261 results

Developing cost-effective industry based techniques for monitoring puerulus settlement in all conditions: Phase 2

Project number: 2014-025
Project Status:
Completed
Budget expenditure: $281,407.52
Principal Investigator: Stewart Frusher
Organisation: University of Tasmania (UTAS)
Project start/end date: 14 Jan 2015 - 13 Mar 2017
Contact:
FRDC

Need

Rock lobster fisheries throughout southern Australia show substantial fluctuations in recruitment which if not carefully monitored and managed may lead to lost opportunity and substantial loss in revenue. In Australia, larval (puerulus) collectors have been established in shallow water regions to provide early warning of future changes in abundance. These collectors are serviced either by divers (SA, Tas & Vic) or from dinghies (WA) which make them expensive to service and thus limited in their regional distribution to a few sites. For southern rock lobster there has been concern over how well the observed larval settlement represents the entire fishery as sampling sites are few and limited to the East Coast whereas the majority of catch is from deeper reefs on the South and West Coasts where no collectors are deployed. To improve our understanding of the relationship between recruitment, future catches and short and long term recruitment trends, there is a need to improve spatial (region and depth) coverage.

This proposal follows on from Phase 1 which:
(1) Successfully developed a deep water collector that is easily serviceable by fishers and that captures puerulus.
(2) Developed an in-situ camera system that enables real time remote viewing of puerulus settlement

The need is to determine the sampling strategy that will provide meaningful results to industry and managers on recruitment patterns and trends to the fishery in regions important to the fishery and currently not represented in existing monitoring programs.

To meet this need, this phase aims to determine the depths, times and number/collectors of puerulus that settle in deeper water to determine the number of sites and the number of collectors per site that will provide meaningful settlement data to support management decisions.

Objectives

1. To determine an appropriate and cost effective sampling strategy (number of collectors, depth and time) to enable statistically meaningful analysis of spatial and depth trends in puerulus settlement.
2. To compare shallow and deep water survey methods (e.g. diver based, fisher servicing) to establish the most cost effective methods for on-going monitoring of puerulus settlement.

Final report

ISBN: 978-1-925646-34-4
Authors: Stewart Frusher Graeme Ewing Justin Rizari and Ruari Colqhoun
Final Report • 2018-10-29 • 4.10 MB
2014-025-DLD.pdf

Summary

Outcomes achieved to date
The outputs from this second phase of the project have led to the following outcomes:
1. A refined puerulus collector design that:
• Collects puerulus as effectively as traditional diver-serviced inshore collector systems
• Collects puerulus effectively from deep water (>50m)
• Can be easily and safely deployed, retrieved and serviced by vessels from the Tasmanian commercial lobster fleet during routine fishing operations
2. Deployments at various locations around the Tasmanian coast over 4 settlement seasons have shown that:
• Puerulus settlement is considerably lower in deeper offshore waters than in shallow inshore waters although sufficient to demonstrate major changes in recruitment.
• Puerulus settlement in deeper waters was higher in the 2016/2017 settlement season on the south coast of Tasmania than it was on the east coast
• Puerulus settlement rates in deep waters varied between recent seasons similarly to settlement in inshore waters
3. A cost-benefit analysis comparing traditional diver-based and deep-water fisher serviced puerulus collection strategies has shown that:
• Fisher-serviced is more cost-effective than diver-based methods for similar arrays of collectors
• The current fisher-serviced design is not suitable for deployment in inshore shallow exposed waters due to sedimentation from mobile sediments
• The fisher-serviced collection system developed in this project is a cost-effective way to monitor puerulus settlement in deep water
• Despite yielding lower catch rates than inshore settlement monitoring, the number of offshore collectors used in this project displayed similar temporal patterns of settlement with similar statistical power.
• Offshore collectors retain puerulus settlers similarly to inshore collectors
• Fisher-serviced puerulus monitoring would be even more cost effective if industry agreed to provide support without the requirement for financial compensation

A review of the Tasmanian puerulus program undertaken in 2008 involving government, industry and an external review identified that the current puerulus collectors were all on the East Coast (with the exception of King Island); despite the southern and western regions supporting the largest catches in the fishery. The review identified as a priority to "investigate options for collection on the west coast using boat-based collection and using the commercial fleet to reduce cost of collection".

In phase 1 of this project a design for a deep water collector was developed through consultation with industry and prototypes of this design were constructed and tested in aquaria with captured pueruli, on the seafloor adjacent to an existing inshore shallow collector site on the east coast of Tasmania, and in deep water on the south and southwest coasts of Tasmania. The prototype collectors were successfully deployed, retrieved and serviced by vessels in the commercial lobster fleet and vessel masters reported that the design facilitated safe and efficient handling on deck. The prototypes collected significantly more puerulus than adjacent routine collectors in deployments at the shallow site and collected puerulus for the first time on the deeper and more exposed southwest coast of Tasmania.

This phase 2 of the project saw deployment of a refined collector design onto reefs around Tasmania over 2 puerulus settlement seasons and provided evidence that; (1) puerulus settle in larger numbers in shallow inshore waters; (2) puerulus settlement in deeper water varies in space, time and depth around the Tasmanian coast (eg. Puerulus settlement was higher on the south coast than on the east coast in the 2016/2017 settlement season and puerulus settlement in waters deeper than 100m appears to be very low). 

When deployed alongside traditional diver based collectors, the fisher-serviced puerulus collector captures and retains more puerulus than traditional diver-based methods and is more cost-effective per collector. However, refinements to the design would be required for its use in inshore puerulus monitoring due to siltation issues from mobile sediments in exposed inshore locations. 

Despite experiencing lower catch rates than inshore settlement monitoring, the number and consistence of settlement on offshore deeper water collectors enabled similar temporal patterns of settlement to be determined. The deep water collectors also retained puerulus for similar periods to the traditional collectors.  Consequently, deep water puerulus collection is a feasible alternative to costly inshore diver-serviced monitoring programs and would be expected to indicate similar trends in recruitment. Industry involvement in servicing offshore collectors during routine fishing operations greatly increases the cost-effectiveness of this approach; particularly if this support was provided without the requirement for financial compensation.

Understanding recruitment collapse of juvenile abalone in the Eastern Zone Abalone fishery – development of pre-recruitment monitoring, simulation of recruitment variation and predicting the impact of climate variation

Project number: 2014-010
Project Status:
Completed
Budget expenditure: $141,656.60
Principal Investigator: Craig Mundy
Organisation: University of Tasmania (UTAS)
Project start/end date: 9 Aug 2014 - 31 Jan 2017
Contact:
FRDC

Need

Large fluctuations between years in fishable biomass of abalone are thought to be driven by inter-annual variation in recruitment to the fishery. Over the last decade the changes in recruitment from year to year appear to have been especially extreme which suggests that this may be caused by climate change. Eastern Tasmania is one of the fastest warming parts of Australia as a result of greater extension of the EAC. This possible link between climate change and abalone recruitment can't be investigated in detail at present because of the lack of data / time series on abalone recruitment. This project will establish collection of that data to provide future capability.

When recruitment to the fishery fails, the fishery is reliant on existing older year-classes already in the fishery, leading to a rapid decrease in fishable biomass. The capacity to measure inter-annual variation in sub-legal year-class strength would provide valuable prior warning of decline. Data obtained from a pre-recruit monitoring program will provide fishery-independent data to inform TAC setting. Fishery independent pre-recruit abundance data is a valuable input to the Management Strategy evaluation (MSE) Harvest Strategy and Control Rule system being developed in Tasmania. Application of assessment and MSE (Management Strategy Evaluation) models are both limited due to the absence of data on early year class abundance patterns, and will be improved by access to pre-recruit data.

Objectives

1. Optimise collector module design for quantifying abundance of juvenile abalone across a range of habitat types
2. Determine links between juvenile abundance observed on modules and abalone in surrounding habitat
3. Estimate expected juvenile abundance on collectors in a ‘normal’ recruitment year using published natural mortality data and known abundance.

Final report

ISBN: 978-1-925646-32-0
Authors: Craig Mundy Sarah Pyke Jaime McAllister Hugh Jones
Final Report • 2018-06-25 • 2.80 MB
2014-010-DLD.pdf

Summary

Over the past three decades the Tasmanian Eastern Zone Abalone Fishery has experienced several fluctuations in catch and catch rates of Blacklip Abalone as well as environmental perturbations, which may be affecting productivity. The capacity to measure inter-annual variation in Blacklip Abalone juvenile year-class strength would provide valuable prior warning of decline. Artificial structures referred to as "Abalone Recruitment Modules" were trialled to monitor changes in the abundance of Blacklip Abalone to meet the conditions of the Eastern Zone Abalone Fishery in Tasmania. This requires testing designs in different habitats and improvements to the method of deployment on reef substrates. Work was also required to establish a network of these that is effective in terms of statistical power and operational feasibility.
People
PROJECT NUMBER • 2013-748.20
PROJECT STATUS:
COMPLETED

Seafood CRC: addressing roadblocks to the adoption of economics in fisheries policy (2013/748.20 Communal)

This project has led to the development of three journal articles examining how the use of economic analyses and stock enhancement can lead to improved economic outcomes in Australian wild-capture commercial fisheries. The Seafood Cooperative Research Centre (Seafood CRC) Future Harvest (FH)...
ORGANISATION:
University of Tasmania (UTAS)

Seafood CRC: Future Harvest Master Class in Fisheries Economics - Revision & Extension (2013-748 Communal)

Project number: 2013-748
Project Status:
Completed
Budget expenditure: $24,694.05
Principal Investigator: Sarah M. Jennings
Organisation: University of Tasmania (UTAS)
Project start/end date: 14 Oct 2014 - 26 Mar 2015
Contact:
FRDC

Need

As part of the activities of the FRDC 2008/306 Building Economic Capability in Fisheries Project an online survey of professional training needs in fisheries economics of 56 managers, industry representatives, and researchers within the seafood industry was conducted. Results of this survey indicate a high level of demand (100% of respondents) for short course training in fisheries economics. The highest level of interest was for a basic introductory course in fisheries economics of 1-2 days duration. Interest was also high in web-based modes of delivery.
Based on this feedback the initial round of Master Classes were developed in conjunction with the Seafood CRC. Results of the evaluation of these classes indicated that past participants will be recommending the class to others. The following organisations also expressed interest in dedicated Master Classes; AFMA; DPI Victoria; Dept. of Fisheries WA; and SA Rock Lobster Advisory Council (SARLAC) and could be approached individually to ascertain possible enrolments.

Ongoing demand for such training opportunities was also highlighted in the review of the project undertaken by Ian Cartwright as part of the Legacy from Future Harvest review, where it was concluded the initial offering be revised and extended. This work was initially presented and approved as an extension to Seafood CRC Project 2010-714 ‘The Future Harvest Master Class’ but subsequently has required a separate project application.

Objectives

1. To revise/extend the existing face-to-face Masterclass materials/resources
2. To develop an online version of the Masterclass
3. To develop a strategy for marketing, delivery and funding of the Masterclass

SCRC: RTG:To learn practical skills in conducting viral disease challenge techniques in Penaeid prawn species using white-spot syndrome virus (WSSV) as a model virus to be conducted at Shrimp Biotechnology Business Unit (BIOTEC), Pathumthani, Thailand.

Project number: 2013-718
Project Status:
Completed
Budget expenditure: $0.00
Principal Investigator: Daniel Pountney
Organisation: University of Tasmania (UTAS)
Project start/end date: 31 Mar 2013 - 29 Sep 2013
Contact:
FRDC

Final report

ISBN: 978-0-9752258-9-9
Author: Daniel Pountney
Final Report • 2013-04-08 • 139.59 KB
2013-718-DLD.pdf

Summary

Due to the nature of commercial prawn farming, constraints within the industry such as disease management will always pose problems from managing endemic diseases; such as gill-associated virus in Australia, to exotic diseases including Yellow Head Virus and White Spot Syndrome Virus. The need to conduct this research outside of Australia is important due to the model virus being of ‘exotic’ nature and importing the virus is not possible. The aim of this research travel grant was to allow the researcher to learn practical skills in conducting viral disease challenge techniques in Penaeid prawn species using white-spot syndrome virus (WSSV) as a model virus to be conducted at Shrimp Biotechnology Business Unit (BIOTEC), Pathumthani, Thailand.

During his time at the unit, Dan worked with NSTDA employees to conduct routine duties such as feeding the prawns four times daily, undertaking water quality analysis and tank cleaning. He also visited a commercial shrimp farm (Litopenaeus vannamei) located in the Phetchaburi province of Thailand which allowed him to get first-hand experience of the current problems that Thailand farmers experience and learn how they overcome the problems of viral outbreaks to ensure they stay competitive in the shrimp farming industry. >

Meeting sustainability expectations: translating and aligning objectives, reporting and evaluation of the performance of Australian fisheries

Project number: 2013-204
Project Status:
Completed
Budget expenditure: $164,674.50
Principal Investigator: Emily Ogier
Organisation: University of Tasmania (UTAS)
Project start/end date: 30 Jun 2013 - 23 Aug 2015
Contact:
FRDC

Need

The Australian fishing industry is under increasing scrutiny due to campaigns that communicate that stocks are overfished and poorly managed (AMCS 2011). This contributes to calls for MPAs, resistance to consumption of some seafood, and a general erosion of community support for fishing industries (Hilborn & Kearny 2012). FRDC is addressing these issues through a suite of initiatives, including the SAFS and NHSP projects. The project proposed here examines the consistency and transparency of fisheries governance. The need is to ensure that the Australian community’s expectations for the management of its fisheries are adequately reflected and accounted for throughout governance processes, from the objectives of legislation through to reporting and evaluating performance and status of fisheries.

This project was developed to directly address the following needs as identified in the National R,D&E Strategy 2010:
- provide greater clarity in management objectives,
- develop governance models for better accountability; and
- develop performance indicators, including social, ecological and economic.

The project will also contribute to the following priority areas:
- integrating social, environmental and economic considerations into fisheries management strategies; and
- identifying and understanding community aquatic values and how these can be integrated into fisheries management .

This project will meet these needs by generating knowledge about ways to improve the design of:
1. legislative objectives for fisheries resources and management objectives for specific fisheries, and thereby achieve greater alignment with the Australian community’s expectations for management of fisheries resources; and
2. management objectives for specific fisheries so they can be operationalized to achieve greater articulation with reporting and evaluation of performance and status.
In addition, the project will contribute to the development of common reporting frameworks and formal classifications for social, economic, ecological and management performance and status of key Australian fisheries.

Objectives

1. Determine the extent of alignment between the Australian public's expectations for the performance of fisheries and legislative objectives for fisheries resources in each of the jurisdictions
2. Determine the extent of alignment between legislative objectives for fisheries resources between Australian jurisdictions
3. Determine the extent of alignment between management objectives and reporting frameworks for each of Australia's key fisheries
4. Determine the level of articulation between management objectives and reporting for each of Australia's key fisheries
5. Identify options and provide recommendations for common reporting frameworks and formal classifications for social, economic, ecological and management performance and status of Australia's key fisheries
6. Develop guidelines and identify instruments and processes for the optimal design of fisheries legislative objectives and management objectives for specific fisheries.

Final report

ISBN: 978-1-922352-16-3
Authors: Emily Ogier Tim Emery Anna Farmery Matthew Flood Caleb Gardner Julia Jabour Simon Nicol Sean Sloan Ilona Stobutzki
Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Final Report • 2020-12-01 • 4.77 MB
2013-204 DLD.pdf

Summary

This report presents findings of a research project which examined the extent to which the stated objectives being pursued to guide the management of Australia’s fisheries are aligned with community expectations for sustainability. And, further to this, the extent to which the design of objectives can effectively support agencies in achieving this.

A team of researchers and policy staff from IMAS, PIRSA and ABARES has examined the policies, legislation, management documents, operational plans and strategies, and performance reports for a selection of Australia’s important fisheries. This report outlines the results of this analysis, implications for policy and management, and the resources developed to support better future objective design.

Can commercial harvest of long-spined sea urchins reduce the impact of urchin grazing on abalone and lobster fisheries?

Project number: 2013-026
Project Status:
Completed
Budget expenditure: $297,908.54
Principal Investigator: Craig Mundy
Organisation: University of Tasmania (UTAS)
Project start/end date: 31 Aug 2013 - 16 Oct 2016
Contact:
FRDC

Need

The long-spined sea urchin Centrostrephanus rodgersii has gradually increased in extent and biomass on the East coast of Tasmania over the past three decades. Options for direct and indirect intervention are being considered to limit numbers of this urchin to that required to minimise the destruction of the kelp and understory habitat essential for other benthic species such as abalone and rock lobster. Over the past two years a fledgling urchin harvest industry has developed in Tasmania, with the potential for market demands to create a significant fishery in terms of harvest biomass. Whether harvesting of urchins is beneficial (synergistic) to existing fisheries needs to be determined to inform development of a Harvest Strategy of all species reliant on healthy shallow (20m) sub-tidal ecosystems. The efficacy of commercial urchin harvesting as a ‘control tool’ is dependent on the degree of spatial overlap with other fisheries (co-dependent on habitat), the capacity of urchin harvesting to minimise localised destructive grazing, and, whether the urchin harvest is economically sustainable given the practical limitations of harvesting at depth.

Objectives

1. Determine spatial location and extent of overlap between Centrostephanus and existing fisheries
2. Application of coastal exposure indices for identifying potential urchin harvest locations
3. Determine dive profile strategies to enable safe harvest of urchins at depths greater than 15m

Final report

Authors: Keane J.P. Mundy C. Porteus M. Johnson O.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.
Final Report • 2019-03-01 • 1.88 MB
2013-026-DLD.pdf

Summary

At low-levels of exploitation, commercial harvesting of long-spined sea urchins was found to prevent increase in urchin density. Adjacent unfished locations experienced an increase in both urchin density and grazed area over the 2014 – 2016 study period. Research sampling of populations remaining on reefs after fishing also found that mean urchin Test diameter and urchin age was smaller and younger respectively than on nearby unfished reefs, further supporting there is a measurable effect of urchin fishing on urchin populations even at low exploitation rates. These results demonstrate a clear potential for urchin fishing to reduce destructive grazing by urchins, or at least prevent further expansion of existing grazed areas even under a regime of low
fishing pressure.
 
The Tasmanian commercial fishery of long-spined urchin either directly overlaps or is immediately adjacent to commercially fished abalone reefs. As the presence of barrens has a clear negative association with abalone abundance, the potential for urchin fishing to lower urchin densities in key reef habitats highlights the importance of an ongoing long-spined urchin fishery for protecting key abalone fishing grounds (recreational and commercial). The ability to capture fine-scale spatial data on both urchin and abalone fisheries was critical to evaluating the potential for urchin fishing to benefit the abalone fishery. A long-term strategy for fine-scale data collection using passive GPS and Depth data loggers will be fundamental to ongoing assessment of the benefits of urchin fishing to the abalone fishery, but also to the broader users of shallow coastal reef systems in Eastern Australia.There is also the potential for positive-feedback loops from urchin fishing, with reduction in densities increasing roe production and output, and therefore ensure that the industry can remain economically sustainable.
 
Cartographic Exposure Index software developed during this project showed some capacity to identify coastlines at risk to destructive grazing, but further data collection to underpin the predictive model is required. Production of a high-resolution bathymetric map of key coastal reefs is considered to be a high priority for ongoing spatial mapping and analysis of the expansion of the urchin fishery and its consequent effects on urchin density.
 
There is a clear benefit to the urchin fishers if they switch from compressed air to using Nitrox gas for diving safety and access to greater reef area. Current beach price and likely decline in catch rates as the fishery expands however, will mean that investment in Nitrox based breathing systems may be economically marginal. From a health perspective, a switch to Nitrox while retaining the current bottom time would have clear safety benefits.
 
This study demonstrated positive benefits for abalone habitat at very-low urchin exploitation levels, with the extent and spatial magnitude of benefits expected to rapidly increase with increasing urchin exploitation. It is unlikely that commercial harvesting will lead to eradication of the long-spined sea urchin, but there is clear potential for commercial fishing to be a primary contributor to mitigating the destructive grazing of this species.

Assessing post-release survival of Southern Bluefin Tuna from recreational fishing

Project number: 2013-025
Project Status:
Completed
Budget expenditure: $303,544.18
Principal Investigator: Sean Tracey
Organisation: University of Tasmania (UTAS)
Project start/end date: 28 Feb 2013 - 30 Dec 2014
Contact:
FRDC

Need

Estimates of post-release survival (PRS) of SBT from the recreational sector are unknown. As a gamefish species a catch and release ethic is associated with the fishery where a proportion of fishers target SBT purely for sport with most fish released. In addition, management strategies for recreational fishing of SBT are aimed at limiting individual harvest (bag, possession or boat limits) creating a legislative requirement to release fish. If regulations become more restrictive or as the stock rebuilds, a greater proportion of the catch will be released. It is therefore increasingly important to quantify PRS of SBT and also ensure that survival is maximised by identifying factors that disproportionately contribute to mortality and then communicating an effective code of practice for the release of tuna to the recreational game fishing sector. This project, as part of a portfolio of projects carried out within Victoria and Tasmania (as well as FRDC project 2012/022: Development of methods for obtaining national estimates of the recreational catch of SBT), will contribute to quantifying fishing induced mortality of SBT from the recreational sector and provide a mechanism to assess the appropriateness of current management regulations.

Objectives

1. Quantify post-release survival rates for SBT caught by recreational fishing
2. Determine key factors affecting post release survival of SBT from recreational fishing
3. Develop a 'Code of practice' identifying strategies that have potential to minimise sub-lethal impacts and increase post release survival of SBT

Final report

ISBN: 9781862958050
Author: Sean Tracey
Final Report • 2017-01-30 • 15.64 MB
2013-025-DLD.pdf

Summary

Southern Bluefin Tuna (SBT) are an important component of the recreational game fishery in Australia. Recreational fishers in waters around South Australia, Victoria, Tasmania and New South Wales catch this species seasonally. Each state respectively is responsible for the management of this recreational fishing, with individual fisher catch limits, and in some states boat limits also apply. Excess catch beyond these limits must be released. An assumption underpinning the effectiveness of catch limits is that a major proportion of fish released will survive. This assumption is also key to the practice of sport fishing, where anglers target fish which they don’t intend to keep.

Recent studies reporting on the catch and effort of the recreational SBT fisheries in Victoria and Tasmania estimate that approximately 25% of SBT are released. A low post-release survival rate could contribute a significant source of unaccounted mortality within the recreational fishery. Prior to this study there was no information to quantify the post release survival rates of SBT.

The primary objective of this study was to assess the post-release survival rate of SBT caught by the recreational fishery in Australia. An analysis was also conducted to determine whether the fate of fish after release could be related to factors occurring during capture. Finally, a Code of Practice (COP) for the recreational SBT fishery was compiled. The COP is based on the results of this study integrated with fact-based information from existing literature relevant to the recreational capture of large pelagic species. Both a booklet and a brochure of the COP have also been created to allow easy provision of information to recreational fishers.

The results showed that recreationally caught SBT have a low incidence of mortality (3%) occurring during the capture event related directly to the hooking and retrieval of the fish. The fate of fish that were landed in a non-responsive state was attributed to deep-hooking damage, with the exception of one large fish that became tail wrapped and was retrieved to the boat backwards, effecting its ability to ram ventilate. An exception to the low pre-landing mortality was attributed to seal predation of SBT caught in Tasmanian waters. Seal predation accounted for mortality of 31% of fish hooked adjacent to Tasmania. This was the greatest source of unintended mortality related to recreational capture assessed in this project. The uniqueness of seal mortality occurring in Tasmanian waters is likely due to the fact that the majority of recreational fishing targeting SBT occurs in close proximity to areas frequented by seals, primarily coastline and islands used by seals as haul outs.

Satellite tagged fish caught on lures configured with J-hooks (n = 46) and those caught on circle hooks (n = 8) had similar post-release survival (PRS) rates and were combined to increase sample size, revealing a PRS estimate of 83.0% (95% CI: 75.9 – 90.7%, n = 54). The PRS estimate of fish caught on lures with treble hooks was much lower, 60% (95% CI: 20 – 100%, n = 5). Given the low sample size of fish caught using treble hooks this PRS estimate should be considered indicative, additional samples would improve the statistical robustness of this estimate.

The results indicate that post-release mortality does occur for recreationally caught Southern Bluefin Tuna, but is not significant factor in relation to the total recreational harvest of SBT. Therefore, current management strategies using catch limits, including personal bag or possession limits are reasonably effective. The reported post-release survival rate has been assessed across the size range of fish that is commonly caught by the recreational fishery throughout southeast Australia. These findings will complement future research to investigate the recreational harvest of Southern Bluefin Tuna in Australia (Moore et al. 2015). The combined results of these projects will provide greater transparency around the recreational fishery for Southern Bluefin Tuna, an objective which is an obligation of Australia to the Commission for the Conservation of Southern Bluefin Tuna.

The development of a COP for the recreational capture and handling of Southern Bluefin Tuna based on the results of the study, and others, provides fishers with fact based information to improve fish handling practices, primarily around reducing unintended mortality and reducing impacts on animal welfare. The COP has been endorsed by key recreational fishing representative bodies to champion and assist in dissemination and adoption of the COP document.

Keywords: Southern Bluefin Tuna, Thunnus maccoyi, recreational fishing, physiological stress, post-release survival, responsible fishing, animal welfare, code of practice

Project products

Handbook • 2017-01-30 • 10.03 MB
2013-025-DLD Booklet.pdf

Summary

Recreational fishers can each play a part in improving  the Southern Bluefin Tuna fishery by applying best practices for responsible fishing.  Applying best practice considers the welfare of individual fish and minimises impacts on fish stocks. This Code of Practice has been developed based on scientific research specific to the recreational Southern Bluefin Tuna fishery, existing science based literature on the impacts of recreational fishing and consultation with peak recreational fishing groups. 

There is no legislative requirement to follow codes of practice; rather they are designed to provide fishers with fact-based information required to fish in a responsible way.  Taking the time to read, learn and apply the information in this document will improve the recreational fishing experience for everyone.

Brochure • 2017-01-30 • 3.19 MB
2013-025-DLD Brochure.pdf

Summary

This code of practice contains information for responsible catching, handling, releasing and tagging of Southern Bluefin Tuna.

It relates specifically to recreational fishing for Southern Bluefin Tuna, but a lot of the practices described are just as relevant for other game fish species.

View Filter

Product Type

Organisation