In the simplest of terms, biosecurity is the protection of living organisms from any type of infectious organism. It can be applied at a local level, such as at a single farm or a national or an international level. One of the best ways to protect fish and safeguard industries and ecosystems, is by preventing and controlling disease with a good biosecurity program. Effective disinfection procedures are important components of disease control and general guidelines for aquatic animal health are available from the OIE. However, interpretation and implementation by industry and regulatory authorities require pathogen specific information.
General guidelines for disinfection in response to emergency aquatic animal diseases are provided in AquaVet Plan, Operation Manual for Decontamination (DAWR, 2014-2019) and by the OIE (Aquatic Code, Chapter, 4.3). However, the survival of RSIV outside a host is unknown and disinfection with ether, formalin and chloroform are impractical, particularly without detailed application instructions (OIE Aquatic Manual, Chapter 2.3.7). Biosecurity regulators and farm managers require disinfection efficacy data specific for megalocytiviruses to interpret these guidelines for prevention and control of disease. Detailed disinfection protocols that are efficacious for DGIV in field relevant sample matrices are required. A range of practical methods ensures a suitable procedure can be adapted for the wide range of environments encountered in aquatic health.
Given the prior outbreak of DGIV resulting in over 90% of Murray cod dying at a hatchery in Victoria, there is a real risk to domestic aquaculture if DGIV was to become established. There is a critical need to develop and test biosecurity measures to manage the disease risk to Australian fish farms.