78
results
Industry
PROJECT NUMBER • 2019-106
PROJECT STATUS:
COMPLETED

Minor use permit for oxytetracycline in non-salmonid finfish

There are no registered or permitted antimicrobial products approved by the Australian Pesticide and Veterinary Medicine Authority (APVMA) for treatment of bacterial infections in finfish. This project developed an application for a minor-use permit (MUP) for the use of oxytetracycline (OTC) to...
ORGANISATION:
University of Adelaide
Environment
Industry
PROJECT NUMBER • 2017-225
PROJECT STATUS:
COMPLETED

Improving risk management of paralytic shellfish toxins (PST) in the Blacklip Abalone (Haliotis rubra rubra)

The accumulation of paralytic shellfish toxins (PST) of microalgal origin in abalone tissues causes a trade and human health risk that requires active management. Toxic algal blooms of the genus Alexandrium have recently caused several abalone harvest closures on the east coast of Australia. Risk...
ORGANISATION:
SARDI Food Safety and Innovation
Industry
Adoption
PROJECT NUMBER • 2017-233
PROJECT STATUS:
COMPLETED

Future Oysters CRC-P Communication and Adoption

The Future Oysters CRC-P project (CRC-P 2016-553805; Future Oysters) was funded by the Australian Government’s Business Cooperative Research Centres (CRC) Program, which is managed by the Department of Industry, Innovation and Science (DIIS). The Future Oysters CRC-P project was developed to...
ORGANISATION:
Australian Seafood Industries Pty Ltd (ASI)
People
PROJECT NUMBER • 2017-097
PROJECT STATUS:
COMPLETED

Reducing bycatch using modifications to sweeps and lines anterior to the trawl mouth - collaboration with the Technical University of Denmark

Prawn trawling is among the world's least selective fishing methods and there has been a great deal of work done over the past few decades to develop modifications that reduce unwanted bycatches. Much of this work has focussed on modifications at, or near, the codend (at the aft section) of trawls,...
ORGANISATION:
IC Independent Consulting Pty Ltd
Industry
PROJECT NUMBER • 2018-090
PROJECT STATUS:
COMPLETED

Improving early detection surveillance and emergency disease response to Pacific Oyster Mortality Syndrome (POMS) using a hydrodynamic model for dispersion of OsHV-1

Rapid predictive capability of viral spread through water during an aquatic disease outbreak is an epidemiologist’s dream, and up until now has not been achievable. A biophysical particle tracking model for Ostreid herpesvirus 1 microvariant (OsHV-1) that causes POMS was developed to determine...
ORGANISATION:
Department of Primary Industries and Regions South Australia (PIRSA)
View Filter

Product Type

Organisation