572 36.6157 79.552911 100.274 97.401 

2004-05 2,827 31.0568 83.823183 100.000 100.000 

2005-06 3,247 32.7986 87.636987 100.241 103.538 

2006-07 2,674 24.7621 98.714384 100.299 105.953 

2007-08 5,380 48.6583 88.716097 101.676 110.565 

2008-09 5,214 46.4932 73.976122 100.307 112.578 

2009-10 5,771 59.2867 80.628023 99.585 115.781 

2010-11 7,577 61.3720 82.593331 99.303 119.705 
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Table 20. Data used for estimated the harvest functions 

YEAR POTENTIAL CATCH  CATCH (C) IN TONS EFFORT (E) IN DAYS 

2008 4163 1050.833 288 

2008 4163 1950.168 589 

2008 4163 2825.182 909 

2008 4163 3569.443 1209 

2008 4163 3958.212 1514 

2008 4163 4350.267 1773 

2008 4163 4553.971 2029 

2008 4163 4787.882 2251 

2008 4163 4894.945 2411 

2008 4163 4959.806 2506 

2008 4163 4965.942 2517 

2008 4163 5019.695 2548 

2008 4163 5073.941 2593 

2008 4163 5119.17 2617 

2008 4163 5198.82 2683 

2008 4163 5245.343 2708 

2008 4163 5265.7 2727 

2008 4163 5288.178 2739 

2008 4163 5304.53 2766 

2008 4163 5322.198 2779 

2008 4163 5363.564 2809 

2008 4163 5377.214 2818 

2008 4163 5381.05 2820 

2008 4163 5382.949 2827 

2008 4163 5384.36 2834 

2008 4163 5384.453 2841 

2008 4163 5384.516 2843 

2008 4163 5384.612 2845 

2008 4163 5384.68 2845 

2009 6281 405.574 104 

2009 6281 1657.424 452 

2009 6281 2648.816 789 

2009 6281 3379.241 1116 
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YEAR POTENTIAL CATCH  CATCH (C) IN TONS EFFORT (E) IN DAYS 

2009 6281 3909.811 1449 

2009 6281 4195.4 1740 

2009 6281 4392.329 2008 

2009 6281 4494.6 2239 

2009 6281 4681.87 2386 

2009 6281 4741.855 2471 

2009 6281 4769.958 2501 

2009 6281 4848.771 2557 

2009 6281 4913.249 2594 

2009 6281 4935.064 2605 

2009 6281 4942.661 2611 

2009 6281 4960.886 2617 

2009 6281 4991.638 2634 

2009 6281 4997.158 2635 

2009 6281 4999.923 2643 

2009 6281 5010.893 2646 

2009 6281 5032.111 2654 

2009 6281 5035.627 2654 

2009 6281 5038.918 2656 

2009 6281 5039.358 2659 

2009 6281 5040.707 2659 

2009 6281 5050.338 2659 

2009 6281 5062.003 2659 

2009 6281 5066.952 2661 

2009 6281 5066.975 2661 

2010 5794 155.296 51 

2010 5794 852.733 334 

2010 5794 1685.543 645 

2010 5794 2449.931 960 

2010 5794 2951.342 1234 

2010 5794 3526.082 1522 

2010 5794 3884.69 1751 

2010 5794 4172.365 1967 

2010 5794 4477.074 2185 

2010 5794 4704.532 2394 
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YEAR POTENTIAL CATCH  CATCH (C) IN TONS EFFORT (E) IN DAYS 

2010 5794 4819.852 2503 

2010 5794 4862.497 2530 

2010 5794 4938.002 2558 

2010 5794 4960.401 2580 

2010 5794 5014.692 2622 

2010 5794 5038.205 2641 

2010 5794 5066.622 2656 

2010 5794 5081.652 2660 

2010 5794 5100.041 2662 

2010 5794 5110.714 2666 

2010 5794 5116.327 2666 

2010 5794 5125.666 2666 

2010 5794 5134.311 2666 

2010 5794 5135.114 2666 

2010 5794 5148.231 2666 

2010 5794 5165.469 2666 

2010 5794 5172.296 2671 

2010 5794 5172.776 2681 

2010 5794 5172.922 2686 

2011 8699 418.401 86 

2011 8699 1706.41 376 

2011 8699 2780.388 711 

2011 8699 3825.482 1040 

2011 8699 4811.712 1371 

2011 8699 5423.853 1683 

2011 8699 5908.831 1977 

2011 8699 6293.96 2255 

2011 8699 6559.18 2517 

2011 8699 6748.019 2773 

2011 8699 6819.245 2962 

2011 8699 6835.427 3005 

2011 8699 6835.427 3006 

2011 8699 6879.587 3044 

2011 8699 6943.529 3134 

2011 8699 7005.52 3257 
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YEAR POTENTIAL CATCH  CATCH (C) IN TONS EFFORT (E) IN DAYS 

2011 8699 7024.688 3288 

2011 8699 7053.073 3331 

2011 8699 7054.467 3339 

2011 8699 7072.201 3359 

2011 8699 7074.215 3359 

2011 8699 7081.838 3361 

2011 8699 7082.282 3362 

2011 8699 7090.746 3363 

2011 8699 7095.651 3364 

2011 8699 7118.141 3364 

2011 8699 7144.271 3364 

2011 8699 7163.61 3364 

2011 8699 7165.793 3368 

2011 8699 7166.549 3369 
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