Current resource use challenges sustainability and resilience of industries. Circular value chains allow management of waste losses and maximise resource recovery. A circular economy (CE) mimics the cycles in nature in which there is no waste. Maximum value and utility of products and materials is maintained in CE through a combination of extending product lifetimes, increasing resource use intensity, and end-of-life material recycling. CE includes the idea of regenerative development, i.e. as the earth’s resources cycle as materials through the economy they restore and enhance, rather than deplete, natural capital.
Economic opportunities of circularity are well identified, the World Economic Forum estimates global adoption of CE principles would deliver cost savings of US$1trillion dollars per annum by 2025. A recent UTS:ISF study estimated an Australian CE could be worth AU$2 billion by 2025. However, current knowledge gaps constrain how CE may develop, at what scale it makes sense to close loops, and the strategies, policy mix and incentives needed to promote circularity.
For fisheries and aquaculture, CE adoption addresses waste challenges through the creation of new value chains for fish/shell waste and substitution or recycling plastics and provides co-benefits of resource efficiency, contributions to healthy aquatic eco-systems and creation of added value and new employment. Frameworks to guide ‘CE thinking’ exist e.g. Ellen Macarthur Foundation’s 10R’s and ReSOLVE (see Supplementary Material), but have not been explored, are often omitted in food innovation debates (Pagotto and Halog 2015), and opportunities for implementation within the sector are still emerging (e.g., replacement of fish-feed for abalone with wine production waste or repurposing mussel shells as high-nutrient fertiliser). The need to understand the context, opportunity and benefit of CE innovations and to identify strategic approaches to sectoral circularity at scale are apparent.